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Abstract

Purpose: Performance standards for quantitative 18F-FDG PET/CT studies are
provided by the EANM Research Ltd. (EARL) to enable comparability of quantitative
PET in multicentre studies. Yet, such specifications are not available for 68Ga.
Therefore, our aim was to evaluate 68Ga-PET/CT quantification variability in a
multicentre setting.

Methods: A survey across Dutch hospitals was performed to evaluate differences in
clinical 68Ga PET/CT study protocols. 68Ga and 18F phantom acquisitions were performed
by 8 centres with 13 different PET/CT systems according to EARL protocol. The
cylindrical phantom and NEMA image quality (IQ) phantom were used to assess
image noise and to identify recovery coefficients (RCs) for quantitative analysis.
Both phantoms were used to evaluate cross-calibration between the PET/CT
system and local dose calibrator.

Results: The survey across Dutch hospitals showed a large variation in clinical
68Ga PET/CT acquisition and reconstruction protocols. 68Ga PET/CT image noise
was below 10%. Cross-calibration was within 10% deviation, except for one system to
overestimate 18F and two systems to underestimate the 68Ga activity concentration.
RC-curves for 18F and 68Ga were within and on the lower limit of current EARL
standards, respectively. After correction for local 68Ga/18F cross-calibration, mean 68Ga
performance was 5% below mean EARL performance specifications.

Conclusions: 68Ga PET/CT quantification performs on the lower limits of the current
EARL RC standards for 18F. Correction for local 68Ga/18F cross-calibration mismatch is
advised, while maintaining the EARL reconstruction protocol thereby avoiding multiple
EARL protocols.
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Introduction
The use of 68Gallium (68Ga)-labelled peptides for PET imaging has increased in the

past years with the market authorisation for 68Ga/68Ge-generators. The main applica-

tions include imaging of neuroendocrine tumours using somatostatin analogues and

prostate cancer imaging using the prostate-specific membrane antigen [1, 2]. Though

the interpretation of 68Ga-PET/CT is mainly based on visual assessment, quantitative

measures should be used to evaluate or predict therapy response.

Previous experience with 18Fluorine (18F) expressed the need for standardisation of

acquisition and reconstruction protocols in order to retrieve comparable quantitative
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imaging data. The EANM Research Ltd. (EARL) provides an accreditation programme

to ensure PET/CT system harmonisation in multicentre 18F-FDG PET/CT studies [3].

This approach is based on standardizing the recovery coefficient (RC) for six phantom

spheres with different sizes, thereby minimising inter- and intra-institute variability. For

other isotopes, quantification should be evaluated separately as isotope characteristics

can result in different image quality and quantification accuracy. For example, Makris

et al. studied 89Zirconium (89Zr) PET and showed the need for a specific harmonisation

step including post-reconstruction smoothing to enable comparable quantitative measures

among PET/CT systems [4]. In contrast, a recent 18F performance study showed that post-

reconstruction filtering is not required for state-of-the-art PET/CT systems in relation to

this isotope [5]. However, for 68Ga, such studies are not yet available.

In general, PET quantification accuracy depends on reconstructions, noise, and

spatial resolution [6]. For 68Ga, the lower positron yield (89%), long positron range due

to high initial positron energy (max 1.90 MeV, mean 0.84 MeV), short physical half-life

(68 min) and small prompt gamma branching (3.2%, 1.077 MeV) may result in an inferior

image quality compared to 18F [7]. Therefore, the aim of this study was to assess
68Ga-PET/CT quantification accuracy and reproducibility in a multicentre setting

based on EARL standards.

Materials and methods
Clinical protocol evaluation

A survey among eight Dutch hospitals was performed to evaluate factors that affect

quantification and to assess variability in clinical 68Ga-PET/CT acquisition protocols.

Questions focussed on administered activity, PET/CT system, and acquisition- and

reconstruction settings.

18F and 68Ga PET/CT phantom acquisitions

Eight European hospitals with 13 PET/CT systems performed phantom acquisitions, of

which 11 systems were EARL accredited, but all had recoveries within the published

EARL specifications. Six Biograph mCT systems (Siemens Healthineers, Erlangen,

Germany), three Discovery systems (GE Healthcare, Milwaukee, WI, USA) and four

Philips systems (Philips Healthcare, Eindhoven, The Netherlands) were included.
18F and 68Ga acquisitions were performed at the end of 2017 and beginning of 2018

with two phantoms which were prepared using a standardised procedure by experi-

enced staff from each centre. First, the NEMA PET cylindrical phantom was filled with

6–13 kBq/ml of 18F and 68Ga. Second, the NEMA NU-2 Image Quality (IQ) phantom

was imaged using a 1:10 ratio with 2.0 and 20.0 kBq/ml of 18F and 68Ga in background

compartment and spheres (37, 28, 21, 17, 13, and 10 mm diameter), respectively.

Acquisitions of both phantoms were performed with minimal two bed positions and at

least 5 min per bed position. Images were reconstructed according to local settings, in-

cluding corrections for decay, randoms, dead time, CT-based attenuation, and scatter.

Data analysis

Image noise was characterized for 68Ga only using the coefficient of variation

(CoV) along a 30 × 30 × 160 mm bar in the centre of the cylindrical phantom.

Huizing et al. EJNMMI Physics            (2019) 6:19 Page 2 of 9



Image quality was based on the RC of all six spheres, analysed by the EARL semi-

automatic tool [5, 8]. The RCmax, RCpeak and RCmean were determined as a func-

tion of sphere size based on the maximum voxel value (RCmax), the 1.0 cm3 vol-

ume with the maximised average value (RCpeak) and the mean value of 50%

isocontour of the maximum voxel value (RCmean) with contrast correction, respect-

ively. A spherical volume-of-interest (VOI) of ~ 300 ml in the centre of the cylin-

drical phantom and ten VOIs in the background of the IQ phantom were used for

local PET and dose calibrator cross-calibration. IQ phantom background volume

was 9400 ml, unless specified otherwise by the institute.

Results
Eight Dutch hospitals provided their clinical acquisition- and reconstruction protocols

(Table 1), which showed to be different.

An overview of all PET/CT systems and reconstruction settings is provided in

Table 2. For local cross-calibration, most systems performed within 10% deviation

of the dose calibrator (Fig. 1). The median [IQR] ratio was 0.93 [0.91–0.98] and

Table 1 Acquisition and reconstruction settings of clinical 68Ga PET/CT imaging for prostate cancer
and neuroendocrine tumours. One hospital per row is presented

Site PET/CT system Reconstruction
settings

Prostate cancer Neuroendocrine tumours

Minutes per bed
position

Injected
activity

Minutes per bed
position

Injected
activity

A Philips Gemini
TOF 64

BLOB-OS-TF 4 mm
3i33ss

Pelvis: 4 Body: 3 1.5 MBq/kg
(range 50–
250 MBq)

< 90 kg:
2.5

> 90 kg:
3.5

2.6 MBq/kg
(range 100–
160 MBq)

B Philips Gemini
TF and XL

Astonish iterative
reconstruction

4 2.0 MBq/kg 4 2.6 MBq/kg

C Siemens mCT
Flow

TrueX + TOF
2i21ss
Gaussian 5mm

1.5 mm/s CTM 2.0 MBq/kg 2.5 100 MBq

D Philips Ingenuity
TF

BLOB-OS-TF 4 mm
3i33ss
2 mm smooth B
filter

NA 4 < 90 kg: 150
MBq
> 90 kg: 200
MBq

E Siemens mCT
TrueV

OSEM3D, TOF +
PSF
2i21ss
Gaussian 5 mm

4 1.5 MBq/kg
(min 80
MBq)

NA

F Philips Gemini
TOF

BLOB-OS-TF 4 mm
3i33ss

Pelvis: 3 Body: 2 100 MBq 2.5 100 MBq

G Siemens mCT TrueX + TOF
4i21ss
Gaussian 5 mm

3 1.5 MBq/kg 3 1.5 MBq/kg

H Siemens mCT40
and mCT128

TrueX + TOF
3i21ss
Gaussian 3 mm

< 70 kg:
1.5
MBq/kg:
3
1.13
MBq/ml:
4
0.9
MBq/ml:
5

> 70 kg:
1.5
MBq/
kg: 4
1.2
MBq/
ml: 5
1 MBq/
ml: 6

1.5 MBq/kg < 70 kg:
1.5
MBq/kg:
3
1.13
MBq/ml:
4
0.9
MBq/ml:
5

> 70 kg:
1.5
MBq/
kg: 4
1.2
MBq/
ml: 5
1 MBq/
ml: 6

1.5 MBq/kg

NA = not applicable, i = iteration, ss = subsets, TOF = time-of-flight, PSF = point-spread-function, CTM = continuous
table motion
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0.99 [0.97–1.01] for 68Ga and 18F, respectively. Two systems showed identical cali-

bration accuracy for both isotopes (system 2 and 11), all other show a consistent

underestimation for 68Ga. The 68Ga CoV in the centre of the cylindrical phantom

was below 10% (Fig. 2).

The 18F RC-curves of all PET/CT systems satisfied the current EARL specifications

(Fig. 3a–c). However, for 68Ga the RC-curves were located around the lower limit of

the EARL specifications (Figure 3d-f). In addition, 68Ga showed a reduced mean recov-

ery and larger variation between PET/CT systems compared to the 18F. The variation

for all spheres of the RCmean, RCmax and RCpeak for 18F was 6%, 6% and 8%, respect-

ively. For 68Ga, the mean range was 11%, 11% and 15% (largest variation was 19%). Fur-

thermore, the mean RCmax and RCmean were both 11% lower compared to the mean

EARL specifications for 18F. The mean 68Ga/18F calibration difference within one scan-

ner was 7% (range 1–13%).

After correction for the local difference between 68Ga/18F cross-calibration (Fig. 1),

the 68Ga RC curve was within EARL limits for all but two scanners (Figure 4). The

mean 68Ga RCmax and RCmean were accordingly 5% lower compared to mean EARL

standards.

Table 2 PET/CT reconstruction settings for phantom measurements

No. Manufacturer PET/CT system Reconstruction Iterations Subsets Filter
size
(mm)

Matrix Voxel
size
(mm)

Slice
thickness
(mm)

1 Siemens Biograph mCT
40 (1)

PFS + TOF 3 21 7.00 256 ×
256

3.18 3

2 Siemens Biograph mCT
40 (2)

PFS + TOF 3 21 7.00 256 ×
256

3.18 3

3 Siemens mCT 123 X3R Back
projection

– – 5.00 200 ×
200

4.07 5

4 Siemens Biograph mCT
Flow 20

PFS + TOF 2 21 5.00 200 ×
200

4.07 2.027

5 GE VCT 3D IR† NS NS NS 128 ×
128

5.47 3.27

6 GE Discovery D690 VPFXS* 4 8 NS 192 ×
192

3.65 3.27

7 Philips Gemini TOF BLOB-OS-TF 3 31 NS 144 ×
144

4 4

8 Philips Gemini TOF
BigBore

BLOB-OS-TF 3 31 NS 144 ×
144

4 4

9 Philips Ingenuity BLOB-OS-TF 3 31 NS 169 ×
169

4 4

10 Philips Vereos BLOB-OS-TF 3 15 3.00 144 ×
144

4 4

11 GE Discovery 710 VPFX§ NS NS NS 256 ×
256

2.73 3.27

12 Siemens mCT 40 PFS + TOF 3 21 6.50 256 ×
256

3.18 2

13 Siemens mCT 64 PFS + TOF 3 21 6.50 256 ×
256

3.18 2

TOF or TF = time-of-flight, PSF = point-spread-function, NS = not specified
†3D OSEM
*3D OSEM with TOF and PSF
§3D OSEM with TOF
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Discussion
In this study, quantitative 68Ga PET/CT performance was evaluated in a multicentre

setting. In a survey across Dutch hospitals, differences in clinical acquisition and recon-

struction protocols were observed, underlining the need for clinical harmonisation.

Although 11 out of the 13 PET/CT systems were EARL accredited, all systems showed

1 2 3 4 12 13 5 6 11 7 8 9 10
0.8

0.9

1.0

1.1

1.2
R

at
io

P
E

T
/d

o
se

ca
lib

ra
to

r
68Ga

18F

Siemens GE Philips
Fig. 1 Accuracy of the measured activity by the PET/CT system and local dose calibrator, based on the
average between the cylindrical and IQ phantom. Numbers correspond to Table 2
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Fig. 2 Noise across the cylindrical phantom filled with 68Ga, visualized as coefficient of variation (CoV)
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18F recovery performance within EARL standards. For this reason, all systems were

included for 68Ga evaluation.

The absence of local and central dose calibrator cross-calibration for 68Ga is a

limitation in this study. This would increase local calibrator harmonisation and im-

proves PET/CT comparability across sites. Most institutes use a long-lived (137Cea-

sium) source to assess constancy and accuracy of the dose calibrator on a daily

basis, and perform actual cross-calibration with the PET/CT system at least once a

year using 18F. Still, in all but three PET/CT systems the measured 18F and 68Ga

activity concentrations were within 10% deviation from the local dose calibrator.

High energy prompt gammas emitted by 68Ga are likely detected by the dose cali-

brator causing a disconcordance, yet in fewer extent by the PET system. Because of

this, the dose calibrator overestimates 68Ga-activity, and a persistent underestimation for
68Ga compared to 18F is seen in Fig. 1. A recent study by Bailey et al. also showed an

underestimation of ± 15% for 68Ga, which was primarily related to an inaccurate scaling

factor for the dose calibrator of a specific vendor [9]. To avoid these issues, they calibrated

the dose calibrator towards the PET, after verifying that the scanner has a good response

for 18F. These results are also supported by the fact that on specific Siemens scanners

(scanners 1 and 2), a traceable 68Germanium (68Ge) source was used to verify absolute

PET response independent of a dose calibrator. When imaging the 68Ge-source, the PET/

Fig. 3 RC for 18F with the current EARL standards and RC of 68Ga. Solid lines: maximum and minimum
values according to EARL limits as applicable before 2019

Fig. 4 68Ga RC-curves corrected for the 18F/68Ga calibration mismatch according to local cross-calibration.
Solid lines: maximum and minimum values according to EARL limits as applicable before 2019
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CT system did not show the same offset as was observed when imaging the 68Ga cross-

calibration phantom (roughly a deviation of < 1% vs. 6% and 7%, respectively). For the

sake of simplicity, we would suggest to correct the RC curve for the local 68Ga/18F dis-

crepancy, as after correction for this 68Ga/18F difference (Fig. 4) all but two scanners were

within EARL specifications. This correction has to be performed offline in multicentre

quantitative studies. The 68Ga used for this study was produced either locally or by a

pharmaceutical institution and was therefore not traceable to a central dose calibrator.

We expect that the response between the dose calibrator and the PET-system could be

uniform in future clinical 68Ga-PET/CT studies if a traceable (NIST) source is used to

harmonise protocols between centres.
68Ga image noise was below 10% for all PET/CT systems which is in concordance

with the EANM/EARL guidelines [3, 8]. The RC variation is larger for 68Ga compared

to 18F (Fig. 3). However, 68Ga performance nearly reached EARL performance specifica-

tions after correction for the local 68Ga/18F ratio. Surprisingly, the RCpeak variation (8%

and 15%) is larger in contrast to RCmax and RCmean (both 6% and 11%) for both 18F

and 68Ga, respectively. The study of Kaalep et al. showed the opposite result in RCpeak

variation [5]. The RCpeak is expected to be less prone to noise compared to RCmax;

therefore, it was expected to be more comparable over all PET-systems. The difference

could be explained by the fact that the standard deviation of RCmax and RCpeak are

similar: 8.4% and 8.6% for 68Ga and 4.8% and 5.0% for 18F, respectively. Yet, the mean

RCpeak value is lower; therefore, resulting in a higher CoV. Next to that, the larger 68Ga

variation in the RC-curves compared to 18F is likely related to the higher positron

energy of 68Ga and thereby revealing a lower signal-to-noise ratio. This effect is

enhanced by post-reconstruction filtering. Finally, previous single-centre studies show
68Ga RC-curves similar [10] or somewhat better due to point spread function recon-

struction [11] as observed in the current study. The EARL limits as applicable before

2019 (EARL1) are shown in Figs. 3 and 4, as all acquisitions were acquired before 2019

and therefore site-specific acquisition and reconstruction protocols are designed to

meet the EARL1 limits. RCpeak specifications are not available for EARL1 and are there-

fore not shown in Figs. 3 and 4. EARL2 limits (applicable from 2019) for RCmax and

RCmean increased with ~ 25% in comparison to EARL1. We expect that the gap

between 18F and 68Ga recoveries will further increase with these new limits, as already

for EARL1 not all scanners agreed to EARL1 limits after 68Ga/18F correction (Fig. 4).

Based on the results, we propose to correct 68Ga recovery towards the 18F recovery to

correct for the current dose calibrator deviation. We suggest, therefore, to apply the

EARL acquisition and reconstruction protocol and to correct for 68Ga/18F cross-

calibration mismatch. One can assume that 68Ga recovery is steady if 18F specifications

of a PET-system are stable during regular yearly assessment. Unless the acquisition and

reconstruction protocol is changed or major maintenance is performed to the PET/CT-

system, we recommend to perform additional 68Ga IQ acquisitions only when regular
18F evaluations are deviating. An EARL accreditation programme for 68Ga can thus be

based on the 18F accreditation but extended with a cross-calibration verification

between 68Ga measured by the dose calibrator and PET/CT system only, similarly as

proposed by Kaalep et al. for 89Zr [12]. In addition, frequent 18F cross-calibration

acquisitions using the cylindrical phantom are advised, especially after PET/CT system

maintenance.
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Conclusion
This evaluation of multicentre 68Ga PET/CT performance showed that 68Ga RCs

perform at the lower limits of current 18F EARL standards. For practical reasons, we

recommend to use the 18F EARL approved reconstruction settings and to correct for
68Ga/18F calibration mismatch based on local cross-calibration. Finally, we suggest to

evaluate 68Ga PET/CT recovery performance once and repeat only when 18F specifica-

tions are changed.
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