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Abstract

Background: To develop and evaluate the feasibility of a data-driven deep learning
approach (deepAC) for positron-emission tomography (PET) image attenuation
correction without anatomical imaging. A PET attenuation correction pipeline was
developed utilizing deep learning to generate continuously valued pseudo-computed
tomography (CT) images from uncorrected 18F-fluorodeoxyglucose (18F-FDG) PET
images. A deep convolutional encoder-decoder network was trained to identify
tissue contrast in volumetric uncorrected PET images co-registered to CT data.
A set of 100 retrospective 3D FDG PET head images was used to train the
model. The model was evaluated in another 28 patients by comparing the
generated pseudo-CT to the acquired CT using Dice coefficient and mean
absolute error (MAE) and finally by comparing reconstructed PET images using the
pseudo-CT and acquired CT for attenuation correction. Paired-sample t tests were
used for statistical analysis to compare PET reconstruction error using deepAC
with CT-based attenuation correction.

Results: deepAC produced pseudo-CTs with Dice coefficients of 0.80 ± 0.02 for air,
0.94 ± 0.01 for soft tissue, and 0.75 ± 0.03 for bone and MAE of 111 ± 16 HU
relative to the PET/CT dataset. deepAC provides quantitatively accurate 18F-FDG
PET results with average errors of less than 1% in most brain regions.

Conclusions: We have developed an automated approach (deepAC) that allows
generation of a continuously valued pseudo-CT from a single 18F-FDG non-
attenuation-corrected (NAC) PET image and evaluated it in PET/CT brain imaging.
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Background
Positron-emission tomography (PET) is a non-invasive imaging modality that provides dir-

ect imaging of biomarkers for physiology through the use of radiolabeled molecules, such

as 18F-fluorodeoxyglucose (FDG) to assess glucose metabolism. PET activity is observed by

detecting pairs of coincident gamma rays emitted from the PET tracer, sorted into sino-

grams, and reconstructed into a volumetric image. Knowledge of the tissue-dependent at-

tenuation (typically Compton scatter) that gamma rays undergo is crucial to achieve

quantitatively accurate PET reconstruction. In a typical PET scanner, the attenuation map

(or μ-map) is obtained by performing additional anatomic imaging, which typically in-

creases patient ionizing radiation dose. In a combined PET/CT system, an acquired CT

image is used to generate an attenuation map for 511 keV photons by simple piecewise
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scaling of a CT image [1]. However, the attenuation map is estimated using a single snap-

shot in time which does not reflect misregistration due to patient motion between the ac-

quisition of the CT and PET scans. In simultaneous PET/MR systems, estimation of the

required attenuation map is based on MR images (which does not increase patient ionizing

radiation dose) and is particularly challenging because the bone, the tissue with the largest

attenuation coefficient, is not visible with positive contrast under typical MR acquisitions.

Consequently, the bone is often ignored or estimated using atlas registration methods [2].

Specialized MRI acquisitions using a short echo time (STE), ultrashort echo time (UTE), or

zero echo time (ZTE) can be implemented to allow the measurement of the rapidly decay-

ing MR signal in the bone tissue to estimate the bone [3–6]. Unfortunately, UTE and ZTE

acquisitions provide little clinical value compared to the conventional diagnostic imaging se-

quences. Additionally, even with advanced acquisitions, bony structure and air often remain

difficult to distinguish, and errors remain in attenuation calculation [3, 7, 8].

Machine learning approaches have previously been proposed to estimate attenuation

maps. A few pilot studies utilizing neural network methods have shown promising re-

sults in PET/MR imaging [9]. These studies typically rely on the inputs of T1-weighted

MR images [10, 11], ultrashort-echo time MR images and transmission images [12] to

estimate pseudo-CTs which can be applied to PET attenuation correction. More re-

cently, deep learning approaches using Convolutional Neural Networks (CNN) have

been applied to medical imaging with successful implementations across a diverse

range of applications [13]. Deep learning methods are more advanced forms of neural

networks and utilizing many levels of network structures capable of learning image fea-

tures by a series of image convolution processes [14]. One recent study used deep

learning to generate discrete pseudo-CTs for PET/MR attenuation correction using a

single T1-weighted head image, which significantly reduced PET error in an evaluation

dataset of ten brain images in comparison with vendor-provided segmentation- and

atlas-based methods [15]. However, in all previous studies, besides PET data, additional

acquisitions of either MR images or transmission images were required inputs. In this

study, we propose a novel automated PET image attenuation correction approach, dee-

pAC, that allows generation of a continuously valued pseudo-CT using only a

non-attenuation-corrected (NAC) PET image as input. To the best of our knowledge,

this proposed method is the first pilot study performing PET attenuation correction

utilizing a self-regularized approach. The feasibility of this new approach is demon-

strated in the human brain utilizing 18F-FDG PET/CT datasets and is compared to re-

construction utilizing the acquired CT. Given the favorable results of deepAC, we

expect deep learning-based approaches to have a substantial impact to maintain accur-

ate PET reconstruction while reducing the ionizing radiation dose and increasing the

resilience to subject motion.

Methods
Convolutional encoder-decoder architecture

The key component of our proposed method is a deep convolutional encoder-decoder

(CED) network, which is capable of mapping the NAC PET image into a pixel-wise con-

tinuously valued pseudo-CT image. The CED framework was modified based on the net-

work structure used in a previous study for generating discrete three-class pseudo-CT in
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PET/MR attenuation correction [15]. A schematic demonstration of this deep learning net-

work is shown in Fig. 1. The network features a connected encoder network and a decoder

network. The encoder is designed to compress input image data while detecting robust and

spatially invariant features. The Visual Geometry Group 16 (VGG16) network [16] was used

as an encoder because this network has been proven to be efficient in capturing image fea-

tures in object recognition and to be effective in CED-based medical image applications [7,

15, 17, 18]. Each unit layer in the VGG16 encoder consists of 2D convolution layer with a

set of 2D filters, batch normalization (BN) [19], rectified linear unit (ReLU) activation [20],

and followed by a max-pooling for the reduction of data dimensions. An increased number

of 2D filters from 64 to 512 were generated by convolution layers from the first unit layer to

the last in the encoder network to efficiently extract the input image features. Batch

normalization was used to reduce the internal image covariate shift during network training

so as to increase the training efficiency [19]. The ReLU activation function was used to per-

form non-linear transformation of the input image features so as to increase the network

capability for learning a complex information. Max-pooling used a 2 × 2 window and stride

2 which leads to sub-sampled feature maps with a size reduction factor of 2. This unit layer

was repeated 13 times in the VGG16 configuration to achieve sufficient data compression.

To reconstruct pixel-wise continuously valued CT images, a decoder network is ap-

plied directly after the encoder network. This decoder network is the reverse process of

the encoder and consists of mirrored layers from the VGG16 network. The max-pool-

ing layer in the decoder is replaced by an un-pooling layer (i.e., upsampling) where the

image features were upsampled using bilinear interpolation. At the end of the decoder

network, an additional 2D convolutional layer with one 2D filter was added to

synthesize the output pseudo-CT images based on the decoded image features from

the upstream decoder network.

In contrast to the network used in pseudo-CT generation in Reference [15], the pro-

posed network also features shortcut connections (SC) which are used to forwardly

pass the image features from an encoder network to a decoder network. As shown in

the current study, synthesis of the continuously valued CT images requires preserva-

tion of additional rich image features compared to the discretely valued CT images in

Reference [15], for which the added shortcut connections are valuable [21, 22]. Since it

Fig. 1 Schematic illustration of convolutional encoder-decoder in this study. This network consists of
multiple symmetrical shortcut connection (SC) from the start layer (SL) in the encoder to the insert layer (IL)
in the decoder. The insertion of SC follows the strategy of the deep residual network described in
Reference [22]
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is well known that training a deep network is challenging due to the vanishing gradient

problem [21], shortcut connections are helpful for enabling efficient training of net-

works with a large number of layers and complex structure. As shown in Fig. 1, the

shortcut connections occur symmetrically in multiple layers in the networks and link

feature maps by adding ones from the encoder network to the ones in the decoder net-

work element-wise. A total of four shortcut connections were created between the net-

work layers, and one additional shortcut connection was also generated from the input

image directly to the output image. For each shortcut connection, the layer insertion

(Fig. 1) to transfer feature maps occurred prior to the BN and ReLU activation in the

unit layer of the decoder. This strategy was also described as the full pre-activation ver-

sion of deep residual network design [22].

Proposed PET processing pipeline

The proposed processing pipeline consists of two independent phases for training retro-

spective data and reconstructing new data, respectively. In the training phase (Fig. 2), the

training data for the proposed CED network consists of NAC PET images as input and ref-

erence non-contrast-enhanced CT data. For each training dataset, NAC PET and

co-registered CT images were first offset to positive values and then scaled by pixel intensity

of 6000 Bq/ml and 2000 Hounsfield unit (HU), respectively, to ensure a similar dynamic

range. 3D NAC PET and CT images were cropped to enclose the image object with a min-

imally sized bounding box to remove redundant background prior to deep learning training.

2D axial slices from the 3D volumetric NAC and CT images were used as inputs to the

deep learning network. All 2D input images were first transformed pixel-wise using a Soft-

sign activation function in order to maintain a compact dynamic range and resampled to a

matrix size of 200 × 180 using bilinear interpolation before being used as input to the CED.

The encoder and decoder network weights were initialized using a normal distribution cen-

tered on 0 with a standard deviation varying according to the number of input weights. This

initialization scheme was described in Reference [23]. Network updating used a

gradient-based optimization algorithm (ADAM) [24] with a fixed and empirically selected

learning rate of 0.001. The CED network iteratively estimated continuous CT images and

Fig. 2 Schematic illustration of deepAC. The process consists of a training phase and a reconstruction
phase. The training phase is first performed with NAC and co-registered CT data, after which the well-
trained network is fixed and ready for generating pseudo-CTs for new PET data in the reconstruction phase
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compared them to the reference real CT data. The data consistency between estimated and

real CT image was ensured by using mean squared error (MSE) as an image loss objective

function where the loss was calculated in a mini-batch of 12 images in each iteration given

our current hardware setup. The network training was performed for 20,000 iterations

which corresponded to 50 epochs for our training data to achieve training loss convergence.

Once the training phase was complete, the CED network at the epoch with the least

image loss was fixed and was used for generating continuous pseudo-CT for new PET

data, which were subsequently used for PET reconstruction (Fig. 2).

In this study, the proposed framework was implemented in a hybrid computing envir-

onment involving Python (version 2.7, Python Software Foundation, Wilmington, DE,

USA) and MATLAB (version 2013a, MathWorks, Natick, MA, USA). The image pro-

cessing and analysis steps were performed in MATLAB. The CED network was coded

using the Keras package with Tensorflow deep learning libraries as the computing

backend [25].

Image datasets for training and evaluation

Our study was performed in compliance with the Health Insurance Portability and

Accountability Act (HIPAA) regulations and with approval from our Institutional Review

Board (IRB). Data collection for training and evaluation of the proposed deepAC method

was performed utilizing an IRB-approved protocol for retrospective analysis. Subject eligibil-

ity criteria included any subjects who underwent a whole-body 18F-FDG PET and a

non-contrast CT scan on the Discovery PET/CT 710 scanner (GE Healthcare, Waukesha,

WI, USA) at our institution in 2016. Images from the first 140 consecutive patients meeting

our eligibility criteria were retrieved from PACS in chronological order. Subjects were ex-

cluded from the training and evaluation if visual inspection revealed a spatial mismatch be-

tween NAC PET and CT images due to subject motion, which resulted in the removal of 12

subjects from the dataset. The dataset included both arms-up and arms-down positioning,

with no discrimination upon either type of positioning. Subjects used for training and test-

ing had a median age of 65 (range, 19–92) with 52 males and 76 females. Per our institu-

tion’s FDG PET protocol, subjects fasted for at least 6 h before the exam, had blood glucose

less than 200 mg/dl, and were injected with 0.14 mCi/kg of tracer. Scanning began 56.5 ±

2.5 min after injection of FDG, with 3 min PET acquisitions per bed position. CT images

were obtained with the following acquisition/reconstruction settings: 1.37 mm transaxial

voxel dimensions, 5 mm slice thicknesses with 3.27 mm interslice spacing, 140 kVp,

automatic exposure control with GE noise index of 25, and 0.52 helical pitch. NAC PET

images were reconstructed offline (PET Toolbox, GE Healthcare) without attenuation

correction and without time-of-flight, using the following parameters: 256 × 256 matrix,

700 × 700 mm2 field of view, OSEM reconstruction algorithm, 24 iterations, 3 subsets, Shar-

pIR, and 4-mm post filter.

For training and evaluation, image data from the head was selectively used from each

whole-body PET/CT dataset. The CED network was trained using 100 randomly selected

subjects and evaluated in the remaining 28 subjects. All training and testing were performed

on a desktop computer running a 64-bit Linux operating system with an Intel Xeon W3520

quad-core CPU, 12 GB DDR3 RAM, and a Nvidia Quadro K4200 graphic card (1344

CUDA cores, 4 GB GDDR5 RAM).
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Pseudo CT generation and evaluation

After a NAC PET image is fed into the network, the output of the CED is scaled back to

HUs. Analysis of pseudo-CT accuracy was performed on 28 subjects not included in the

training phase of the CED network. Pixel-wise Dice coefficient, a similarity measure ran-

ging from 0 to 1 that describes the overlap between two labels, was calculated for air, soft

tissue, and bone. For calculation of Dice coefficients, the continuous pseudo-CT and real

CT images were discretized by thresholding as follows: bone if HU > 300, air if HU < −
400, otherwise soft tissue. Additionally, the mean absolute error (MAE) between the gen-

erated pseudo-CT and real CT images was evaluated in each subject. Statistical analysis

was performed using MATLAB.

PET image reconstruction

Offline PET reconstruction (PET Toolbox, GE Healthcare) was performed with a

pseudo-CT image generated by deepAC and the acquired CT image for attenuation

correction. PET reconstruction parameters were 256 × 256 matrix, 700 × 700 mm2 field

of view, TOF-OSEM reconstruction algorithm, 24 iterations, 3 subsets, SharpIR,

model-based scatter correction, and 4-mm post filter.

Evaluation of PET quantification

Evaluation of reconstructed PET image quality in deepAC was performed with the 28

testing subjects. PET images reconstructed using the deepAC-based attenuation correc-

tion were compared to those reconstructed using the acquired CT-based attenuation

correction (CTAC). Pixel-wise error maps were obtained using the percentage error:

Err ¼ IdeepAC−ICTAC
ICTAC

� 100% ð1Þ

where IdeepAC and ICTAC are the PET image intensity (Bq/ml) from deepAC and CTAC,

respectively. We also calculated the absolute value of Err as the absolute percentage

error. Region of interest (ROI) analysis was performed using the IBASPM parcellation

software with a PET brain atlas to compute ROI-level errors in 21 brain regions [26].

The data normality assumption was checked, and paired-sample t tests were used to

perform the pairwise comparison for the PET activity in these brain regions using dee-

pAC and CTAC. Statistical analysis was performed using MATLAB and R (R Develop-

ment Core Team) with statistical significance defined as a p < 0.05 with Bonferroni

correction for minimizing type-I error (equivalent to uncorrected p < 0.0024).

Results
An example of an acquired NAC PET image, deepAC pseudo-CT and real CT for a

48-year-old female subject is shown in Fig. 3. As shown in this figure, deepAC was able

to identify the air, skull, and soft tissue in the NAC PET images and synthesize continu-

ous CT values for distinct tissue types. The total training stage required approximately

30 h, whereas generating a single pseudo-CT output using the trained model required

approximately 0.5 min. The training loss curve is shown in Fig. 3. The curve indicated

a successful training convergence where the training loss gradually decreased prior to

40 epochs and reached a plateau after 40 epochs. Dice coefficients for the evaluation

subset (n = 28) comparing the pseudo-CT to the real CT were high for air, 0.80 ± 0.02;
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soft tissue, 0.94 ± 0.01; and bone, 0.75 ± 0.03. The MAE between pseudo-CT and real

CT was 111 ± 16 HU for all subjects with a range between 88 and 157 HU.

Another example of an acquired NAC PET image, deepAC pseudo-CT and real CT

are shown in Fig. 4 for a non-compliant patient who exhibited significant movement

between the PET and CT scans. This 52-year-old male subject is one of the cases ex-

cluded from training and PET evaluation. The misregistration can be clearly identified

between NAC PET and real CT images in the axial and sagittal slices (red arrow) at the

same image location. In contrast, the pseudo-CT generated from deepAC is free from

misregistration with respect to the NAC PET data.

Figure 5 shows the reconstructed PET image for the subject of Fig. 3, utilizing the

pseudo- and real CT for attenuation correction, respectively, as well as pixel-wise rela-

tive difference images between these. As seen in Fig. 5, deepAC results in PET error of

less than 1% in most of the brain regions.

A challenging case for deepAC is shown in Fig. 6 for an 80-year-old female with a

significant right and frontal skull abnormality. The generated pseudo-CT was able to

predict the parts of missing skull in the forehead, indicated by the red arrows in the

real CT image. The average reconstructed PET error for this subject in all brain pixels

is 0.87%. Despite significant skull abnormalities relative to typical patients, PET recon-

struction error was maintained at a low level utilizing deepAC.

Another case for deepAC is shown in Fig. 7 for a 59-year-old male with a brain

tumor, indicated by the red arrow in the reconstructed PET image using CTAC. The

average reconstructed PET error for this subject in all brain pixels is 0.52%. Despite the

presence of brain tumor which was rare in our dataset, deepAC PET reconstruction

Fig. 3 Example of pseudo-CT image from deepAC. Multiple axial slices from a the input NAC PET image, b
the pseudo-CT generated using deepAC, and c the acquired CT. The 3D surface and bone model indicate a
high similarity between the acquired CT and pseudo-CT. The surface and bone were rendered using a HU
value of − 400 and 300, respectively. The training loss curve is shown in d
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was able to correctly identify tumor region and the global error was maintained at a

low level.

Table 1 provides an average error, standard deviation, and p values from paired t tests

within different brain regions across all 28 subjects. Reconstructed PET error on the

ROI level showed that deepAC provided average PET errors below 1% for 15 out of 21

regions and below 2% for all regions tested. Paired t tests showed that for 14 out of 21

ROIs, mean PET activity was not significantly different (p > 0.05) between the deepAC

approach and the reference PET (CTAC) image. For the ROIs that were significantly

different, the average signed differences in PET values were small, which included left

parietal lobe (p = 0.01, average difference = − 1.7%), right parietal lobe (p = 0.005, aver-

age difference = − 1.92%), left occipital lobe (p = 0.01, average difference = − 1.78%),

right occipital lobe (p = 0.004, average difference = − 1.92%), right putamen (p = 0.009,

difference = − 0.74%), right globus pallidus (p = 0.013, difference = − 0.56%), and left cin-

gulate region (p = 0.049, difference = − 0.5%). Note that when corrected for multiple

comparisons using a Bonferroni corrected significance level (p < 0.0024), none of the

region-wise differences remained significant.

Discussion
In this study, we demonstrated the feasibility of a new approach utilizing only 18F-FDG

NAC PET images input into a deep learning model trained with PET/CT data to

Fig. 4 Example of pseudo-CT image from a non-compliant subject. Axial and sagittal slices from a the input
NAC PET image, b the pseudo-CT generated using deepAC, and c the acquired CT. Note that there is a
noticeable movement between PET and CT scans (red arrow). The generated pseudo-CT from deepAC is
free from subject motion since it is directly obtained from PET data
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generate pseudo-CT images that can be used to perform quantitatively accurate

PET-only imaging. For all ROIs tested, the percentage error in PET reconstruction was

less than 2% on average, with the vast majority less than 1% on average. For individual

subject data, the maximal percent error in any single region was 6.7%. When compared

with CTAC reconstruction, this provided a statistically significant different quantitative

PET result in only seven of the regions studied (yet still with an error of less than 2%).

After correcting for multiple comparisons (Bonferroni correction), these differences were

no longer statistically significant. Given the large training size of 100 subjects, these find-

ings suggest that deep learning approaches can be leveraged to provide quantitatively

accurate PET without the acquisition of a CT image. Given the inclusion of anatomic-

ally abnormal subjects into the evaluation dataset, e.g. as shown in Figs. 6 and 7, it

can be expected that state-of-the-art deep learning approaches, such as the demon-

strated herein, can indeed be robust to individual patient variations. With an in-

creased number of training datasets, particularly datasets that encompass the range of

variability and abnormalities present, this robustness would be expected to increase.

Finally, the extension of deepAC to other regions outside the brain is expected to be

Fig. 5 PET reconstruction using a deepAC and b acquired CT-based attenuation correction (CTAC) for a 48-
year-old female subject. c Relative error was calculated using the PET image reconstructed using CTAC. Low
reconstructed PET error is observed by using the proposed deepAC approach
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valuable. However, we expect to require body-region-specific models such that

models can be trained to best match the features of specific anatomical regions.

Reconstruction-based approaches have been previously proposed to synthesize

μ-maps directly from PET data [27]. Recent embodiments of these approaches have

demonstrated quantitatively accurate PET images with approximately 2–7% error [28, 29].

While these techniques use complicated reconstruction algorithms, they are also likely to

benefit from the application of a deep learning approach such as deepAC, to augment or

constrain data.

The applications of deepAC are expected to be numerous. In particular, methods that

do not require the acquisition of a CT could be used to reduce the ionizing radiation

Fig. 6 PET reconstruction using a deepAC and b acquired CT-based attenuation correction (CTAC) for an
80-year-old female with a significant right and frontal skull abnormality. The missing parts of the skull were
indicated by red arrows in real CT image. Low reconstructed PET error is observed by using the proposed
deepAC approach given the case of skull abnormality
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exposure for patients undergoing repeated PET imaging studies. Depending on the proto-

col used, the patient exposure from CT is typically comparable to the whole-body equiva-

lent PET exposure [30]. For pediatric and pregnant patients, this would significantly

reduce ionizing radiation exposure. Other potential applications include management of

misregistration between the PET and CT, where if significant motion occurs between the

CT and PET acquisitions (e.g., Fig. 4), deepAC would be able to accurately compensate for

this movement. The current implementation of deepAC does not necessarily help for fully

non-compliant patients with significant motion during PET acquisition. One possible so-

lution for this approach is to use deepAC to generate multi-phase dynamic pseudo-CTs

to capture more intensive and dynamic motion. However, this would require additional

prospective experimental design to obtain both dynamic PET and dynamic CT data.

Fig. 7 PET reconstruction using a deepAC and b acquired CT-based attenuation correction (CTAC) for a 59-
year-old male with a brain tumor. The tumor region was indicated by a red arrow in CTAC PET image. Low
reconstructed PET error is observed by using the proposed deepAC approach given the presence of
brain metastasis

Liu et al. EJNMMI Physics  (2018) 5:24 Page 11 of 15



Additional applications of deepAC include utilization in research-only PET studies where

CT adds minimal value beyond attenuation correction. Finally, the most impactful appli-

cation is expected to be with PET/MR imaging, where a pseudo-CT could be generated

directly for PET NAC data, requiring no additional time to acquire an attenuation correc-

tion scan, improving PET/MR workflow.

This study has several limitations. First, the training group was selected from a clin-

ical database. While the included patients accurately reflect a population of subjects

undergoing PET, the group was not selected to be optimal for healthy volunteers with

no known pathology. However, the data is representative of a realistic patient popula-

tion. With the addition of an increased number of datasets in the training data, it is ex-

pected that even greater resilience to this potential source of bias (which was not

observed herein) could be achieved. A second limitation is that the trained model is

only applicable to 18F-FDG PET data. Development of models for other radiotracers

would require training sets of PET/CT data utilizing that specific tracer. This could be

potentially limiting in tracers that are highly specific and do not have a sufficiently glo-

bal distribution, as it would be expected that the deep learning model would require

patterns of global physiological uptake to fully train the model. Furthermore, the model

was trained on 18F-FDG PET data that was acquired 60 min after the administration.

Utilization of deepAC with agents that have significant changes in regional uptake

Table 1 Image error (mean ± standard deviation (minimum, maximum)) relative to CT attenuation
correction of PET images reconstructed utilizing deepAC in various brain regions of 28 subjects
and p values from paired t tests. p < 0.0024 is defined as the Bonferroni corrected significance level

Brain regions deepAC error (%) deepAC absolute error (%) p value
(deepAC vs CTAC)

Frontal lobe left − 1.04 ± 2.35 (− 6.67, 3.32) 2.43 ± 1.57 (0.65, 6.67) 0.18

Frontal lobe right − 1.15 ± 2.56 (− 6.61, 4.06) 2.59 ± 1.69 (0.82, 6.62) 0.15

Temporal lobe left − 0.79 ± 1.70 (− 4.45, 2.22) 2.11 ± 0.94 (1.07, 4.67) 0.18

Temporal lobe right − 0.73 ± 1.99 (− 4.77, 2.68) 2.32 ± 0.96 (1.10, 4.88) 0.055

Parietal lobe left − 1.70 ± 2.25 (− 5.56, 2.22) 2.52 ± 1.63 (0.51, 5.56) 0.01

Parietal lobe right − 1.92 ± 2.38 (− 5.60, 2.28) 2.79 ± 1.61 (0.69, 5.60) 0.005

Occipital lobe left − 1.78 ± 1.95 (− 6.24, 1.40) 2.38 ± 1.43 (0.69, 6.26) 0.01

Occipital lobe right − 1.92 ± 2.15 (− 6.12, 2.81) 2.75 ± 1.25 (0.89, 6.12) 0.004

Cerebellum left − 0.22 ± 1.62 (− 3.86, 2.68) 1.70 ± 0.76 (0.67, 3.94) 0.154

Cerebellum right − 0.27 ± 1.78 (− 3.79, 2.83) 1.78 ± 0.85 (0.54, 3.79) 0.146

Brainstem 0.69 ± 1.79 (− 3.20, 3.81) 1.77 ± 0.88 (0.74, 3.81) 0.354

Caudate nucleus left 0.37 ± 1.71 (− 3.38, 3.69) 1.50 ± 0.85 (0.43, 3.69) 0.613

Caudate nucleus right 0.32 ± 1.64 (− 3.47, 3.21) 1.33 ± 0.86 (0.33, 3.47) 0.451

Putamen left − 0.67 ± 1.58 (− 3.80, 2.31) 1.41 ± 1.00 (0.24, 3.80) 0.115

Putamen right − 0.74 ± 1.53 (− 3.94, 2.08) 1.40 ± 1.02 (0.27, 3.94) 0.009

Thalamus left − 0.07 ± 1.59 (− 3.90, 3.05) 1.40 ± 0.88 (0.31, 3.91) 0.172

Thalamus right 0.00 ± 1.56 (− 4.04, 3.27) 1.34 ± 0.91 (0.20, 4.04) 0.283

Globus pallidus left − 0.39 ± 1.51 (− 3.71, 3.11) 1.25 ± 0.91 (0.12, 3.71) 0.056

Globus pallidus right − 0.56 ± 1.41 (− 3.83, 2.35) 1.24 ± 0.92 (0.29, 3.83) 0.013

Cingulate region left − 0.50 ± 1.68 (− 4.02, 2.70) 1.61 ± 0.95 (0.35 4.02) 0.049

Cingulate region right − 0.45 ± 1.63 (− 3.81, 2.28) 1.58 ± 0.87 (0.35, 3.81) 0.057

All regions − 0.64 ± 1.99 (− 4.18, 2.22) 1.74 ± 0.94 (0.29, 4.20)
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based and rapid pharmacokinetics may also be challenging. However, in the context of

clinically routine 18F-FDG PET imaging as demonstrated herein, deepAC performs

considerably well. Third, for the ROI approach used herein to assess PET reconstruc-

tion error, the computed error is averaged within the entire volume of the ROI. In cer-

tain regions of the brain, the error may not be distributed uniformly, and may actually

be larger near the interfaces of air, bone, and soft tissue. For example, the cortical

regions of the brain that are near the skull may have a larger error relative to the re-

gions further inside the skull. However, these errors are perhaps better depicted visu-

ally, as can be seen in Figs. 5 and 6. Fourth, the current study implemented 2D CNN

for pseudo-CT generation from NAC images. Potential improvement for the generation

quality might be achieved using methods considering 3D image context, such as using

3D CNNs or augmented 2D CNNs with 3D spatial refinement [7, 17, 18, 31]. Finally,

the pseudo-CT generated by deepAC is not a replacement for a diagnostic CT. While it

may provide an anatomical reference, it does not necessarily reflect the true underlying

tissue contrast. For studies that require a true anatomical reference, additional imaging

must be performed. In particular, we expect extensions of deepAC for PET/MR appli-

cations, where anatomic imaging is readily available, to be particularly valuable.

Conclusions
We have demonstrated a deep learning approach to produce accurate quantitative PET

imaging by using only NAC 18F-FDG PET images. Such approaches will likely have a

substantial impact on future work in PET, PET/CT, and PET/MR studies to reduce ion-

izing radiation dose and increase resilience to subject misregistration between the PET

acquisition and attenuation map acquisition.
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