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Abstract

Background: Bone SPECT/CT has been shown to offer superior sensitivity and
specificity compared to conventional whole-body planar scanning. Furthermore,
bone SPECT/CT allows quantitative imaging, which is challenging with planar
methods. In order to gain better quantitative accuracy, Bayesian reconstruction
algorithms, including both image derived and anatomically guided priors, have been
utilized in reconstruction in PET/CT scanning, but they have not been widely used in
SPECT/CT studies. Therefore, the aim of this work was to evaluate the performance
of CT-guided reconstruction in quantitative bone SPECT.

Methods: Three Bayesian reconstruction methods were evaluated against the
conventional ordered subsets expectation maximization (OSEM) reconstruction
method. One of the studied Bayesian methods was the relative difference prior
(RDP), which has recently gained popularity in PET reconstruction. The other two
methods, anatomically guided smoothing prior (AMAP-S) and anatomically
guided relative difference prior (AMAP-R), utilized anatomical information from
the CT scan. The reconstruction methods were evaluated in terms of quantitative
accuracy with artificial lesions inserted in clinical patient studies and with 20 real
clinical patients. Maximum and mean standardized uptake values (SUVs) of the
lesions were defined.

Results: The analyses showed that all studied Bayesian methods performed
better than OSEM and the anatomical priors also outperformed RDP. The
average relative error in mean SUV for the artificial lesion study for OSEM, RDP,
AMAP-S, and AMAP-R was − 53%, − 35%, − 15%, and − 10%, when the CT study
had matching lesions. In the patient study, the RDP method gave 16 ± 9%
higher maximum SUV values than OSEM, while AMAP-S and AMAP-R offered
increases of 36 ± 8% and 36 ± 9%, respectively. Mean SUV increased for RDP,
AMAP-S, and AMAP-R by 18 ± 9%, 26 ± 5%, and 33 ± 5% when compared to
OSEM.

Conclusions: The Bayesian methods with anatomical prior, especially the relative
difference prior-based method (AMAP-R), outperformed OSEM and reconstruction
without anatomical prior in terms of quantitative accuracy.

Keywords: Bone SPECT/CT, Bayesian reconstruction, Anatomical prior,
Quantitation
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Background
Bone scanning is an invaluable tool in screening and follow-up of bone metastases from

primary breast and prostate cancers. Conventionally, bone scanning has been accom-

plished by whole-body planar scanning, but the sensitivity and specificity of SPECT and

especially SPECT/CT have been reported to be superior to planar imaging [1]. In

addition to improved lesion detection, bone SPECT/CT allows quantitative and semi-

quantitative imaging: for example, the images can be reported in standardized uptake

values (SUVs) analogous to routine PET imaging [2]. Here, SUV is defined as:

SUV ¼ CROI

AInj=w
ð1Þ

where CROI is the activity concentration [kBq/ml] within a region of interest (ROI),

AInj is the decay-corrected injected activity [kBq], and w is the weight of the patient [g].

Quantitative SPECT has been commercially available for several years now, but it has

not yet been widely applied. Only a couple of approaches based on quantitative SPECT,

mainly in the field of dosimetry after radionuclide therapy, have been clinically accepted

[3]. The lack of acceptance is partly due to poorer spatial resolution of SPECT/CT

when compared to PET/CT, which results in inferior quantitative performance. Quanti-

tative bone SPECT/CT, however, holds promise in aiding patient follow-up and inter-

patient comparisons. It might also help in the interpretation of bone SPECT studies,

e.g., by allowing global scaling based on SUV, thus removing scaling difficulties due to

hot bladder, or it might provide easier detection of the super-scan phenomenon [4], be-

cause there is no need to relate bone uptake to kidney uptake.

Computed tomography is currently used only for attenuation compensation and ana-

tomical localization in bone SPECT/CT. Anatomical information derived from CT

could also be utilized to guide the SPECT image reconstruction algorithm and there-

fore help reduce the noise and image blurring. Anatomically guided reconstruction al-

gorithms have been tested in brain PET/MRI [5, 6], but they have not found their way

to clinical SPECT/CT image reconstruction yet. Therefore, the aim of this work was to

evaluate the performance of CT-guided reconstruction in quantitative bone SPECT.

Emission image reconstruction using the maximum likelihood expectation

maximization (ML-EM) algorithm usually does not make assumptions about how the

image should look beforehand. However, it is possible to incorporate some a priori

knowledge into the reconstruction, such as the expected image smoothness or anatom-

ical knowledge from a registered CT or MRI. For this purpose, the maximum likelihood

expectation maximization algorithms, which obtain the reconstructed image by directly

fitting to measured projection data, have to be replaced by Bayesian methods, where

the image is reconstructed by maximizing the posteriori distribution consisting of the

likelihood data fitting term and prior term. Several Bayesian methods utilizing anatom-

ical information have been presented [7]. Many of them require image segmentation

into different tissue classes or knowledge of edge positions, which can be difficult to ac-

complish in clinical practice. We selected two easily tunable anatomical Bayesian re-

construction methods and compared them against the conventional ordered subsets

expectation maximization (OSEM) algorithm and the relative difference prior (RDP),

which is a Bayesian reconstruction method not utilizing anatomical prior information.

RDP was included due to its current success in PET reconstruction [8].
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Methods
Patient studies with artificial lesions

To simulate lesion-present clinical studies in which the presence, location, and tracer

uptake of lesions were known, 15 mm and 20 mm spherical lesions were added to

disease-free whole-body bone SPECT/CT studies. Two (1 female, 76 kg, and 1 male, 81

kg) three-bed Tc99m-HDP bone SPECT/CT studies which had been reported as nor-

mal were selected from Lahti Central Hospital’s database. The studies were acquired on

a Siemens Symbia T using 256 × 256 matrix size, 2.4 mm pixel size, 64 projection an-

gles over 360° rotation, 20 s per acquisition angle, and a body contour orbit. The CT

scan was performed in shallow free-breathing with 130 kV and 25 ref mAs. CT images

were reconstructed into 512 × 512 matrix, with 0.98 mm pixel size and 3.0 mm slice

thickness. The alignment between SPECT and CT was carefully validated according to

clinical practice. Spherical lesions with SUV of 15 were then mathematically generated,

projected using the projector presented in [9], which modeled attenuation and collima-

tor/detector effects, and finally added to the original projection data. Knowing the le-

sions’ sizes were relatively small and well separated in the body, the number of lesion

scatter counts was assumed to be low compared to scatter coming from other parts of

the skeleton and modeling of additional scattered photons from the lesions was omit-

ted. The same assumption is often used when simulating lesions in PET studies.

A total of five lesions—one each in the skull, sternum, ribs, spine, and pelvis—were

added. The skull, sternum, and rib lesions were 15mm diameter and the spine and pel-

vis lesions 20mm diameter. The lesions were placed in bone areas where the CT image

had uniform appearance representing cases where the bone lesion is only seen in the

SPECT images. We also generated CT images, which had lesions with the same size,

shape, and location as the SPECT lesions representing cases where the bone lesion is

seen in both SPECT and CT images. In addition, we shifted both the lesion-absent and

lesion-present CT images 5 mm in anterior-posterior direction to study the effects of

SPECT-CT misalignment. The 5-mm shift was based on work published by Kuwert [3]

which states that in the neck and in organs affected by respiratory motion, the average

misalignment is usually less than 5mm.

The artificial lesions were analyzed by placing spherical volumes of interest (VOIs) of

the known diameter and location on the reconstructed images. SUVmax and SUVmean

for each lesion on both datasets were calculated and averaged over the two phantoms.

Clinical patient studies

Twenty clinical three-bed Tc99m-HDP bone SPECT/CT studies performed on patients

with breast and prostate cancer diagnoses (7 female, 13 male, mean age 75 years, mean

weight 80 kg, mean injected activity 705MBq) were randomly drawn from Lahti Cen-

tral Hospital’s database. All the studies were acquired with Siemens Symbia T using the

same acquisition parameters described earlier. Patient weights and information about

injected activities and injection times were available, and thus, the studies could be re-

constructed in SUV units according to Lahti Central Hospital’s clinical practice.

Spherical VOIs of 10 mm diameter were placed on center of focal hotspots (SUVmean

≥ 15) in the areas of skull, sternum, ribs, spine, and pelvis. Up to five VOIs were placed

on each area on every patient if lesions were visible. The VOI size was chosen so that
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Fig. 1 (See legend on next page.)
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the VOI included only bone tissue also in the narrow skull and rib uptake areas and did not

expand outside bone seen in CT. No knowledge of patient history or laboratory results (e.g.,

elevated PSA or alkaline phosphates value, TNM classification, Gleason score, or location of

possible bone pain) was available. Therefore, the hotspot VOIs correspond to both benign

and malignant uptake areas. VOIs of the same size were also placed on normal bone on the

skull, sternum, ribs, spine, and pelvis. Up to five VOIs were placed on each area on every

patient if there was sufficient normal bone available. The normal uptake area was also se-

lected based only on SUV. SUVmax and SUVmean inside the VOI were extracted.

Image reconstruction

All images (patient studies with artificial lesions and clinical patient studies) were recon-

structed using HybridRecon v3.2 (HERMES Medical Solutions, Stockholm, Sweden) with

algorithms based on the GPU-accelerated OSEM presented in [10]. OSEM is defined as:

f newj ¼ f oldjP
i∈Snaij

X
i∈Sn

aij
piP

kaik f
old
k

ð2Þ

where j (and k) is the reconstruction voxel index, i the projection pixel index, fnew the

new image estimate, fold the old image estimate, Sn the subset n, p the projections, and

aij the probability that photon emitted from voxel j (or k) is detected in projection pixel

i [11]. aij is an element of the projector operator A, which in our case included CT-

based attenuation model, distance-dependent 2D Gaussian collimator-detector model,

and Monte Carlo-based scatter model [9]. OSEM images were post-filtered with a 3D

Gaussian filter to suppress noise.

Bayesian reconstruction methods were based on the one step late (OSL) algorithm [12]:

f newj ¼ f oldj
P

i∉Sn
aij þ β

∂U f old
� �

∂ f old

X
i∉Sn

aij
PiX

k

aik f
old
k

ð3Þ

where β is the Bayesian weight and ∂Uð f oldÞ
∂ f old

the derivative of the energy function U. Three

energy functions were used. The first one was the RDP, whose energy function is defined as:

(See figure on previous page.)
Fig. 1 a. Maximum SUV of the pelvic lesion as a function of Bayesian weight (β) for RDP (blue line), AMAP-S
(red line) and AMAP-R (green line). AMAP-S and AMAP-R results are presented with two numbers of most
similar neighbours B=8 (solid line) and B=12 (dashed line). b. Effect of Bayesian weight (β) and number of
most similar neighbors (B) on image quality for AMAP-S. Effects for RDP and AMAP-R are similar. Anterior
maximum intensity projection is shown

Table 1 Reconstruction parameters

Parameter OSEM RDP AMAP-S AMAP-R

Iterations 5 15 15 15

Subsets 16 16 16 16

FWHM [mm] 9 – – –

β – 0.3 0.3 0.3

γ – 3.0 – 3.0

B – – 8 8
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U fð Þ ¼
X
j

X
k∈N j

f j − f k
� �2

f j þ f k
� �

þ γ f j − f k

���
���

ð4Þ

where Nj is the neighborhood of voxel j and constant γ controls the degree of edge preser-

vation [13]. Even though the plain RDP does not utilize anatomical information from a CT,

it can still improve the resolution of the reconstructed images by preserving image edges.

The second energy function was the anatomically guided smoothing prior (AMAP-S):

Fig. 2 Example reconstructed SPECT and CT (with and without lesions) transverse slices at the level of
sternum and spine lesions of the male patient study with artificial lesions. Red arrows show the lesion
locations. VOI used to analyze the reconstructed SPECT studies had the same shape and position as the
lesion seen on the CT image. AMAP-S and AMAP-R refer to reconstructions where lesion is absent in the CT
and AMAP-S CT and AMAP-R CT to lesion-present cases. The color scale is set to SUV 15 for all
SPECT images

Table 2 SUVmax and SUVmean (mean ± standard deviation) for the 4 different reconstruction
algorithms. AMAP-S and AMAP-R refer to reconstructions where lesion is absent in the CT and
AMAP-S CT and AMAP-R CT to lesion-present cases

Method SUV Area

Skull Sternum Ribs Spine Pelvis

OSEM Max 13.3 ± 1.2 11.4 ± 1.3 13.0 ± 0.2 9.2 ± 0.3 18.6 ± 3.6

Mean 7.6 ± 0.1 7.2 ± 0.1 6.8 ± 0.1 4.9 ± 0.7 8.7 ± 1.1

RDP Max 21.2 ± 4.1 20.8 ± 2.6 24.8 ± 2.1 10.2 ± 0.1 23.1 ± 6.3

Mean 11.3 ± 1.3 11.5 ± 0.7 10.5 ± 0.8 4.9 ± 0.3 10.2 ± 2.1

AMAP-S Max 22.9 ± 1.6 32.2 ± 6.7 26.3 ± 1.0 10.9 ± 7.8 22.2 ± 4.0

Mean 9.4 ± 1.3 11.4 ± 1.1 8.9 ± 0.2 5.4 ± 0.3 10.0 ± 1.1

AMAP-S CT Max 31.2 ± 3.4 18.4 ± 5.1 17.4 ± 3.1 11.9 ± 2.4 17.5 ± 2.6

Mean 16.2 ± 0.1 12.3 ± 1.9 11.3 ± 1.4 11.0 ± 2.8 12.8 ± 0.3

AMAP-R Max 34.3 ± 5.3 37.2 ± 2.9 45.0 ± 7.3 16.0 ± 8.7 29.7 ± 2.0

Mean 12.1 ± 2.8 12.2 ± 0.3 11.2 ± 0.3 6.0 ± 0.2 11.0 ± 1.2

AMAP-R CT Max 35.9 ± 1.5 16.4 ± 8.2 21.9 ± 2.5 13.5 ± 1.3 19.8 ± 3.2

Mean 17.7 ± 0.9 12.7 ± 1.6 12.4 ± 1.7 10.9 ± 1.4 14.1 ± 0.2
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U fð Þ ¼
X
j

X
k∈B

f j − f k
� �2

ð5Þ

where instead of using all voxels in the neighborhood Nj only B most similar voxels

in neighborhood are used [14]. The most similar voxels are found by comparing the ab-

solute differences in CT Hounsfield values. The third energy function was equal to

RDP, but instead of using all voxels in the neighborhood Nj, anatomical information

from the CT was used to pick the B most similar neighbors. This algorithm is called

AMAP-R. A 3 × 3 × 3 voxel neighborhood was used with all energy functions.

The number of subsets, iterations, Bayesian weight β, constant γ, and the number of

most similar neighbors B were determined by reconstructing bone SPECT/CT studies

using a wide range of the aforementioned parameters. A compromise in terms of image

quality, lesion SUV, and noise suppression had to be made by comparing the Bayesian

reconstructed images to clinical OSEM images (5 iterations, 16 subsets, and 9 mm full

width at half maximum (FWHM) 3D Gaussian post-filter), because some of the param-

eters are counteracting. In general, increase in Bayesian weight or number of most

similar neighbors leads to decreased noise, lower resolution, and more blocky appear-

ance of the images, whereas larger constant γ produce sharper, but noisier images. The

effect of β and B on maximum SUV is presented in Fig. 1a and on image quality and in

Fig. 1b. Chosen reconstruction parameters are presented in Table 1.

Table 3 Relative difference (100% × (SUVmean_true − SUVmean_5mm)/SUVmean_true) in SUVmean values
for the 4 different reconstruction algorithms generated by 5 mm mismatch between SPECT and
CT. AMAP-S and AMAP-R refer to reconstructions where lesion is absent in the CT and AMAP-S CT
and AMAP-R CT to lesion-present cases

Method Area

Skull (%) Sternum (%) Ribs (%) Spine (%) Pelvis (%)

OSEM − 5.6 13.2 4.6 2.5 6.2

RDP − 5.5 11.9 5.0 3.8 5.4

AMAP-S 5.3 35.7 6.8 − 14.0 10.3

AMAP-S CT 30.3 26.2 15.6 30.0 12.7

AMAP-R 7.1 28.9 3.4 − 14.5 7.6

AMAP-R CT 20.2 24.7 11.7 31.4 18.9

Fig. 3 Anterior maximum intensity projections of the male patient study with artificial lesions. AMAP-S and
AMAP-R refer to reconstructions where lesion is absent in the CT and AMAP-S CT and AMAP-R CT to lesion-
present cases. The color scale is set to SUV 15 for all images
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Fig. 5 Anterior maximum intensity projections of the male patient study with artificial lesions with SPECT/
CT mismatch. AMAP-S and AMAP-R refer to reconstructions where lesion is absent in the CT and AMAP-S
CT and AMAP-R CT to lesion-present cases. Top row shows perfectly aligned cases and bottom row
reconstructions with the 5-mm SPECT/CT mismatch. The color scale is set to SUV 15 for all images

Fig. 4 Example reconstructed SPECT transverse slice for AMAP-S and AMAP-R with and without the 5-mm
SPECT/CT mismatch at the level of rib lesion of the male patient study with artificial lesions. Red arrow
shows the lesion location. AMAP-S and AMAP-R refer to reconstructions, where lesion is absent in the CT,
AMAP-S CT, and AMAP-R CT to lesion-present cases. Top row shows aligned cases and bottom row
reconstructions with the 5-mm SPECT/CT mismatch. The color scale is set to SUV 15 for all images
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Results
Patient studies with artificial lesions

Table 2 presents SUVmax and SUVmean for the artificial lesions for the four recon-

struction methods. The three Bayesian methods provide SUVmean values, which are

closer to the true SUV value (SUV = 15) than OSEM for all lesions. The improve-

ment in SUVmean accuracy is dependent on the lesion location, and interestingly,

RDP partly provides more accurate SUVmean estimates than AMAP-S in cases

where the lesion is not present in the CT. AMAP-R offers the largest improvement

independent of the lesion location. Reconstructions with lesion-present CTs per-

form considerably better than reconstructions with lesion-free CTs. Lesion-present

CTs also render AMAP-S and AMAP-R lesions into the correct shape and size as

can be seen from Figs. 2 and 3. SUVmax values overshoot the true SUV value with

all Bayesian reconstruction methods. AMAP-S and AMAP-R reconstructions with

lesion-present CTs (AMAP-S CT and AMAP-R CT) partly reduce this overshoot,

but cannot completely mitigate it. Average relative error (= 100 × (SUVmean − 15)/

15) in SUVmean for OSEM, RDP, AMAP-S, AMAP-S CT, AMAP-R, and AMAP-R

CT is − 53%, − 35%, − 40%, − 15%, − 30%, and − 10%.

The effect of SPECT/CT position mismatch is presented in Table 3. AMAP-S and

AMAP-R reconstructions are more sensitive to SPECT/CT mismatch than OSEM or

RDP. This is especially true for reconstructions with matching CT lesions. The differ-

ence generated by the 5-mm mismatch is however difficult to appreciate visually as

shown in Figs. 4 and 5.

Table 5 Lesion SUVmax and SUVmean values (mean ± standard deviation) for the clinical data

Method SUV Area

Skull Sternum Ribs Spine Pelvis

OSEM Max 13.6 ± 2.0 15.5 ± 1.0 15.0 ± 1.5 20.6 ± 2.3 17.3 ± 2.6

Mean 11.3 ± 1.5 12.7 ± 1.0 11.6 ± 0.9 16.9 ± 2.1 14.3 ± 2.3

RDP Max 16.3 ± 2.4 19.9 ± 1.4 22.6 ± 2.9 22.6 ± 2.6 19.3 ± 3.3

Mean 13.7 ± 1.6 16.3 ± 1.3 17.3 ± 1.5 19.0 ± 2.4 16.4 ± 2.8

AMAP-S Max 23.1 ± 3.0 26.1 ± 1.3 32.5 ± 2.7 28.5 ± 3.3 25.8 ± 3.4

Mean 17.6 ± 1.7 19.7 ± 1.8 22.2 ± 1.5 22.4 ± 2.2 20.4 ± 2.4

AMAP-R Max 24.6 ± 2.9 27.0 ± 1.5 35.7 ± 5.6 30.9 ± 3.7 27.0 ± 4.2

Mean 19.2 ± 1.7 20.3 ± 1.8 23.5 ± 2.1 23.9 ± 2.3 21.6 ± 2.7

Table 4 Number of lesions (nlesion) and normal uptake samples (nnormal) for the clinical patient
studies

Area nlesion nnormal

Skull 3 100

Sternum 5 95

Ribs 3 100

Spine 19 100

Pelvis 14 100
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Clinical patient studies

The number of lesions and normal uptake samples for each area is listed in Table 4.

Table 5 shows SUVs for the lesions, Table 6 for normal uptake areas, and Table 7 for

SUVR, which was defined as the ratio of lesion and normal uptake SUVs. Tables 5 and

7 show that Bayesian methods offer higher SUVs than OSEM also with clinical patient

data. For SUVmax, the RDP method gives 16 ± 9% higher values than OSEM, while

AMAP-S and AMAP-R offer increases of 36 ± 8% and 36 ± 9%, respectively. With re-

gard to SUVmean RDP, AMAP-S and AMAP-R offer increases of 18 ± 9%, 26 ± 5%, and

33 ± 5%, respectively. These differences to OSEM are statistically significant (Wilcoxon

signed rank test), with all p values less than 0.001. Figures 6 and 7 show example im-

ages of clinical patient studies. Figure 6 shows example maximum intensity projections

(MIP) of two clinical patients, while Fig. 7 shows example transversal slices of two le-

sion areas for the same two patients. AMAP-S and AMAP-R images clearly show more

anatomical detail when compared to OSEM or RDP.

Discussion
We compared Bayesian reconstruction methods utilizing anatomical prior information

from CT (AMAP-S and AMAP-R) to Bayesian reconstruction method without anatom-

ical information and OSEM. Analysis of the artificial lesion data show that Bayesian re-

construction with anatomical prior information improves the accuracy of SUVs when

compared to OSEM. We can assume that this is also true for clinical data. Both the

Table 7 SUVRmax and SUVRmean (SUVR = SUVlesion/SUVnormal uptake) (mean ± standard deviation) for
the clinical data

Method SUVR Area

Skull Sternum Ribs Spine Pelvis

OSEM Max 8.6 ± 0.9 4.1 ± 1.0 7.6 ± 1.3 4.3 ± 1.9 3.8 ± 1.5

Mean 8.8 ± 0.5 4.3 ± 1.0 7.8 ± 1.1 4.6 ± 2.2 3.9 ± 1.6

RDP Max 9.7 ± 2.1 4.8 ± 1.4 10.1 ± 2.4 4.7 ± 2.1 4.1 ± 1.6

Mean 10.0 ± 1.3 5.3 ± 1.4 10.5 ± 1.9 5.0 ± 2.4 4.3 ± 1.7

AMAP-S Max 10.0 ± 2.1 5.1 ± 1.1 10.0 ± 1.2 5.7 ± 1.9 5.2 ± 1.5

Mean 10.4 ± 1.5 5.3 ± 1.0 10.2 ± 0.8 5.8 ± 1.9 5.2 ± 1.7

AMAP-R Max 10.5 ± 2.2 5.3 ± 1.0 10.6 ± 2.0 6.3 ± 2.2 5.4 ± 1.5

Mean 11.3 ± 1.6 5.5 ± 1.1 10.5 ± 0.8 6.4 ± 2.1 5.4 ± 1.6

Table 6 Normal uptake SUVmax and SUVmean (mean ± standard deviation) for the clinical data

Method SUV Area

Skull Sternum Ribs Spine Pelvis

OSEM Max 1.6 ± 0.2 3.8 ± 0.3 2.0 ± 0.1 4.8 ± 0.4 4.6 ± 0.3

Mean 1.3 ± 0.2 3.0 ± 0.2 1.5 ± 0.1 3.7 ± 0.3 3.7 ± 0.2

RDP Max 1.7 ± 0.2 4.1 ± 0.3 2.3 ± 0.1 4.8 ± 0.4 4.8 ± 0.4

Mean 1.4 ± 0.2 3.1 ± 0.2 1.6 ± 0.1 3.8 ± 0.4 3.8 ± 0.2

AMAP-S Max 2.3 ± 0.2 5.1 ± 0.3 3.2 ± 0.3 5.0 ± 0.2 4.9 ± 0.4

Mean 1.7 ± 0.2 3.7 ± 0.3 2.2 ± 0.2 3.9 ± 0.2 3.9 ± 0.2

AMAP-R Max 2.4 ± 0.2 5.1 ± 0.3 3.4 ± 0.4 4.9 ± 0.3 5.0 ± 0.5

Mean 1.7 ± 0.2 3.7 ± 0.3 2.2 ± 0.2 3.8 ± 0.2 4.0 ± 0.2
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Fig. 7 Example transversal slices of four lesions from clinical patient studies. The red circle presents the VOI
used to analyze the studies. The color scale is set to SUV 15 for all images

Fig. 6 Anterior MIP of two clinical patient studies (first study in top row and second in the bottom). The
color scale is set to SUV 15 for all images
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artificial lesion study and clinical data agree that AMAP-R method produces the most

accurate, or highest, lesion SUVs and OSEM the least accurate or lowest (Tables 2, 5,

6, and 7). Bayesian reconstruction also increases the normal bone SUV, but still SUVRs

obtained with Bayesian reconstruction are significantly higher than OSEM’s. This indi-

cates better lesion detection ability. Interestingly, RDP partly outperforms AMAP-S in

the artificial lesion study when lesions are not present in the CT whereas AMAP-S pro-

duces higher SUVs and SUVRs with the clinical data. A possible explanation for this is

the lesion size. Artificial lesions were small, and thus, the resolution improvement pro-

vided by RDP had a bigger effect on the SUVs than in the clinical study where also lar-

ger lesions were analyzed.

AMAP-S and AMAP-R reconstructions with matching CT lesions produce the

most accurate results (Table 2) especially in terms of SUVmean. They preserve the

correct lesion size and shape (Figs. 2 and 3). The appearance of lesions is overall

quite different with AMAP-S and AMAP-R when compared to OSEM or RDP

(Figs. 6 and 7). Reconstructions with anatomical prior information force bone le-

sions in SPECT images to follow bones and not to extend outside the bone bound-

aries (Fig. 7).

Reconstruction with anatomical prior is susceptible to misalignments between the

anatomical and emission images to a greater extent than reconstruction without ana-

tomical prior, and this was also observed in our study. Table 3 shows that SPECT/CT

misalignment has a significantly bigger effect on lesion SUVs when AMAP-S or

AMAP-R is used compared to OSEM or RDP. Therefore, careful attention must be

paid to the SPECT/CT alignment when using AMAP-S and AMAP-R, more so than is

typically the case when CT is used only for attenuation and scatter compensations. For-

tunately, SPECT/CT misalignments in bone SPECT/CT studies are usually less than 5

mm [3], which according to Figs. 4 and 5 do not produce artifacts which can be visually

detected.

Bayesian reconstruction with anatomical priors has not been widely studied in SPEC

T. Bruyant et al. [15] found that anatomical information, which includes lesion bound-

aries, improves lesion detection performance. This work was based on mathematical

phantom modeling of the Ga67-isotope. The same group reported similar findings in

their more recent paper [16], which included more realistic simulations with mathem-

atical phantoms and the same isotope. Kulkarni et al. [17], on the other hand, did not

observe any benefit from use of anatomical prior information in a lesion detection task.

Anatomical priors used in [15–17] were slightly different than those used in the present

study. Priors similar to the ones used in this study have been tested in brain PET/MRI

[5, 6]. They have been shown to outperform OSEM in terms of quantitative accuracy,

which was also noticed in our study.

A large variety of reconstruction methods utilizing anatomical information have been

presented in the literature [5–7, 14–18]. They differ in terms of the energy function

and also on how the anatomical information is incorporated into the emission data re-

construction algorithm [19]. The two Bayesian algorithms utilizing anatomical informa-

tion AMAP-S and AMAP-R, used in this study, have been well studied previously.

They are relatively easy to implement and use, because they are dependent only on a

couple of free parameters (number of nearest neighbors, Bayesian weight, and γ in

RDP), which are not difficult to fine-tune. These two algorithms also do not require
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segmentation of the anatomical image, which further simplifies their use. Despite their

lower complexity, AMAP-S and AMAP-R have performed well when compared to

other anatomical priors [5–7]. These evaluations were, however, based on brain PET/

MRI, and the results may not be directly extrapolatable to bone SPECT/CT. Therefore,

testing a wider range of anatomical priors in bone SPECT/CT would be a worthwhile

topic for future research.

Bayesian reconstruction methods have been available in SPECT and PET for a long

time, but they have not found their way into clinical routine until lately, due to the

introduction of RDP in PET [8]. Bayesian reconstruction has been considered mainly as

a noise reduction technique. Images reconstructed with Bayesian methods have been

criticized as looking “patchy” [20], and post-filtered OSEM-based reconstruction has

been preferred by many. Utilization of anatomical information in Bayesian reconstruc-

tion, however, allows further resolution and quantitative accuracy improvements, which

would be challenging to achieve with OSEM alone. This might pave the way for wider

clinical adoption of Bayesian reconstruction methods in the future.

Conclusion
We have compared two Bayesian reconstruction methods utilizing anatomical informa-

tion to OSEM and Bayesian reconstruction without anatomical prior. The Bayesian

methods with anatomical prior, especially the relative difference prior-based method,

outperformed OSEM and reconstruction without anatomical prior in terms of quantita-

tive accuracy. Therefore, Bayesian reconstruction with anatomical prior could be a suit-

able alternative for bone SPECT/CT reconstruction.
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