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Abstract 

Background:  Obsessive–compulsive disorder (OCD) is a severe neuropsychiatric condition affecting 1–3% of the 
worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate 
transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, 
we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant 
to anxiety (open field test, elevated plus maze) and compulsivity (marble burying), as well as locomotor activity 
induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotrans‑
mitter levels in cortex, striatum and thalamus—brain areas that are relevant to OCD.

Results:  Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, 
compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally) 
increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and seroto‑
nin did not vary between EAAT3 heterozygous and wild-type mice.

Conclusions:  Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the 
corticostriatal circuit nor alter anxiety or compulsive-like behaviors.
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Background
Obsessive–compulsive disorder (OCD) is a persistent, 
disabling neuropsychiatric condition affecting 1–3% of 
the worldwide population. OCD is characterized by per-
sistent intrusive thoughts (obsessions), repetitive ritual-
istic behaviors (compulsions) and excessive anxiety [1]. 
Family, twin and case–control studies have shown that 
genetic factors play a major role in OCD (for a review, see 
[2]).

Altered glutamatergic neurotransmission has been 
postulated in the etiology of OCD. The glutamatergic 

hypothesis has accumulated evidence from neuroimaging 
studies [3, 4], animal models with altered glutamatergic 
neurotransmission exhibiting compulsive-like behaviors 
[5–7] and reports of beneficial effects of anti-glutamater-
gic agents on treatment-resistant OCD [8]. Genetic link-
age and association studies have implicated glutamate 
system genes in OCD; among them, the most consistent 
candidate gene in OCD is SLC1A1 (solute carrier, fam-
ily 1, member 1) gene [1, 9–15]. SLC1A1 encodes for the 
neuronal excitatory amino acid transporter EAAT3, with 
reported roles in controlling glutamate spillover which 
affects extrasynaptic NMDA and metabotropic glutamate 
receptors activity [16, 17].

Mice lacking EAAT3 (KO) were first reported 20 years 
ago; the original report showed that EAAT3 KO mice 
have reduced locomotor activity, but no neurological 
or cognitive impairments [18]. Given its role in cysteine 
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uptake, EAAT3 KO mice also have neuronal glutathione 
depletion and greatly enhanced susceptibility to oxidative 
damage [18, 19]. No comprehensive behavioral assess-
ment, in particular OCD-related behaviors was available 
until a very recent report showing that EAAT3 KO mice 
have unaltered baseline anxiety-like or compulsive-like 
behaviors, and reduced sensitivity to behavioral effects 
induced by amphetamine or SKF-38393, a dopamine D1 
receptor agonist [20].

Animal models with diminished, rather than absent 
gene expression are of clinical relevance, because they 
might better reflect the impact of human polymor-
phisms affecting protein levels, where complete loss of 
expression is very rare [21]. Therefore, to assess the role 
of reduced EAAT3 expression, we evaluated the neuro-
chemical and behavioral alterations in EAAT3 heterozy-
gous (HET) mice.

Methods
Animals
Male mice carrying a targeted knockout Slc1a1 gene 
were generated at the NIMH Transgenic Core Facility 
using a construct obtained from Knockout Mouse Pro-
ject Consortium (KOMP) (clone ID: PG00093 Z_1_807) 
under a standard protocol. Briefly, linearized construct 
was electroporated in embryonic stem (ES) cells; after 
selection screening, targeted ES cells were injected into 
C57BL/6N blastocysts and chimeric mice were bred with 
C57BL/6J to test for germ line transmission and to estab-
lish the targeted lines. The official designation of these 
mice is B6-Slc1a1tm1a(KOMP)Wtsi. By the time of experi-
mental procedures, 10 crosses onto C57BL/6J have been 
made. Three to five  months old EAAT3 HET and wild-
type (WT) littermates were used in all experiments. Mice 
were housed in groups of 3–5 per cage on a 12-h light:12-
h dark cycle (lights on at 07:00) with food and water 
ad libitum in a facility approved by the Institutional Ani-
mal Welfare Committee. Efforts were made to minimize 
the number of animals used and their suffering.

Genotyping was performed using genomic DNA 
from 0.5  cm tail biopsies. DNA extraction was per-
formed by standard procedures. LoxP primers flank-
ing downstream LoxP site generate at 210  bp band in 
knockout allele, and 185 bp in wild-type allele: LoxP-For 
(5′-ACCCAATTTCACACCCTCCTCAGC-3′); LoxP-
Rev (5′-GATTTCGTTTCTACCTCGGGCCTA-3′). 
1a1-En2 primers targeting the initial 3′ portion of the 
cassette interrupting transcription generate a 500  bp in 
the KO allele and no band in the WT allele: 1a1En2-for 
(5′-TGGCTCGGGTTTCTCCTAGCTGGT-3′); 1a1-en2-
Rev (5′-CCAACTGACCTTGGGCAAGAACAT-3′). 
PCR reactions used 0.4  µM primer concentration, and 
were performed using SapphireAmp Fast PCR master 

mix (Takara, Shiga, Japan) and the following thermal 
cycle: 95  °C 10  min; [94  °C 30  s, 57  °C 30  s, 72  °C 
30 s] × 30 cycles; 72 °C 10 min. Amplicons were run in a 
2% agarose electrophoresis in TBE buffer and visualized 
in UV light for analysis.

Quantitative reverse transcription and real-time poly-
merase chain reaction (qRT-PCR). EAAT3 HET and 
WT mice were killed by cervical dislocation; brains 
were removed immediately, striatum regions were dis-
sected on a glass-plate set in ice, and stored at −80  °C 
until use. Total RNA was extracted from homogenized 
striata by sonication and using RNAeasy Mini Kit (Qia-
gen, Carlsbad, CA, USA), and eluted with RNase-free 
water. RNA was quantified using a nanospetrofotom-
eter (Nanodrop ND-1000, Thermo Scientific, Waltham, 
MA, USA) and integrity confirmed by non-denaturant 
horizontal electrophoresis in agarose during 1 h at 120 V. 
Reverse transcription was performed using 10 ng of total 
RNA using the Takara prime script Reagent kit contain-
ing genomic DNA elimination step (Clontech, Moun-
tain View, CA, USA). Slc1a1 (EAAT3), Slc1a2 (GLT-1a, 
the major isoform in brain) and Slc1a3 (GLAST) mRNA 
levels were measured with respect to the housekeeping 
gene Hypoxanthine-guanine phosphoribosyltransferase 1 
(Hprt1) mRNA using the following primers: GCTACAT-
GCCGATTGGCATT and TACCCAAGGCAAAGCG-
GAAA for Slc1a1; TGTCTATGCCGCACACAACT and 
TCCTCAACACTGCAGTCAGC for Slc1a2; GGATG-
GAAAGATTCCAGCAA and GCTGACGGTGAGTAG-
CACAA for Slc1a3; CAAACTTTGCTTTCCCTGGT 
and TCTGGCCTGTATCCAACACTTC for Hprt1. Real-
time PCR was performed with using Brilliant III Ultra-
Fast SYBR Green qRT-PCR Master Mix (Santa Clara, 
CA, USA) in a 10  µl reaction volume with primers at 
0.2 µM final concentration, using a CFX96 Connect Sys-
tem (Bio-Rad, Hercules, CA, USA). Amplification proto-
col consisted in 40 cycles as follows: 10 s of denaturation 
at 95 °C; 45 s of annealing at 58 °C; 15 s of elongation at 
72 °C. All reactions were performed in triplicate; expres-
sion changes were analyzed as previously described [22].

EAAT3 Western Blot
EAAT3 HET and WT mice were killed by cervical dis-
location; brains were removed immediately and striatum 
was dissected on a glass-plate set in ice, and stored at 
−80  °C until use. Striatum samples were homogenized 
in ice-cold RIPA buffer with plastic homogenizer for 
minitubes. Homogenates were centrifuged at 13,000 rpm 
at 4 °C for 20 min; pellet was discarded, and supernatant 
protein concentration was calculated using Bradford 
method. Samples in loading buffer (Tris–HCl 125  mM 
pH 6.8; glycerol 20%, SDS 4%, β-mercaptoethanol 2, 
0.02% of bromophenol blue) were denatured by heating 
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at 70 °C for 8 min. 30 µg protein were loaded in a poly-
acrylamide/SDS 8% gel and separated by electrophore-
sis in running buffer 1× (Tris 2.5 mM, glycine 19.2 mM, 
SDS 0.01%) by 90 min at 100 V, and then transferred to a 
nitrocellulose membrane for 90 min at 450 mA in trans-
fer buffer (Tris 2.5 mM, glycine 19.2 mM, SDS 0.01, 20% 
metanol); transfer was verified using Ponceau red stain-
ing. Membranes were washed in TBS-Tween (T-TBS) 
1× for 5  min, and then blocked using 5% skim milk 
solution in PBS for 1  h. Primary monoclonal antibody 
anti-EAAT3 (AB124802, Abcam, Cambridge, UK) was 
dissolved in blocking solution and incubated overnight at 
4 °C. Next day, membranes were washed three times with 
T-TBS 0.1% for 5  min. Secondary antibody goat anti-
rabbit (HRP) (ab205718, Abcam) was incubated for 1 h; 
membranes were then washed three times with T-TBS. 
Membranes were loaded with Pierce ECL chemilumines-
cent substrate (ThermoFisher Scientific, Waltham, MA, 
USA) for 1 min and revealed for 12 min. Beta-actin anti-
body (ab8227, Abcam) was used as normalizer. Images 
were analyzed by ImageJ software (NIH, Bethesda, MD, 
USA) as described previously [22].

Behavioral analyses
Mice in their home cages were acclimated to the behav-
ioral room at least 1  h before analyses. Tests were per-
formed once per day and performed sequentially: Open 
field, elevated plus maze, marble burying and locomotor 
activity. All experiments were performed in dim light set 
at 20 lux; 12–13 mice per group were used.

Open field test: each animal was individually placed in 
a Plexiglass box (40 × 40 × 35 cm) and allowed to freely 
explore for 5 min. Behavior including time and frequency 
in center (20 × 20 cm) were recorded and analyzed using 
Noldus Ethovision XT (Noldus Information Technology, 
Leesburg, VA, USA) as previously described [23].

Elevated plus maze test: after acclimation, each mouse 
was placed in an elevated plus maze (30 cm arm, 46 cm 
height closed arms) and allowed to freely explore for 
5 min. Time and number of entrances to closed and open 
arms were recorded and analyzed using Ethovision XT.

Marble burying test: after acclimation, mice were indi-
vidually placed in a clean home cage containing 4–5 cm 
bedding material; 15 dark glass marbles (1.5  cm diam-
eter) were placed in a 3 × 5 distribution across the sur-
face. After 15 min, mice were removed and the number 
of marbles buried at least 2/3 of its surface was recorded 
by an experimenter blind to the animal genotype.

Locomotor activity: baseline horizontal activity was 
monitored over 30  min in the open field arena. Mice 
received then an intraperitoneal (i.p.) saline injection 
and were monitored for other 30 min. Next, a single dose 
of amphetamine (5  mg/kg, i.p.) was administered and 

activity was recorded for additional 60 min. Videos were 
analyzed using Noldus Ethovision XT.

Analysis of brain region neurotransmitter and metabolites
In a separate cohort, EAAT3 HET and WT mice were 
killed by cervical dislocation. Brains were removed 
immediately and dissected on a glass-plate set in ice, 
weighed in an analytical balance and stored at −80  °C 
until use, as previously described [24]. Samples were 
homogenized according to a protocol modified from 
Cruz et  al. [25]. Briefly, each brain tissue was collected 
in 400  µL of 0.2  M perchloric acid and then homog-
enized in a sonicator. The homogenate was centrifuged 
at 12,000×g for 15  min at 4  °C (model Z233MK-2, 
Hermle LaborTechnik GmbH, Wehingen, Germany) 
and the resultant supernatant was filtered (0.2 µm HPLC 
Syringe Filters disposable filter PTFE, model EW-32816-
26, Cole-Parmer Instrument Company, USA). The fil-
tered supernatants were injected into a HPLC coupled 
to electrochemical detection (for determination of DA, 
DOPAC, 5-HT and 5-HIAA contents) and fluorometric 
detection (GLU and GABA).

DA, 5-HT, DOPAC and 5-HIAA quantifications: exper-
imental conditions were as described previously [25–27]. 
Ten microliters of each cleaned supernatant was injected 
to the HPLC system with the following setting: A iso-
cratic pump, (model PU-2080 Plus, Jasco Co. Ltd., Tokyo, 
Japan), a UniJet microbore column (MF-8912, BAS, West 
Lafayette, IN, USA) and an electrochemical detector (set 
at 650  mV, 0.5  nA; model LC-4C, BAS, West Lafayette, 
IN, USA). The mobile phase, containing 0.1 M NaH2PO4, 
1.0 mM 1-octanesulfonic acid, 0.27 mM EDTA and 4.0% 
(v/v) CH3CN (pH adjusted to 2.6) was pumped at a flow 
rate of 0.1 mL/min. DA, DOPAC, 5-HT and 5-HIAA lev-
els were assessed by comparing the respective peak area 
and elution time of the sample with a reference standard 
and the quantification was performed using a calibration 
curve for each neurotransmitter (Program ChromPass, 
Jasco Co. Ltd., Tokyo, Japan).

GLU and GABA quantifications: experimental condi-
tions were as described previously [28, 29]. Briefly, 20 μL 
of each cleaned supernatant was mixed with 4  μL of 
borate buffer (pH 10.8), and then the mixture was deri-
vatized by adding 4 μL of fluorogenic reagent (20 mg of 
orthophthaldehyde and 10  μL of β-mercaptoethanol in 
5 mL of ethanol). At 90 s after pre-column derivatization, 
samples were injected into an HPLC system with the fol-
lowing configuration: an isocratic pump (Jasco Co. Ltd), 
a C-18 reverse phase column (Kromasil; Eka Chemicals, 
Bohus, Sweden), and a fluorescence detector configured 
for an excitation wavelength of 340 nm and an emission 
wavelength of 450  nm (Jasco Co. Ltd). A mobile phase 
containing 0.1 M NaH2PO4 and 14.5% (v/v) CH3CN (pH 
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5.7) was pumped for 4 min. The flow rate of the mobile 
phase was set at 1.0 mL/min.

Statistical analyses
For each experiment, data were analyzed using t-tests or 
two-way (genotype x drug condition) analyses of vari-
ance. Significant interactions were followed by post-hoc 
comparisons between genotypes or between drug condi-
tions using t-test or Tukey HSD pairwise comparisons. 
Significance was set on P  <  0.05. Data are presented as 
mean ± SEM.

Results
We first measured EAAT3 protein in striatal protein 
preparations from EAAT3 HET and WT littermates. As 
shown in Fig. 1a, EAAT3 HET mice showed 46% reduc-
tion in protein levels compared to WT (P < 0.0076, n = 4 
mice per group). mRNA levels were also evaluated for 
Slc1a1 (EAAT3) and other glutamate transporters such as 
Slc1a2 (GLT1) and Slc1a3 (GLAST). As shown in Fig. 1b, 
qPCR measurements indicate a downregulation near 
to a half of Slc1a1 in the EAAT3 HET group compared 
to expression levels in WT group (0.0553  ±  0.0743). 
Slc1a2 and Slc1a3 mRNA expression values in EAAT3 
HET group were not statistically different compared to 

WT control group (1.039 ± 0.0994 and 1.158 ± 0.1010, 
respectively, N.S.). Uncropped blot is available in Addi-
tional file 1, as well as representative control blot assess-
ing EAAT3 expression in different tissues from WT mice.

Then, we evaluated if reduced EAAT3 expression in 
EAAT3 HET mice might impact anxiety-like behav-
ior by using the open field test and the elevated plus 
maze, two well-established behavioral paradigms,. No 
differences were found in the open field test between 
EAAT3 HET and WT littermates in time spent in center 
(Fig. 2a; 26.3 ± 3.3 vs 23.6 ± 2.7 s, respectively, N.S.; data 
expressed as mean ± SEM) or in the number of visits to 
center area (Fig. 2b; 18.7 ± 3.1 vs 12.7 ± 1.4, respectively, 
N.S). Similarly, as shown in Fig.  2c, we found no differ-
ences in the elevated plus maze in EAAT3 HET mice 
compared to WT littermates in time spent in open arms 
(113.4 ± 23.4 vs 121.0 ± 15.7 s, respectively, N.S.) or in 
the number of entries to open arms (Fig. 2d; 15.3 ± 1.0 vs 
16.0 ± 2.1, respectively, N.S.).

Next, as a proxy of compulsive behavior, we used the 
marble burying test. As depicted in Fig. 2e, no differences 
were found between EAAT3 HET mice compared to WT 
littermates. The numbers of buried marbles were as fol-
lows: EAAT3 HET male =  8.0 ±  1.1; WT =  7.5 ±  0.6, 
N.S.

Fig. 1  Reduced EAAT3 expression in EAAT3 heterozygous mice compared to wild-type littermates. a Representative Western Blot showing reduced 
EAAT3 protein expression in HET mice (H lanes) compared to WT mice (W lanes). b Graph bar of blot quantification; unpaired t-test P = 0.0076, 
n = 4 per group. c Real time qPCR detected significantly reduced EAAT3 and unaltered GLT-1 and GLAST mRNA levels in EAAT3 HET mice compared 
to WT littermates. Unpaired t-test with Welch´s correction (against WT mRNA levels): EAAT3 P = 0.0025; GLT-1 P = 0.9467, N.S.; GLAST P = 0.3980, 
N.S. n = 4 samples per group, each sample run in triplicate. ** indicates P<0.01
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Since EAAT3 has been shown to regulate dopamin-
ergic neuron activity, we evaluated if EAAT3 HET mice 
would have affected sensitivity to amphetamine-induced 
hyperlocomotion. Figure 3 shows that baseline horizon-
tal locomotor activity was unaltered in EAAT3 HET mice 
compared to WT littermates over a 30 min observation 

period. No changes were found upon saline administra-
tion. Then, a single dose of amphetamine (5 mg/kg i.p.) 
was administered; increased locomotion was observed 
in both groups, being unaffected by genotype (ANOVA 
drug x genotype N.S., P  =  0.4087; drug effect F(1,16); 
P < 0.0001) .
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Fig. 2  No differences in anxiety-like or compulsive-like behaviors between EAAT3 heterozygous mice and wild-type littermates. a Time spent in 
center of open field arena; unpaired t-test P = 0.5272, N.S. b Number of entries to the center of arena (counts); unpaired t-test P = 0.1154, N.S. c 
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From a separate cohort of animals, we measured neu-
rotransmitter alterations in prefrontal cortex, striatum 
and thalamus, areas belonging to the cortical-striatal-
thalamo cortical loop that has been postulated to be 
altered in OCD [17]. As shown in Table 1, we found no 
changes in glutamate or GABA tissue content in any of 
the tested regions; monoamines and their metabolites 
were also unaltered.

Discussion
EAAT3 plays multiple roles in regulating neuronal 
function that might be relevant for OCD. It is promi-
nently expressed in the cortical-striatal-thalamic-
cortical circuit implicated in OCD [30]. EAAT3 is 
expressed in glutamatergic, GABAergic and dopa-
minergic neurons [31]. It has been shown that EAAT3 
can regulate glutamate clearance, synaptic plastic-
ity and glutamate spillover in excitatory synapses 
[32, 33]. Our results show that EAAT3 HET mice are 

unaffected at baseline behavioral levels in anxiety-like 
or compulsive-like behavior. Tissue content analyses 
showed no significant changes in glutamate, GABA 
or monoamine neurotransmitter levels, in any of the 
evaluated brain regions comprising the CSTC cir-
cuit that is dysregulated in OCD. The lack of impact 
of reduced EAAT3 levels (and plausibly its function) 
might indicate that protein expression from a single 
allele copy would suffice to account for EAAT3 activ-
ity, without altering the parameters determined here, 
i.e. tissue neurotransmitter system, anxiety-like and 
compulsive-like behavior, and amphetamine-induced 
locomotion. Alternatively, this could be due to com-
pensatory upregulation of other glutamate transport-
ers such as GLT1 and GLAST. We found that Slc1a2 
(GLT-1) and Slc1a3 (GLAST) mRNA levels did not 
significantly vary between EAAT3 HET and WT mice; 
this is in agreement with previous findings showing 
that EAAT3 full deletion did not upregulate other glu-
tamate transporters in EAAT3 KO mice [18]. We can-
not rule out, however, that significant protein changes 
might occur for these two glutamate transporters in 
our EAAT3 HET mice, which requires further inves-
tigation. Indeed, it has been shown that the selec-
tive removal of astrocytic GLT-1 triggers repetitive 
behaviors such as grooming and tic-like movements, 
highlighting the importance of other glutamate trans-
porters in the pathophysiology of OCD beyond EAAT3 
[34]. In addition, compensatory changes on other 
critical components of glutamatergic transmission 
machinery including AMPA and NDMA receptors and 
their subunit composition could account for the nega-
tive findings. In this regard, it has been shown that, 
in the hippocampus, EAAT3 regulates activation of 
NMDA receptors by regulating glutamate spillover and 
that the activation is dependent on NR2B containing 
NMDA receptors [32]. The blockade of EAAT3 func-
tion, which increases local glutamate concentration, 
leads to activation of perisynaptic NR2B containing 
NMDA receptors which, in turn, lead to changes in the 
trafficking of AMPA receptors [16, 35].

When expressed in GABAergic neurons, EAAT3 pro-
vides the precursor for the synthesis of GABA [32]. In 
this regard, we found no alterations in GABA levels in 
striatum, region containing a high number of GABAe-
rgic medium spiny neurons, suggesting that partial 
deletion of EAAT3 did not impact tissue levels of this 
neurotransmitter. However, we cannot rule out that 
alterations in EAAT3 expression might impact the 
strength of GABAergic neurotransmission; such pos-
sibility needs to be tested thoroughly using approaches 
like in  vivo microdialysis or electrophysiological 
recordings.

Fig. 3  No changes in baseline or amphetamine-induced locomo‑
tor activity in EAAT heterozygous mice compared to wild-type 
littermates. a Locomotor activity baseline and induced by a single 
dose of amphetamine 5 mg/kg (i.p.). b Cumulative locomotor activity. 
Two-way ANOVA (genotype x drug) interaction P = 0.4087, N.S. Data 
represent the mean ± SEM, 6–7 animals per group
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The majority of glutamate is cleared from extracellular 
space by glial Slc1a2/GLT-1 and Slc1a3/GLAST; it has 
been estimated that over 80% of glutamate uptake is due 
to the activity of these transporters [30]. Thus, unaffected 
glutamate tissue levels were indeed expected since the 
contribution of EAAT3 to the overall glutamate clearance 
is minimal.

EAAT3 is expressed in dopaminergic neurons from 
mesolimbic and nigrostriatal pathways [30, 36]. Recently, 
Zike and colleagues showed that EAAT3 KO mice have 
reduced sensitivity to amphetamine effect on locomo-
tor activity [20]. In this regard, we found no significant 
alterations in amphetamine-induced locomotor activ-
ity in EAAT3 HET mice. Correspondingly, levels of DA 
and DOPAC, its metabolite, were unaltered in the brain 
regions tested in this report, although we did not meas-
ure midbrain areas such as ventral tegmental area or sub-
stantia nigra.

Early reports showed EAAT3 KO mice exhibit several 
neuronal defects largely attributed to oxidative stress due 
to impaired glutathione synthesis but no OCD-related 
behaviors [18, 19]. Human SLC1A1 homozygous loss-of-
function mutations are extremely rare in humans, and 
cause the renal condition dicarboxylic aminoaciduria [37] 
which is also present in EAAT3 KO mice [18]. Rather, 
common polymorphisms can affect gene expression in 
less dramatic ways than the loss-of-function represented 
in a knockout mouse model. As such, we aimed to char-
acterize an intermediate reduction of EAAT3 expression, 

which could be relevant to the study of neurobiological 
basis of this disorder [21].
SLC1A1 is one of the most consistently associated 

genes in OCD. The majority of findings cluster in the 
3′ region, and in particular most evidence points to 
the rs301430C allele [1, 6, 15]. Both in cell assays and 
post-mortem brain tissue, this allele is associated with 
increased SLC1A1 expression, suggesting that increased, 
rather than decreased expression contributes to OCD 
susceptibility [1, 35]. Therefore, the lack of significant 
changes in EAAT3 HET mice showed here is consistent 
with this notion; overexpression EAAT3 experiments are 
needed to test this hypothesis.

Conclusions
Our results indicate that a Slc1a1 heterozygosis in mice 
does not alter anxiety- or compulsive-like behaviors 
evaluated in this work, nor tissue neurotransmitter lev-
els in the cortex, striatum and thalamus, comprising the 
brain circuit proposed to be altered in OCD. Our data 
are in line with a recent report [20] finding that EAAT3 
KO mice have unaltered spontaneous OCD relevant 
behaviors.

Additional file

Additional file 1. Uncropped blots for EAAT3 protein determinations.

Table 1  Neurotransmitter tissue contents in EAAT3 HET and WT littermates determined by HPLC coupled to electrochem-
ical (monoamines) and fluorometric (aminoacids) detection

Please see “Methods” section for further details. Data are expressed as mean ± SEM

Slc1a1 genotype Glutamate (pg/mg 
tissue)

GABA (ng/mg 
tissue)

5-HT (pg/mg 
tissue)

5-HIAA (pg/mg 
tissue)

Dopamine (pg/mg 
tissue)

DOPAC (pg/mg 
tissue)

Prefrontal cortex

 WT 73.1 ± 9.0
n = 7

4605 ± 714.8
n = 6

525.4 ± 30.5
n = 7

581.3 ± 45.3
n = 7

35.2 ± 7.7
n = 6

N.D

 HET 67.7 ± 5.9
n = 7

4923 ± 338
n = 6

466.4 ± 37.2
n = 7

520.4 ± 33.0
n = 7

55 ± 12.9
n = 6

N.D

 t-test N.S. N.S. N.S. N.S. N.S.

Striatum

 WT 100.9 ± 10.0
n = 7

6973 ± 463.3
n = 7

473.9 ± 51.5
n = 7

667.6 ± 76.8
n = 7

10,631 ± 1147
n = 6

2126 ± 370.6
n = 6

 HET 90.1 ± 11.4
n = 7

7658 ± 1372
n = 7

512 ± 51.8
n = 7

792.9 ± 72.3
n = 7

9593 ± 1296
n = 7

1818 ± 174.8
n = 7

 t-test N.S. N.S. N.S. N.S. N.S. N.S.

Thalamus

 WT 67.4 ± 7.6
n = 7

13,449 ± 1714
n = 7

720.9 ± 64.5
n = 6

2078 ± 117.8
n = 5

227.9 ± 27.2
n = 7

55.3 ± 9.4
n = 6

 HET 49.6 ± 9.1
n = 7

11,785 ± 1965
n = 7

618.5 ± 113.4
n = 7

1821 ± 201.3
n = 7

183.1 ± 22.2
n = 7

72.2 ± 11.7
n = 6

 t-test N.S. N.S. N.S. N.S. N.S. N.S.

http://dx.doi.org/10.1186/s40659-017-0138-3
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