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Abstract 

Purpose::  The aim of this study is to explore the robustness and accuracy of consen-
sus contours with 225 nasopharyngeal carcinoma (NPC) clinical cases and 13 extended 
cardio-torso simulated lung tumors (XCAT) based on 2-deoxy-2-[18F]fluoro-D-glucose 
( 18F-FDG) PET imaging.

Methods::  Primary tumor segmentation was performed with two different initial 
masks on 225 NPC 18F-FDG PET datasets and 13 XCAT simulations using methods 
of automatic segmentation with active contour, affinity propagation (AP), contrast-
oriented thresholding (ST), and 41% maximum tumor value (41MAX), respectively. 
Consensus contours (ConSeg) were subsequently generated based on the majority 
vote rule. The metabolically active tumor volume (MATV), relative volume error (RE), 
Dice similarity coefficient (DSC) and their respective test–retest (TRT) metrics between 
different masks were adopted to analyze the results quantitatively. The nonparametric 
Friedman and post hoc Wilcoxon tests with Bonferroni adjustment for multiple com-
parisons were performed with P < 0.05 considered to be significant.

Results::  AP presented the highest variability for MATV in different masks, and ConSeg 
presented much better TRT performances in MATV compared with AP, and slightly 
poorer TRT in MATV compared with ST or 41MAXin most cases. Similar trends were also 
found in RE and DSC with the simulated data. The average of four segmentation results 
(AveSeg) showed better or comparable results in accuracy for most cases with respect 
to ConSeg. AP, AveSeg and ConSeg presented better RE and DSC in irregular masks as 
compared with rectangle masks. Additionally, all methods underestimated the tumour 
boundaries in relation to the ground truth for XCAT including respiratory motion.

Conclusions::  The consensus method could be a robust approach to alleviate seg-
mentation variabilities, but did not seem to improve the accuracy of segmentation 
results on average. Irregular initial masks might be at least in some cases attributable to 
mitigate the segmentation variability as well.

Keywords:  Consensus contours, Tumor delineation, Accuracy, Robustness, 18F-FDG 
PET imaging
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Introduction
In recent years, the delineation of the tumor boundary in positron emission tomogra-
phy (PET) imaging (such as the primary tumor or large metastasis lesions) is increas-
ingly crucial in radiation treatment planning, tumor response and prognosis [1–3]. 
However, it is difficult to distinguish the tumor boundary from noisy PET images. 
Although a large number of PET segmentation methods have been developed during 
the last 20 years, the validation of most published algorithms is either insufficient or 
inconsistent [4]. Daisne et al. [1] showed the potential value of PET imaging for the 
tumor delineation in head and neck cancers on condition that a proper segmentation 
method is applied. Nestle et  al. [5] compared different delineation methods in PET 
imaging for patients with non-small cell lung cancer, and found that different meth-
ods resulted in substantially different tumor contours and required further evalua-
tion with patient data. It seems that the tumor volume delineation in PET imaging is 
method-dependent and sensitive to high inter and intra-operator variability, present-
ing special challenges to obtain quantitative metrics consistently and accurately [6].

In view of the foregoing, a method for tumor volume delineation in PET imaging 
which is non-sensitive against various imaging situations and could be simply used in 
clinical routine is highly demanding. The decision of the best segmentation method 
seems to be highly subject to the imaging procedures, inter and intra-operator condi-
tions [4, 6, 7]. Therefore, using consensus contours based on different individual seg-
mentation results, may be the solution for PET imaging segmentation against various 
clinical situations. Lv et al. [8] used the intersections of two manual segmentations to 
derive radiomics features and assessed their prognostic performance for nasopharyn-
geal carcinoma (NPC) patients. Cao et  al. [9] explored the potential applications of 
dose painting using PET/MR for NPC patients and discovered volume contours from 
different images were varied and the volume determined by cluster-analysis might 
be considered in radiation oncology. McGurk et al. [10] investigated the use of com-
bining segmentations to reduce the various performances of different segmentation 
methods, and found combining segmentations could improve accuracy and were 
robust against the varying performances of different segmentation methods. Schaefer 
et al. [11] evaluated the influence of consensus methods on different segmentations 
and discovered that consensus contours could offers robustness against the inconsist-
ent performance of different segmentation methods.

Despite that, it is still questioned to the absence of realistic simulated ground truth 
and the limited size of clinical data in these studies [10, 11]. Either simple phantom 
simulations with homogeneous activity levels or limited clinical data (< 40 patients) 
with manual delineation, CT or macroscopic specimen as the ground truth, were 
employed in these studies, which may not sufficiently demonstrate the robustness 
and accuracy of consensus contours. How the consensus methods perform with more 
realistic simulated tumors or a larger clinical patient data is still unclear. In this con-
text, the purpose of our study was to validate the robustness and accuracy of con-
sensus contours based on different segmentation methods through anthropomorphic 
phantom simulation and a much larger clinical database in 2-deoxy-2-[18F]fluoro-
D-glucose ( 18F-FDG) PET imaging.
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Methods
Anthropomorphic phantom simulation

In our study, realistic anthropomorphic phantom simulations were constructed from 
the extended cardio-torso (XCAT) phantom as described previously [12, 13]. Specifi-
cally, realistic tumor shapes were derived from clinical data (7 lung tumors and 6 cases 
of laryngeal squamous cell carcinoma) by thresholding methods and integrated into 
the XCAT phantom following the approaches proposed by Le Maitre et al. [14, 15]. In 
our study three different activity levels were modeled within the tumor to simulate the 
realistic intratumoral uptake heterogeneity. Then, several 18F-FDG time-activity curves 
(TACs) were generated based on two-tissue compartment model and kinetic parameters 
provided in the literature (Table 2)[13, 16–20]. Each modeled TAC was appointed to the 
corresponding tissue in the simulation phantom. Finally, the noise-free simulated emis-
sion maps were generated at 70 min post injection, and the levels of the uptake ratio 
within the lesions at 70 min were 11.01:10.14:6.62, with the background outside the 
lesions set to 1.

Furthermore, to assess the influence of respiratory motion, the simulation was also 
conducted with and without respiratory motion, respectively. Specifically, a 5 s breathing 
cycle with maximum diaphragm motion of 1.5 cm, maximum anterior-posterior expan-
sion of 0.5  cm was adopted and divided into 10 bins. Then, the noise-free simulation 
including respiratory motion was finalized by taking the average of these 10 bins assum-
ing no uptake activity change during the breathing cycle of 5 s, and the static simulation 
was produced at the intermediate time point of respiratory cycle (bin 3).

At last, an analytical fully 3D forward projector was adopted to generate the PET 
sinograms based on the model of a Siemens Biograph mCT PET/CT scanner. Subse-
quently, the corresponding attenuation maps were applied to the sinograms to get the 
attenuated PET data and quantitative levels of Poisson noise were later added, which 
were equivalent to a 180 s acquisition time per bed. The noisy projection data were then 
reconstructed using an ordered subsets expectation maximization (OSEM) algorithm 
with 14 subsets and 28 sub-iterations, followed by application of a Gaussian smooth-
ing filter of 2 mm. All these projection and reconstruction procedures were performed 
within the software for tomographic image reconstruction (STIR) [21]. The matrix size 
of all simulated images was 200× 200 with a voxel size of 0.50× 0.41× 0.41 cm3 . In 
total, 13 different tumors including the range of respiratory motion (XCAT​av , volume 
range 6.64–69.34  cm3 ) and without respiratory motion (XCAT​st , volume range 3.57–
54.66 cm3 ) in the lung location were simulated. After the simulating with the introduc-
tion of noise, the ratios between the mean activity within the tumor (simulated ground 
truth) and the background mask for XCAT​av and XCAT​st are 3.44 and 4.04, respectively. 
The simulation flowchart is shown in Fig. 1.

Clinical database

The clinical studies include 225 cases of NPC, for which whole-body 18F-FDG PET 
images were acquired using an mCT PET/CT scanner (Siemens, Germany) at Meizhou 
people’s hospital from 2018 to 2020. The ground truth in clinical studies is not known 
a priori, which makes it infeasible to assess the accuracy of segmentation results but 
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Table 1  Patient characteristics (n=225)

Characteristics

Patient 225

Men 150

Age (y) 50 (43, 58)

Tumor type (histology)

Undifferentiated non-keratinizing 221

Differentiated non-keratinizing 2

Poorly differentiated keratinizing 2

Tumor stage

I 6

II 35

III 100

IV 84

Injected activity (MBq) 280.83 (249.38, 313.02)

Weight (kg) 57 (51, 64)

Range of MATV (cm3) 10.95 (6.72, 19.86)

Fig. 1  Flowchart showing various steps in the simulation of the realistic anthropomorphic model

Table 2  18F-FDG kinetic parameters used to generate time-activity curves in the simulation study

Tissue K1 (ml/(min*g)) k2 (l/min) k3 (l/min) k4 (l/min) VB (ml/ml)

Level I in lesion 0.180 0.990 0.190 – 0.036

Level II in lesion 0.150 0.550 0.120 – 0.071

Level III in lesion 0.110 0.400 0.073 – 0.095

Normal lung 0.108 0.735 0.016 0.013 0.017

Normal liver 0.864 0.981 0.005 0.016 –

Myocardium 0.600 1.200 0.100 0.001 –

Normal bone marrow 0.200 0.680 0.050 0.020 0.010
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possible to investigate the robustness of different segmentation methods with differ-
ent tumor masks. All patients fasted for at least 6 h before 18F-FDG PET/CT imaging. 
According to the patients’ body weight (4.81 MBq/kg), 18F-FDG was injected and PET/
CT scanning was performed after 60 min uptake. PET data were then reconstructed 
using a vendor-provided TrueX algorithm (21 subsets and 2 iterations) with time-of-
flight, using low-dose CT for attenuation correction, and the matrix size of all recon-
structed images was 200 × 200 resulting in a voxel size of 4.07 mm × 4.07 mm × 3.00 mm. 
A post-reconstruction Gaussian smoothed filter with 5 mm full-width at half-maximum 
was also applied to PET data. Patient characteristics are presented in Table 1. The mean 
uptake ratio within the tumor (segmentation results) and the background mask is 2.60. 
This study was approved by Meizhou people’s hospital ethics committee.

PET segmentation and analysis

To assess the impact of tumor delineation, four different segmentation methods were 
applied: a method for automatic segmentation using an active contour model (MASAC) 
[12] and an affinity propagation algorithm (AP) [22], the contrast-oriented thresholding 
method (ST) of Schaefer et al. [23], and segmentation using 41% of the maximum tumor 
value as a threshold (41MAX) [24]. Specifically, the parameter lambda in MASAC was 
set to 3 while the default parameters were kept for AP with the largest grouping as its 
segmentation result.

For each case, either the simulated lung tumor or the primary tumor in clinical data, 
these four different segmentation methods were employed to delineate the tumor vol-
ume automatically. Furthermore, each segmentation method was performed with two 
different user-defined tumor masks (a regular rectangle area, and an irregular cropping 
area) to assess the robustness of segmentation methods. The consensus segmentation 
method (ConSeg), by applying the majority vote rule based on four different segmenta-
tion results, is adopted in our study [10, 11].

The metabolically active tumor volume (MATV) was taken for quantitative assess-
ment of segmentation results. For simulated cases with known ground truth, the relative 
volume error (RE) and Dice similarity coefficient (DSC) were also adopted to assess the 
accuracy of these PET segmentation methods quantitatively, which are defined as below:

where SM and GT represent the segmentation method and the ground truth, respec-
tively [12, 25–27]. Besides, to assess the robustness of different methods, the test–retest 
reproducibility of the metrics between two different initial tumor masks ( TRTMetrics ) was 
calculated as:

(1)RE =
(MATV (SM)−MATV (GT ))

MATV (GT )

× 100%

(2)DSC =
2× |SM ∩ GT |

|SM| + |GT |

(3)TRTMetrics =
Metricsrectangle−Metricsirregular

(Metricsrectangle+Metricsirregular)/2
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where Metricsrectangle and Metricsirregular are metrics derived from rectangle masks and 
irregular cropping masks, respectively.

Statistical analysis

Statistical analysis was performed using R 4.1.3 software [28]. The nonparametric Fried-
man and post hoc Wilcoxon tests with Bonferroni adjustment for multiple comparisons 
were performed to assess the difference among different segmentation results. A P value 
< 0.05 was considered to be significant. The results are expressed as median with inter-
quartile range (IQR) in parentheses, and presented as box-and-whisker plots as appro-
priate, providing lower to upper quartile (25 to 75 percentile, central box), the median 
(middle line of the box) and the minimum to maximum value. Specifically, the minimum 
in plots is calculated as the lower quartile minus 1.5*IQR and the maximum is calculated 
as the upper quartile plus 1.5*IQR. For display purposes, outliers identified as 1.5*IQR 
were removed from plot (whiskers).

Results
Representation segmentation results

The evaluated data in this study involved NPC clinical database and XCAT anthropo-
morphic phantom simulation. Fig.  2 showed different delineated contours by differ-
ent methods in NPC (A), XCAT​av (B) and XCAT​st (C). It could be observed that AP 
showed higher variability under different initial masks as compared to other methods 
and enhanced accuracy in irregular masks compared with rectangle masks. Besides, it 
seems obvious that all methods underestimated the lesion to segment in XCAT​av.

Robustness test

As can be seen from Fig. 3, the use of different masks caused significantly different seg-
mentation results in MATV for both evaluated data and most segmentation methods 
except ST in XCAT​av (P = 0.059) and MASAC in XCAT​st (P = 0.080). Specifically, for 
either NPC or XCAT, AP presented the highest variability for MATV with the use of dif-
ferent masks with respect to other segmentation methods. The use of rectangle masks 
resulted in a significantly smaller MATV (NPC: −43.68%, XCAT​av : −41.44% and XCAT​
st : −38.10%) for AP compared with irregular masks. Besides, ST and 41MAX showed 
relatively consistent performances for MATV in different masks and there was no sig-
nificant difference in TRTMATV  between ST and 41MAX (Fig. 3 and Tables 3 and 4).

It should be noted in Fig. 3 that for both evaluated data ConSeg presented much better 
TRT performances in MATV (NPC: 0.09, XCAT​av : 0.03 and XCAT​st : 0.06) compared 
with AP (NPC: 0.64, XCAT​av : 0.53 and XCAT​st : 0.47), and slightly poorer TRT in MATV 
compared with ST or 41MAX in most cases (NPC: 0.00, XCAT​av : 0.00 and XCAT​st : −
0.07). Similar trends were also found in RE and DSC with the simulated data (Fig. 4), 
where AP showed the poorest TRT performances (RE: −0.77 in XCAT​av and −2.67 in 
XCAT​st , DSC: 0.28 in XCAT​av and 0.13 in XCAT​st ) and ConSeg achieved much better 
TRT (RE: −0.04 in XCAT​av and −0.17 in XCAT​st , DSC: 0.01 in XCAT​av and XCAT​st ) 
with respect to AP.
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Fig. 2  Representative contours of five different methods (black dashed horizontal line: contours with the 
rectangle mask, black dotted line: contours with the irregular cropping mask, white:simulated ground truth ) 
with two initial masks (red dashed horizontal line: rectangle mask, red dotted line: irregular cropping mask) in 
clinical database (A) , anthropomorphic simulation with B and without C respiratory motion
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Accuracy test

Applying the consensus method seemed to alleviate the high variability of different seg-
mentation results, but did not improve the segmentation accuracy on average (Tables 3 
and 4 and Fig. 4). More specifically, the average of four segmentation results (AveSeg) 
showed slightly better RE (rectangle: 3.12%, irregular: 6.98%) in XCAT​av and much bet-
ter RE (rectangle: 85.20%, irregular: 96.72%) in XCAT​st with respect to those in ConSeg. 
Besides, compared with ConSeg, AveSeg presented no significant difference for rectan-
gle masks and slightly better DSC for irregular cases in XCAT​av (AveSeg: 0.77, ConSeg: 
0.76), but mildly poorer DSC for rectangle masks (AveSeg: 0.83, ConSeg: 0.87) and com-
parable DSC for irregular cases in XCAT​st.

Table 3  Quantitative metrics used for assessment of the four individual segmentation methods, 
the average of four segmentation results (AveSeg) and the consensus method (ConSeg) for the 
simulated phantom studies including respiratory motion

Method MATV(cm3) RE(%) DSC

Rectangle mask

MASAC 20.15 (15.18, 21.48) − 18.36 (− 40.52, 5.24) 0.79 (0.74, 0.86)

AP 10.78 (6.80, 15.59) − 54.27 (− 57.38, − 50.36) 0.63 (0.60, 0.65)

ST 14.51 (9.70, 21.23) − 38.76 (− 41.79, − 35.03) 0.75 (0.73, 0.77)

41MAX 14.43 (9.62, 21.40) − 38.28 (− 41.74, − 33.87) 0.76 (0.73, 0.77)

AveSeg 14.83 (11.38, 19.91) − 41.61 (− 42.65, − 31.03) 0.73 (0.72, 0.74)

ConSeg 13.93 (9.54, 19.82) − 42.95 (− 45.06, − 41.96) 0.73 (0.71, 0.73)

Irregular mask

MASAC 16.17 (13.85, 22.48) − 35.17 (− 45.10, − 17.74) 0.78 (0.71, 0.83)

AP 18.41 (13.10, 26.54) − 22.67 (− 26.63, − 20.60) 0.83 (0.82, 0.85)

ST 14.51 (9.62, 21.23) − 38.76 (− 41.79, − 36.05) 0.75 (0.74, 0.77)

41MAX 14.43 (9.54, 21.40) − 38.28 (− 42.00, − 35.03) 0.76 (0.73, 0.78)

AveSeg 15.88 (11.47, 22.91) − 35.83(− 37.21, − 30.53) 0.77 (0.77, 0.78)

ConSeg 14.51 (9.62, 21.32) − 38.52 (− 41.74, − 36.05) 0.76 (0.74, 0.78)

Table 4  Quantitative metrics used for assessment of the four individual segmentation methods, 
the average of four segmentation results (AveSeg) and the consensus method (ConSeg) for the 
simulated phantom studies without respiratory motion

Method MATV(cm3) RE(%) DSC

Rectangle mask

MASAC 19.08 (15.84, 21.32) 21.69 (− 22.04, 45.80) 0.84 (0.81, 0.86)

AP 11.45 (6.39, 16.92) − 27.41 (− 34.27, − 25.73) 0.80 (0.75, 0.82)

ST 16.42 (10.53, 23.22) − 6.98 (− 9.71, 4.90) 0.85 (0.82, 0.87)

41MAX 16.42 (10.28, 23.72) − 4.98 (− 9.45, 8.82) 0.86 (0.83, 0.88)

AveSeg 15.57 (10.76, 21.05) − 2.35 (− 15.70, 0.00) 0.83 (0.79, 0.86)

ConSeg 14.10 (9.46, 19.32) − 15.88 (− 21.67, − 10.05) 0.87 (0.85, 0.88)

Irregular mask

MASAC 16.51 (14.27, 22.31) 1.81 (− 26.32, 28.35) 0.84 (0.82, 0.87)

AP 18.50 (12.61, 26.79) 16.03 (4.90, 21.18) 0.89 (0.87, 0.92)

ST 14.10 (9.54, 21.23) − 14.95 (− 15.93, − 5.85) 0.89 (0.86, 0.91)

41MAX 14.51 (9.46, 21.65) − 12.98 (− 14.69, − 5.85) 0.88 (0.86, 0.91)

AveSeg 15.61 (11.47, 23.00) − 0.40 (− 13.20, 6.14) 0.88 (0.86, 0.90)

ConSeg 14.35 (9.54, 21.48) − 12.21 (− 15.73, − 5.85) 0.88 (0.86, 0.91)
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Furthermore, AveSeg and ConSeg both presented much improved RE from 10.31% 
to 82.99% and slightly increased DSC from 1.15% to 6.02% in irregular masks as com-
pared with rectangle masks (Tables 3-4). AP also displayed much better segmentation 
results in XCAT​av (RE: 58.23%, DSC: 31.75%) and XCAT​st (RE: 41.52%, DSC: 11.25%) 

Fig. 3  Box-and-whisker plots of MATV and TRTMATV for each method in clinical database (A) and 
anthropomorphic simulation with (B) and without C respiratory motion. For display purposes, outliers 
identified as 1.5*interquartile range were removed from plot (whiskers). Comparisons without statistically 
significant differences are marked with horizontal line
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Fig. 4  Box-and-whisker plots of RE, DSC and their respective TRT metrics for each method in the 
anthropomorphic simulation with (A) and without B respiratory motion. For display purposes, outliers 
identified as 1.5*interquartile range were removed from plot (whiskers). Statistically significant differences are 
marked with horizontal line
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with the use of irregular masks than rectangle masks. Besides, MASAC presented a 
much larger IQR for RE or DSC in either rectangle or irregular masks compared with 
other segmentation methods in most cases except for DSC in XCAT​st . Additionally, it 
is apparent that all methods underestimated the tumour boundaries in relation to the 
ground truth for XCAT simulated data including respiratory motion.

Discussion
It has been substantiated that large variability in different segmentation results was pre-
sented and all segmentation needed to be reviewed thoroughly [4, 6]. To reduce these 
variability, the consensus method was widely adopted in many study [10, 11, 29, 30]. Our 
study showed that quantitative metrics, such as MATV, DSC and RE, could be highly 
influenced by different segmentation methods and initial cropping masks, and the use 
of consensus contours could help to mitigate certain individual methods that may have 
high segmentation variability under different conditions. In other words, the consensus 
method could alleviate these variability and enhance the robustness of tumor segmenta-
tion, but it did not seem to improve the segmentation accuracy on average.

Our results seem inconsistent with the study of McGurk et  al. [10], in which only 
homogeneous activity levels were simulated with the National Electrical Manufactur-
ers Association image quality phantom, and it was found that improved segmentation 
accuracy was achieved by the consensus method compared with any one individual 
method for all simulated shapes, sizes, contrasts, and scan durations. This is because 
the consensus method in our study, taking the majority of different independent results 
as consensus contours, was still influenced by different individual segmentation results. 
For example, if all individual segmentation methods underestimate or overestimate the 
lesion to contour, it is reasonable for the consensus method to have an average bias on 
the segmentation results. Besides, in theory the majority approach could improve the 
accuracy of segmentation results if the accuracy of each individual segmentation method 
is greater than 0.5. However, because of the diversity of PET images depending on clini-
cal indications, it is difficult for each segmentation method to have accuracy greater 
than 0.5 for all types of clinical oncology indications and so the accuracy of the majority 
vote method might not be improved relative to the individual segmentation method on 
average.

The ground truth for segmentation in clinic is difficult to achieve. In our study, we 
constructed the anthropomorphic phantom simulation based on our previous work [13] 
and found that most methods, with the exception of AP in rectangle mask, achieved a 
median DSC greater than 0.7, indicating good segmentation agreement [10, 26, 31, 32]. 
However, it should be noted that all methods apparently underestimated the simulated 
ground truth including the range of respiratory motion on average (Rectangle Mask: −
41.61%, Irregular Mask: −35.83%), whereas the average of the segmentation in the simu-
lation without respiratory motion showed −2.35% for rectangle masks and −0.40% for 
irregular masks. It is known that the respiratory motion would amplify the actual static 
ground truth and blur the tumor boundary, and so it is reasonable for the segmentation 
methods to generate the contours much smaller than the simulated ground truth with 
its range of respiratory motion included. Therefore, in routine clinical practice the res-
piratory motion and its blurring effect on PET segmentation and quantitative analysis 
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should be carefully considered. The use of gating acquisition and positioning immobility 
masks might also help to reduce the impact of motion during PET scanning. motion.

For most segmentation approaches, manual interaction is often required during the 
segmentation process [33, 34]. Although large variability exists in different segmenta-
tion results for both initial masks, the consensus method showed robustness against 
the inconsistent performance of individual segmentation methods, consistent with the 
results found by Schaefer et al. [11]. Further to this, segmentation results with irregu-
lar cropping area seem less varied than those with regular rectangle masks, suggesting 
manually contoured initial masks might be at least in some cases attributable to mitigate 
this variability.

Different kinds of image characteristics may have different quality images. Providing 
a good quality images could be acquired by different data acquisition/reconstruction 
protocol, it would be possible to mitigate the variability in target volume segmentation. 
For example, the dynamic Patlak-derived net uptake rate constant (Ki) PET imaging has 
also been proposed in the literature, which could track the four-dimensional (4D) dis-
tribution of the tracer uptake post-injection quantitatively and may improve the lesion 
detectability in the clinic [13, 35–37]. Xiang et al. [38] compared 18F-FDG and 18F-FLT 
PET/CT images in gross target volume delineation on VX2 rabbit model and found 18F-
FLT PET/CT could present the tumor boundaries more accurately. The implementation 
of the AAPM report No. 174 recommendations for 18F-FDG PET imaging in radiation 
therapy, such as staging, segmentation, image registration, treatment planning, and ther-
apy response assessment [39], as well as the publication of strict PET imaging guidelines 
[40, 41], may also help to alleviate the variability in image segmentation.

One of the limitations in our study is the absence of ground truth data for NPC clini-
cal dataset, which prevents the assessment of the accuracy of MATV segmentation in 
clinic. Furthermore, the presented simulated data may not be sufficient to fully demon-
strate the bias of segmentation results with respect to treatment assessment in clinical 
setting. Therefore, our results should be validated with a benchmark using harmonized 
and standardized data in the future [42]. The use of digital PET or long axial field of 
view PET scanners might also be helpful to improve tumor segmentation and analysis, 
thereby mitigate these variabilities. In addition, we did not investigate the time-phase 
effect of 18F-FDG uptake on segmentation results in our study. Chen et al. [43] evaluated 
changes in SUV values of 18F-FDG PET/CT on NPC tumor volume with 8 delineation 
methods and recommended the anatomic biologic contouring between 35 and 55 min 
after injection as the first choice for tumor delineation. We should acknowledge that 
the uptake changes would not only impact SUV values, but also affect other PET image 
characteristics, such as texture pattern, which is not evaluated in our study.

Conclusions
Quantitative results derived from our segmentation studies on 13 realistic simulated 
tumors and 225 NPC clinical data show that although quantitative metrics could be 
highly influenced by different segmentation methods and initial cropping masks, the 
consensus method could help to alleviate the variability of individual segmentation 
results under different conditions and enhance the robustness of tumor segmentation, 
but did not seem to improve the accuracy of segmentation results on average relative to 
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the individual segmentation method. Irregular cropping initial masks might be at least 
in some cases attributable to mitigate the segmentation variability as well.
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