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Introduction
PET/CT is an indispensable technology for diagnosing malignant tumors [1–4], which 
are generally not localized but often systemic [5–7]. Therefore, PET/CT is usually used 
to obtain a whole body scan to discover not only the primary site of lesion but also any 

Abstract 

Objectives:  This study aims to decrease the scan time and enhance image qual-
ity in pediatric total-body PET imaging by utilizing multimodal artificial intelligence 
techniques.

Methods:  A total of 270 pediatric patients who underwent total-body PET/CT scans 
with a uEXPLORER at the Sun Yat-sen University Cancer Center were retrospectively 
enrolled. 18F-fluorodeoxyglucose (18F-FDG) was administered at a dose of 3.7 MBq/kg 
with an acquisition time of 600 s. Short-term scan PET images (acquired within 6, 15, 
30, 60 and 150 s) were obtained by truncating the list-mode data. A three-dimensional 
(3D) neural network was developed with a residual network as the basic structure, 
fusing low-dose CT images as prior information, which were fed to the network at dif-
ferent scales. The short-term PET images and low-dose CT images were processed 
by the multimodal 3D network to generate full-length, high-dose PET images. The 
nonlocal means method and the same 3D network without the fused CT information 
were used as reference methods. The performance of the network model was evalu-
ated by quantitative and qualitative analyses.

Results:  Multimodal artificial intelligence techniques can significantly improve PET 
image quality. When fused with prior CT information, the anatomical information 
of the images was enhanced, and 60 s of scan data produced images of quality compa-
rable to that of the full-time data.

Conclusion:  Multimodal artificial intelligence techniques can effectively improve 
the quality of pediatric total-body PET/CT images acquired using ultrashort scan times. 
This has the potential to decrease the use of sedation, enhance guardian confidence, 
and reduce the probability of motion artifacts.

Keywords:  PET/CT, Multimodal artificial intelligence techniques, Pediatric, Short scan 
time

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

ORIGINAL RESEARCH

Zhang et al. EJNMMI Physics            (2024) 11:1  
https://doi.org/10.1186/s40658-023-00605-z

EJNMMI Physics

†Qiyang Zhang, Yingying Hu and 
Chao Zhou contributed equally 
to this work

*Correspondence:   
zl.hu@siat.ac.cn

1 Lauterbur Research Center 
for Biomedical Imaging, 
Shenzhen Institute of Advanced 
Technology, Chinese Academy 
of Sciences, Shenzhen 518055, 
China
2 Department of Nuclear 
Medicine, Sun Yat-sen 
University Cancer Center, 
Guangzhou 510060, China
3 United Imaging Healthcare 
Group, Central Research Institute, 
Shanghai 201807, China

http://orcid.org/0000-0003-0618-6240
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40658-023-00605-z&domain=pdf


Page 2 of 16Zhang et al. EJNMMI Physics            (2024) 11:1 

metastatic lesions in soft tissue organs and bones throughout the body. PET uses radio-
active tracers, special cameras and computers to image tracer distribution and evaluate 
organ and tissue functions. Typically, tracer administration activity and data acquisi-
tion time are positively correlated with imaging quality [8, 9]. Longer acquisition times 
may introduce motion artifacts in the images, especially in young children who are still 
developing and have more frequent limb movements. Such motion artifacts will lead to 
missed diagnoses or misdiagnoses for smaller lesions [10].

Sedation is often administered to young children to ensure that they remain rela-
tively motionless throughout the examination. However, sedation can lead to numerous 
potential short-term side effects, and failed sedation contributes significantly to guard-
ian dissatisfaction with the child’s sedation experience [11]. Imaging using short-term 
scan data can reduce the dose of sedatives and decrease potential artifacts that can con-
found the image diagnosis [12]. However, there is a trade-off between image quality and 
radiation exposure, and the use of short-term scans usually means that high doses of 
radiopharmaceuticals need to be injected. To address this trade-off, PET scanner hard-
ware and software continue to undergo improvements [13–15]. Recently, a new PET 
scanner called uEXPLORER was introduced. It has an axial FOV of 194 cm, allowing for 
total-body imaging with just one bed position, and its effective sensitivity is enhanced 
approximately 40-fold [3, 14, 16–20].

The data acquired from short-term scans at standard tracer doses carry a large amount 
of noise, which is very difficult to suppress using conventional reconstruction algo-
rithms. Recently, deep learning has shown excellent performance in low-dose PET imag-
ing. Convolutional neural network (CNN) and generative adversarial network (GAN) 
models have been successfully used to reconstruct near full-dose PET images from low-
dose data [21–25]. CNNs based on fused multimodal data have been shown to com-
bine the advantages of the data of each modality, which can effectively and significantly 
reduce the tracer dosage [26–30].

In this retrospective study, we investigated whether artificial intelligence algorithms 
can contribute to reducing the scan time by predicting full-time images from short-term 
scan images. We also investigated whether deep learning framework models that fuse 
multimodal image data (CT prior information) perform better than networks based on 
single-modal data.

Materials and methods
The data of this retrospective study came from the Sun Yat-sen University Cancer 
Center. The study was approved by the institutional review board of the center, and 
informed consent was obtained from all of the patients’ legal guardians.

Data acquisition

A total of 270 pediatric patients who underwent total-body PET/CT using the uEX-
PLORER scanner (uEXPLORER, United Imaging Healthcare) at the Sun Yat-sen Uni-
versity Cancer Center from July 2020 to April 2022 were retrospectively enrolled in this 
study (Fig. 1) (median age 5 years, range [1, 12]; median weight 17 kg, range [4.7, 74]). 
The clinical characteristics of the patients are summarized in Table  1. The inclusion 
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criteria were as follows: age < 13 and body weight < 75 kg, and the exclusion criteria were 
waiting time after 18F-FDG injection > 75 min and no suspected FDG-avid lesions.

One hundred and twenty patients were selected as the evaluation dataset (Additional 
file 1: Fig. S2); the data of these patients were not included in the training of the net-
work. For the remaining data from 150 patients (Additional file 1: Fig. S1), we adopted 
a K-fold cross-validation strategy (K = 10) to account for the lack of training samples. 
The dose of 18F-FDG was approximately 3.7  MBq/kg (3.7 ± 0.37 MBq/kg) (Additional 
file 1: Table S1), and the acquisition time was 600 s. Low-dose total-body CT scans were 
acquired with a dynamically adjusted tube current and 100  kV tube voltage (rotation 
time 0.5 s, pitch 1.0125, collimation 80 × 0.5 mm) and were reconstructed in a 512 × 512 
matrix for PET attenuation correction. PET images were reconstructed using TOF-
OSEM with the following parameters: PSF modeling, 3 iterations, 20 subsets, matrix 
256 × 256, slice thickness 2.89 mm, voxel size 2.34 × 2.34 × 2.89 mm3, Gaussian postfil-
tering (3 mm), and all necessary correction methods, including scattering and attenua-
tion corrections.

Fig. 1  Distribution of age, weight and sex of the 270 children enrolled in the study. a Age and sex 
distribution. b Weight and sex distribution

Table 1  Patient clinical characteristics

Pathological type Number 
of 
patients

Non-Hodgkin’s lymphoma 58

Hodgkin’s lymphoma 10

Rhabdomyosarcoma 57

Nephroblastoma 45

Nasopharyngeal carcinoma 24

Ewing’s sarcoma 16

Germ cell tumor 13

T-cell acute lymphoblastic leukemia 11

Myxoid liposarcoma 11

Schwannoma (neurilemoma) 9

Langerhans cell histiocytosis 8

Alveolar soft-part sarcoma 5

Osteosarcoma 3



Page 4 of 16Zhang et al. EJNMMI Physics            (2024) 11:1 

Image preprocessing

List mode PET data with an acquisition time of 600 s were reconstructed as full-time 
ground-truth images. The PET images of the short-term scans were simulated by trun-
cating the list-mode data. The first 6 s, 15 s, 30 s, 60 s and 150 s of the list-mode data 
were truncated for reconstruction using the same protocol reported in the previous sub-
section. For simplicity, the image series reconstructed with 6- to 600-s data are referred 
to as the G6s, G15s, G30s, G60s, G150s and G600s groups in this paper. The CT images 
were registered to the PET images using MATLAB (MathWorks, Natick, MA) software. 
All images were resampled to the voxel dimensions of the acquired PET volumes. The 
intensities of all reconstructed PET images were normalized to the 0–1 range using the 
maximum standardized uptake value across all patient data. The intensities of all low-
dose CT images were also normalized to the 0–1 range using the maximum HU value in 
all patient data.

CNN implementation

The proposed 3D neural network is shown in Fig. 2. The main feature of the network is 
the use of multimodal data as input to generate single-modal data. Based on an investi-
gative assessment of different state-of-the-art deep learning structures, including ResNet 
[31] and U-Net [32], we adopted the 3D U-Net encoder–decoder architecture strat-
egy with the residual module as the main framework for the network. Fusion from the 
high-dimensional features of the individual modal images can lead to better integration 
of complementary information in each modality [33, 34]. Therefore, we used the high-
dimensional features extracted from the CT images after multiple 3D convolutional lay-
ers as the prior information introduced into the encoder of the network.

The input and output of the 3D network were multislice data of size H × W × S, where 
H and W denote the image height (256) and width (256), respectively, and S denotes 
the depth of successive adjacent multislice data. To reduce the computation time and 
memory consumption, we fix S to 5. The encoder and decoder part consisted of 3D con-
volutional layers (using 3 × 3 × 3 filters) and a leaky rectified linear unit (LeakyReLU) 
activation function. The number of channels is labeled below each box in Fig.  2. The 
downsampling operation was implemented by a convolutional layer with stride = 2. 

Fig. 2  Schematic diagram of the 3D convolutional neural network (p3DNet) used in this work. Two 
modal-specific encoders and one decoder that synthesizes the full-dose PET images are included. The arrows 
indicate the flow of computational operations, and the number of input and output feature images for each 
module is marked below its box
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Correspondingly, the upsampling operation was implemented by a deconvolutional layer 
that scaled the image size by a factor of two. Skip connections were applied between the 
residual module in the network and the encoder–decoder layer at symmetric positions 
to preserve the feature information. In the encoder–decoder component, the combined 
feature maps from the encoder component and the upsampling component were passed 
to the corresponding decoder component, thus increasing the information diversity.

The network was trained with the images from all short-term scans. To enhance the 
network’s ability to recover anatomical structures and texture details, the loss function of 
the network was a combination of L2 normal and perceptual loss [35]. The network was 
trained with a batch size of 5 over 400 epochs, and the initial learning rate was 3 × 10−4. 
The network was constructed using the PyTorch deep learning framework on an Ubuntu 
16.04 system with a Titan 2080Ti GPU and was optimized using the Adam optimizer 
with a cosine annealing strategy to speed up convergence [36, 37].

Reference methods

The proposed 3D network with fused CT prior information was named p3DNet. The 
nonlocal means (NLM) method [38] and the same 3D network without the fused CT 
prior information, named 3DNet, were used as reference methods. The search win-
dow and patch sizes of the NLM method were 27 × 27 and 3 × 3, respectively. The main 
frameworks of 3DNet and p3DNet are the same except for the prior information fusion 
block, which is described in detail in Additional file 1: T1.

Quantitative imaging analysis

The image quality was evaluated by an experienced technician under the supervision of a 
radiologist. The images generated by the neural network were first visually inspected for 
artifacts. Afterward, the images were restored to their original values according to the 
normalized parameters of the previous preprocessing process. The performance of the 
methods was evaluated using two computational metrics in computer vision, including 
the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM).

These metrics are defined as follows:

where xr is a full-time, high-dose image of size M × N, and x is the image to be meas-
ured. V denotes a scalar and denotes the maximum value of the evaluated image x.

where µx and σ 2
x  denote the mean value and variance of the evaluated image x , respec-

tively, and similar properties were defined for the reference image xr . σx,xr are the covari-
ance values of x and xr . a1 and a2 are the two constants used to stabilize divisions with 
weak denominators, and they are usually fixed at 1 × 10–6 and 3 × 10–6.

Five two-dimensional circular regions of interest (ROIs) with a diameter of 2  cm 
were drawn over homogeneous regions of the liver parenchyma of the 120 patients in 
the evaluation set, with care to avoid blood vessels and intrahepatic lesions to record 
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semiquantitative uptake measurements of the liver, including SUVmax, SUVmean and 
standard deviation (SD). The smallest measurable suspicious lesion (not necessarily 
malignant) with the shortest long diameter was identified, and the ROI of this lesion 
was drawn on the slice with the maximum lesion diameter to measure SUVmax. The 
SUVmax of the lesion (on PET image) was documented. The lesion-to-background ratio 
(LBR) was calculated by dividing the SUVmax of the lesion by the SUVmean of the liver. 
The semiquantitative metrics obtained by different methods for different short scan time 
groups were compared with those of the G600s images. All ROIs were drawn on the 
G600s images and transferred to the other groups to ensure that the location and size of 
the ROI were identical across all groups.

Qualitative imaging assessment

A subjective assessment of the PET image quality was independently rated by two 
nuclear radiologists (a senior radiologist with > 10 years of experience and a radiologist 
with > 5 years of experience) based on a 5-point Likert scale. All patients in the assess-
ment set were read on the volume data, and all datasets (original, postprocessed and 
neural network synthesized) were anonymized. A 5-point Likert scale was used to evalu-
ate three aspects: (1) the conspicuity of the organ anatomical structures, (2) the conspi-
cuity of the major suspected malignant lesions and (3) the image noise. The status read 
from the full-scan time images was treated as the ground truth. For each PET image, 
the physician assigned an image quality score on a five-point scale: 1, uninterpretable; 
2, poor; 3, adequate; 4, good; and 5, excellent. The average scores of all readers for each 
image were calculated, and then the scores of the short-term scan images were com-
pared with the scores of the full-time scan images.

Statistical analysis

The two-dimensional correlation coefficients between the full-time scan reference 
images and the images processed with different methods were calculated to determine 
the concordance between the images. The statistical analysis was performed with the R 
Statistical package (R4.2.3, the R Foundation) and Microsoft Excel. Paired t tests were 
used to compare the objective image values (SUVmax, SUVmean and LBR) and the 
quality metric values (PSNR and SSIM) between two image series created with different 
algorithms. To overcome the individual change in SUV induced by patient metabolism, 
the paired t test was corrected with the Bonferroni correction method. The Kruskal‒
Wallis rank-sum test and Tukey’s post hoc test for multiple comparisons were applied in 
subjective image quality analyses between different scan-time groups. A p value of < 0.05 
was considered to indicate statistical significance.

Results
Image quality

Figure  3 shows 18F-FDG PET images processed using different methods taken from a 
2-year-old male patient weighing 10  kg with metabolic activity in the left abdominal 
wall after surgery for a left testicular yolk sac tumor. Based on the image appearance, 
we can see that the proposed method generates images with preserved tumor and tis-
sue structure (indicated by red arrows) and less noise than other methods. The axial 
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views of the patients’ lesions generated by the different methods, as well as the residual 
maps between the images and the reference images from the full-time scan, are shown in 
Fig. 4. The deep learning method p3DNet, which fuses CT prior information, effectively 
recovers anatomical structures (red arrow) and has the smallest residual values under 
different short-term scan conditions, indicating good consistency with the reference 
image.

Fig. 3  18F-FDG PET images processed using different methods taken from a 2-year-old male patient 
weighing 10 kg with metabolic activity in the left abdominal wall after surgery for a left testicular yolk sac 
tumor. a–e PET images at scan times of 6 s, 15 s, 30 s, 60 s and 150 s, respectively, are shown in axial view. f–j 
PET images synthesized from a-e using the NLM method. k–o PET images synthesized from a–e using 3DNet. 
p–t PET images synthesized from a-e using p3DNet. u–y Full-time reference images. PET images synthesized 
by the p3DNet method show improved preservation of tumor and tissue structure (red arrows)
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The average SSIM and PSNR values calculated from the short-term scan images and 
the synthesized images relative to the full-time scan images for all the patients in the 
evaluation set are shown in Fig. 5. The PSNR and SSIM metrics of the images processed 
by the proposed p3DNet method were significantly greater than those of the original 
short-term scanned images (p < 0.05) and those obtained by using the NLM method 
(p < 0.05) and the 3DNet method (p < 0.05) in the G6s, G15s, G30s and G60s groups. 
When the scan time was extended to 150 s, the difference in the results between the 
two deep learning-based methods was no longer significant (p > 0.05), indicating that the 
benefit from the CT prior information was not obvious at this scanning duration and 
that the method proposed in this paper is more advantageous under shorter-term scan 
conditions.

Figure 6 shows the objective measurements of image quality, including SUVmax for 
liver uptake, SUVmax for lesion uptake, and LBR, using the G600s measurements as 
a reference. The SUVmax and LBR values of the images synthesized by the p3DNet 
method are closest to those of the full-time scan reference image for the differ-
ent short-term scans. The lesion SUVmax and LBR metrics of the PET images syn-
thesized by the model fusing prior CT information (p3DNet) were not significantly 

Fig. 4  Axial views of the patient’s lesion in Fig. 3 (as indicated by the red line in y in Fig. 3). a–e PET 
images at scan times of 6 s, 15 s, 30 s, 60 s and 150 s, respectively, are shown in axial views. f–j PET images 
synthesized from a–e using the NLM method. k–o PET images synthesized from a-e using 3DNet. p–t PET 
images synthesized from a-e using p3DNet. u–y Full-time reference images. PET images synthesized using 
the p3DNet method can effectively recover anatomical structures (red arrow). (1–20) are the residual maps 
(absolute values) obtained by subtracting the reference image from a–t. (1–5) Residual maps of a–e. (6–10) 
Residual maps of (f–j). (11–15) Residual maps of k–o. (16–20) Residual maps of (p–t)

Fig. 5  Image quality metrics (SSIM and PSNR) compared among different methods and scan times. The 
model that synthesizes PET images by fusing prior CT information (p3DNet) is superior in metrics such as 
SSIM and PSNR. *, ***, and ns indicate p < 0.05, p < 0.001, and nonsignificant, respectively
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different from those of the reference images at a scan time of 60 s (p > 0.05). At a scan 
time of 150  s, the liver SUVmax, lesion SUVmax and LBR metrics were not signifi-
cantly different from those of the reference image (p > 0.05). Semiquantitative met-
rics (liver SD and lesion SD) are presented in the Additional file 1: Fig. S3. Additional 
file 1: Fig. S4 shows the Bland‒Altman plots of the change in liver SUVmean from that 
of G6s, G15s, G30s, G60s, and G150s to G600s. The results showed that the images 
synthesized by the p3DNet method had the smallest bias and lowest variance among 
all short-time scan groups relative to the reference standard full-time scan images.

Figure  7 shows a boxplot of the distribution of the SUV difference between the 
results obtained by the different methods and the full-time scan for a patient with 
bilateral cervical mediastinal lymphoma lesions. As shown in the red area of panel 

Fig. 6  Semiquantitative metrics (Liver SUVmax, Lesion SUVmax and LBR) compared among different 
methods and scan times. PET images synthesized by the model fusing prior CT information (p3DNet) did not 
have significant differences in Lesion SUVmax and LBR metrics from the reference image at a scan time of 
60 s. *, ***, and ns representing p < 0.05, p < 0.001, and nonsignificant, respectively

Fig. 7  Boxplot of the SUV difference (ΔSUV) distribution of lesion locations in a patient with bilateral cervical 
mediastinal lymphoma. ΔSUV was calculated by subtracting the images obtained by the different methods 
from the full-time scan images. The results of the p3DNet method are closest to the full-time scan results for 
all short-term scan durations
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A in Fig. 7, the analyzed data included all lesion areas in the neck and chest. A mask 
of the lesion regions was constructed in the volume data of the full-time scan using a 
segmentation threshold of SUV = 5. Afterward, the mask was applied to the volume 
data of all conditions, and 2455 voxels were extracted from all lesion regions per vol-
ume data. As seen from the figure, the distribution of the data obtained by the deep 
learning method fusing the prior CT information (p3DNet) is the closest to that of 
the reference image (full-time scans) for all short-term scans.

Table  2 shows the average two-dimensional correlation coefficients between the 
images processed by the different methods and the reference full-time scan image. 
Higher correlation coefficients indicate better concordance between the images. The 
p3DNet method achieved better results for all short-term scan durations, achieving cor-
relation coefficients of 0.9925 and 0.9971 for G60s and G150s, respectively.

Clinical readings

The average subjective image quality scores of the volume data for each patient were cal-
culated by all readers and compared between methods at different dose groups. Figure 8 
shows a scatter plot of the average scores of the two readers for different subjective met-
rics for the images of the 120 patients in the evaluation set, with the anatomy conspicuity 
(AC) metric in the left column, the lesion conspicuity (LC) metric in the middle col-
umn, and the image noise (IN) metric in the right column. The left-to-right subcolumns 
in each column are the average scores of the subjective ratings of the two readers for 
the original short-term scanned image and the images processed by the NLM method, 
3DNet, and p3DNet. The average scores for the different metrics are shown in Fig. 9 and 
the Additional file 1: Table S2. From Fig. 8 and Fig. 9, it can be seen that the deep learn-
ing-based method has obvious advantages in noise suppression, and the majority of the 
AC, LC and IN index scores are 5 for the 60-s data acquisition group (G60s). The sub-
jective scores of the images obtained with different methods under different scan times 
are statistically significant for all metrics; specifically, the images processed by the deep 
learning methods (3DNet and p3DNet) in the G6s, G15s and G30s groups are signifi-
cantly different from the images processed by the conventional method (NLM) and the 
original images (p < 0.05), while there is no significant difference in the IN metrics among 
the deep learning methods (p > 0.05). There was also no significant difference in all met-
rics between the deep learning methods in the G60s and G150s groups (p > 0.05). In the 
G150s group, there was no significant difference between the conventional method and 
the deep learning methods in the LC and NC metrics (p > 0.05). Detailed data are shown 
in the Additional file 1: Table S3.

Table 2  Average two-dimensional correlation coefficients between the reference full-time scan 
images and the images processed with different methods

G150s G60s G30s G15s G6s

Original 0.9955 ± 0.0092 0.9898 ± 0.0131 0.9818 ± 0.0174 0.9672 ± 0.0213 0.9294 ± 0.0339

NLM 0.9958 ± 0.0085 0.9903 ± 0.0123 0.9822 ± 0.0167 0.9676 ± 0.0201 0.9299 ± 0.0324

3DNet 0.9969 ± 0.0077 0.9918 ± 0.0116 0.9838 ± 0.0161 0.9689 ± 0.0193 0.9310 ± 0.0309

p3DNet 0.9971 ± 0.0077 0.9925 ± 0.0115 0.9844 ± 0.0160 0.9696 ± 0.0191 0.9315 ± 0.0304
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Discussion
This proof-of-concept study demonstrates that the use of artificial intelligence tech-
niques can effectively improve the quality of short-term scanning images. Images 
synthesized by the network model fusing CT prior information (p3DNet) had higher 
average image quality and lower regional SUV bias and variance than short-term scan 
PET images, images synthesized by the conventional processing method (NLM), and 
images processed by the model that does not consider CT prior information (3DNet) 
(Figs. 3, 4, 5, 6 and Additional file 1: Fig. S4). This finding suggests the value of intro-
ducing CT images with rich anatomical structure information into imaging models.

Fig. 8  Scatter plots of the average score for different subjective metrics for the images of the 120 patients 
in the evaluation set, with the anatomical conspicuity (AC) metric in the left column, the lesion conspicuity 
(LC) metric in the middle column, and the image noise (IN) metric in the right column. The subcolumns 
from left to right are the average scores of two readers’ subjective ratings of the original images and the 
images processed by the NLM method, 3DNet and p3DNet, respectively. (There are a total of 120 points for 
each metric. The brightness of the region is proportional to the concentration of the points. The 600 s group 
achieved scores of 5 for all metrics)
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Considering that most of the equipment already configured in the nuclear medi-
cine department of the hospital (such as desktop workstations) is not specifically 
enhanced for parallel computing, determining the ultimate visual effect of images 
often requires a relatively large network, which will result in having insufficient com-
puting resources when running on these devices. Therefore, in this study, we designed 
a lightweight multimodal network that is easy to clinically test while achieving the 
image quality needed for diagnosis. In addition, our work mainly explores the use of 
CT information in PET/CT scans to improve the quality of PET images in short scan-
ning situations.

The quantitative and semiquantitative results show that the quality of the synthe-
sized images gradually increases with increasing scanning time, and the quantitative 
(SSIM, PSNR) and semiquantitative (SUVmax, SUV SD) values of the images synthe-
sized by the model incorporating CT prior information are the closest to the full-time 
reference images for the same short-term scan duration. The PET images gener-
ated by 3DNet and p3DNet show similar trends in terms of correlation coefficients 
(Table  2). However, p3DNet outperforms 3DNet in different dose situations due to 
the introduction of CT prior information, which enhances the correlation in terms of 
structural information. The improvement of p3DNet in structural information is also 
validated in subjective evaluation, as shown in Fig. 8 and Fig. 9 for G6S to G15S.

From the subjective evaluation, the deep learning methods (3DNet and p3DNet) 
have a clear advantage in suppressing the noise of the G6s to G60s groups, while the 
model involving the fusion of CT prior information (p3DNet) is more advantageous 
in recovering the anatomical structure (Fig. 8, Fig. 9).

Previous studies have explored the utilization of CT prior information in low-
dose PET image reconstruction [39], which used the anatomical boundary informa-
tion from CT images as a regularization term for PET imaging to improve image 

Fig. 9  Radar plots of the subjective image quality scores for the different methods in the different dose 
groups, including the lesion conspicuity scores, anatomy conspicuity scores, and image noise scores



Page 13 of 16Zhang et al. EJNMMI Physics            (2024) 11:1 	

quality. However, due to the limitations of the technology at that time, the extrac-
tion of CT edge information was manually designed and could not fully extract the 
deep information in CT. A recent study used MR as prior information in PET/MR 
multimodal imaging to improve PET image quality. The network structure is similar 
to the U-Net architecture, which directly concatenates MR and PET images as the 
input to the network without considering the fusion of high-dimensional features 
[27]. However, it has been indicated that feature fusion in higher dimensions is help-
ful in improving image quality [40]. Our network utilizes a lightweight 3D U-Net 
architecture (3D U-Net ensures consistency across slices) and performs simultane-
ous multimodal information fusion in both low and high dimensions (the number of 
parameters in our network is approximately 4 M, compared to the number of param-
eters in the standard 3D U-Net framework, which is approximately 30 M) to provide 
anatomically rich PET images. Our lightweight network is easier to deploy and test 
on PET/CT devices without significantly enhanced computational resources, and it 
has the potential for clinical practicality.

There are several limitations to our study. The 18F-FDG data used to train and test 
the deep learning model were obtained in a single hospital with a limited number 
of cases. Therefore, further studies with sufficiently large datasets from multiple 
medical centers are needed. Whether there are performance differences in network 
models trained on data from patients with different ages, weights, and reasons for 
scanning and how the data distribution information can be used to improve the per-
formance of the models likewise need to be further investigated.

Data for a total of 270 pediatric patients of different ages and sexes were used in 
this retrospective study, and K-fold cross-validation was used to compensate for 
the lack of training samples to improve the generalizability of the network model. 
Although there was no model overfitting on the evaluation dataset, the lack of real 
clinical samples may result in overfitting for the application of the model in new 
cases, so a more accurate network model needs to be obtained after collecting 
more samples for training. Our study is based on a conventional 18F-FDG injection 
protocol that may not extrapolate to other tracers, such as 18F-NaF, 18F-FET, and 
68Ga-PSMA. Due to limited data on small lesions, a lesion detection rate subgroup 
analysis was not performed for different lesion sizes. More studies are needed to 
investigate the effect of lesion shape, volume, and so on on the detection rate.

In medical applications that concern human health and life, AI technology must be 
used with caution because at present, AI networks have unclear operating mecha-
nisms and are used as black boxes that cannot be explained by rigorous mathemati-
cal formulas. Fortunately, many research teams are studying the interpretability 
of AI, and over time, it is believed that AI networks will be rationally explained, 
improving safety in the use of AI models in medical clinics. Of course, most of the 
current applications of AI in the clinic are auxiliary and not directly involved in 
diagnosis, but AI can help doctors make predictions or preclassify their cases and 
reduce their workload. For the network proposed in this paper to be applied in clini-
cal practice, 270 cases of patient data are not sufficient, and more patient data are 
needed to verify our findings.
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Conclusions
Based on the quantitative, semiquantitative and qualitative results, we can see that 
the enhancement of total-body PET/CT ultrashort-time scan images using artificial 
intelligence techniques and fusing prior CT information can significantly improve the 
image quality, which can help guide methods for shortening the patient’s on-PET scan 
time, which is very promising for clinical diagnostic applications in easy-to-move 
pediatric patients. Despite the good performance of the proposed method, its safety 
needs to be extensively verified in clinical applications.
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