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Background
In recent years, multiple empirical studies have revealed the existence of segregated 
communities in online social media interaction [4, 7, 9, 14, 18, 39, 73], where like-
minded people interact with little exposure to different viewpoints. This phenomenon 
is commonly referred to as the echo chamber effect. More concretely, the term echo 
chambers refers to a state where online interactions are conducted in a polarized pat-
tern; within an online social network, there exist groups that correspond to a certain 
belief (e.g., political left or right), and most interactions happen between users from the 
same group. A study into the nature of these polarized communities is consequential; 
echo chambers has been increasingly studied as of late due to its association with sig-
nificant political events such as Brexit and the surprise win of Donald Trump in the 2016 
US election. It is also known to cause significant harms to the process of discussion and 
democracy [68, 69, 72]. At its worst, echo chambers can limit one’s viewpoints, reinforce 
personal biases, and foster environments where hoaxes and misinformation thrives.
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The ubiquity of online social media adds to the urgency of this line of work. A recent 
survey from the Pew Research Institute [64] has found that at least 70% of adults in the 
United States currently use social media sites; the majority of them admitted to visiting 
the sites daily. Other researches [53, 61, 75] also indicate that social media sites have been 
also increasingly used as news sources, with around two-thirds of adults in the United 
States admitting to being exposed to news from social media sites. At least 30% of inter-
net users worldwide used social media sites as news sources in the past week. In the con-
text of politics, online social media can also be seen as an important political tool [2].

One popular approach to investigating echo chambers and opinion polarization is 
through modeling [15, 24, 30, 49, 52, 55, 63, 67, 71, 74]. This approach borrows ideas 
from the study of opinion dynamics which has been established since as early as the 
1970s. Early models of opinion focus on the establishment of consensus [16, 48, 70]. In 
time, the study diversified into models that enable the coexistence of multiple opinions, 
with the existence of two conflicting opinions (i.e., polarization) as a special case. These 
new models are either based on an established consensus model (e.g., [24, 49, 55, 67]) 
or new mechanisms drawn from sociological and psychological theories [6, 50]. Latest 
polarization models introduce mechanisms based on the idiosyncrasies of online social 
media; e.g., the rewiring of social connection [59] and algorithmic bias [63].

As previously mentioned, we can intuitively split polarization study into empirical and 
modeling works. However, we observe that previous works can also be divided into those 
that focus on the segregation of the propagation structure and those that focuses on the 
polarization of opinion (typically represented as some kind of score/value). Together, 
these two phenomena constitute the echo chamber effect.

In this work, we concern ourselves with both of the aforementioned focuses and adopt 
a different approach to modeling polarization. We propose a news propagation-centered 
model where opinions change as a consequence of news propagation. By adopting this 
point of view, it becomes possible to capture both opinion polarization and propagation 
structure segregation. We consider it very likely that this assumed scenario is happening 
in real social network for two reasons. As expounded earlier, the first one is how recent 
studies had found that online social media sites are also widely used as news sources. The 
second reason is related to the effect partisan news (i.e., news that are framed to promote 
a specific viewpoint rather than remaining neutral) have been found to have on individual 
opinions. Feldman [17, Jones 40] found apparent shifts of opinion/stance in people who 
are exposed to partisan news. Together, these findings indicate that not only people are 
actively searching for news through social media, but exposure to such news can lead to a 
change in opinion. Propagation/diffusion is an established topic in the field of network sci-
ence and our model is inspired by the well-studied Independent Cascade (IC) model [42].

This article extends on the initial modeling work done in [56]. In addition to the con-
tents in [56], we explain in more detail the background works and include detailed 
results of the ablation study on the model’s mechanism. Focusing on the effect of net-
work topology which was previously unexplored, results from additional simulations 
on real Twitter networks are presented. The rest of the article is structured as follows. 
“Related works” section establishes the foundation of the proposed model by going 
over the related works. “Model description” section then describes the model in detail. 
The setup of the simulation, including the description of the network data, is given in 
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“Experimental setup” section. “Simulation result” section provides the result of our 
simulation, which is then discussed in the following “Discussion and analysis” section. 
Finally, we conclude the work in “Conclusions” section.

Related works
Modeling opinion dynamics

Early works of opinion dynamics emerged from the field of sociophysics, pioneered by 
works drawing from the magnetic spin model. This means that the opinion of the popu-
lation is limited to a binary range: 0 and 1 (or − 1 and + 1). A classic example of this 
would be the voter model [38], in which an individual tries to adopt the majority of its 
neighbors’ opinions in every time step. A more sophisticated concept of opinion adop-
tion is formulated in the Sznajd model [70], in which interaction between two picked 
individuals will result in opinion change of their neighbors. This change is determined 
by the opinion agreement of the two original individuals.

While a binary, discrete opinion range might be deemed sufficient in initial investi-
gations of opinion consensus, it could not portray nuanced opinions. In time, opinion 
models which deal with a continuous opinion spectrum were developed. Two popular 
examples are the averaging model [16] and the bounded confidence model (BCM) [48]. 
These models produce a more realistic depiction of opinion dynamics in exchange for 
mathematical tractability. The averaging model is a discrete averaging process wherein 
each time step, a node in a network updates its own opinion according to the weighted 
average of its neighbors’ opinions until convergence. In the BCM, interactions only hap-
pen among those whose difference in opinion is less than a given threshold. As such it 
can be seen as modeling selective exposure.

It should be noted that the aforementioned works do not deal with the phenomenon 
of polarization. Subsequent works that tried to model polarization did so by implement-
ing various mechanisms capable of inducing polarization. These models either extend 
the previous four models (e.g., [15, 24, 30, 49, 52, 55, 63, 67, 71, 74]) or take inspiration 
from other branches of science to introduce new mechanisms [6, 50, 57]. The dynamics 
and the characteristics of the models belonging to the former group are roughly similar 
to their parent models; on the other hand, members of the latter group generally intro-
duce new point-of-views. Mäs and Flache [50] proposed a model where the process of 
opinion influence is modeled as an evaluation and exchange of arguments. The distribu-
tion of opinions in the model is then a function of both the internal opinions of the sys-
tem and the external opinions of the argument. Banisch and Olbrich [6] provide another 
explanation of polarization by proposing an opinion model based on social feedback; 
the opinion of an individual is based on his evaluation of his neighbors’ feedbacks. The 
result shows that existing community structures of the underlying network confine the 
opinion of individuals inside them.

In terms of introducing polarization, the most common method involves assuming 
either the existence of a persistent agent with a fixed opinion (e.g., [30, 52, 71]) or 
negative influence where the opinion of an individual will move away from any opin-
ion he/she disagrees with (e.g., [24, 60]). More recent polarization models introduce 
mechanisms based on the idiosyncrasies of online social media; e.g., the rewiring of 
social connection [59, 74], and algorithmic bias [63]. Recent polarization modeling 
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works generally strive to contextually capture the process of polarization by includ-
ing rules that directly mimic online social media. These efforts align with a recent 
call for more complex and realistic opinion model previously voiced in [66] which 
our model also tries to answer.

In comparison, our proposed model centers on the idea that opinion dynamics 
are affected by news propagation. It draws from two different research areas (opinion 
dynamics and network propagation) and allow us to also observe the segregation of 
propagation structure, similar to what has been observed in empirical studies [9, 14, 18, 
39]. As seen in Table 1, our model mainly differentiates itself from the rest in terms of 
interaction mode. The issue with opinion exchanges in models where a random pair of 
nodes interact every time step is that they become a series of disconnected episodes. 
This is not the case in online social media where opinions are broadcast and propagated 
throughout the network via news; a successful propagation can lead to another one. This 
process is exactly described by our model. Another difference is the fact that we also 
model the connection strength between individuals, an aspect that has yet to be fully 
explored in previous works. While our model involves multiple parameters and exhibits 
more complexity than the majority of previous works, it reflects the real interaction sys-
tem in a particular way that has never been done before.

Polarization drivers

While there are multiple factors that have been attributed as the driving force behind 
echo chambers and polarization, these factors can be roughly categorized into two: 
micro-level behavior of individuals collectively causing a macro-level phenomenon 
(polarization) and external factors originating from the system that governs the interac-
tion between individuals.

Factors belonging to the former category can be seen as originating from the phenom-
enon of cognitive dissonance. Cognitive dissonance is an extensively studied phenom-
enon within the field of psychology, and refers to the discomfort experienced by people 
when presented by information that challenges their beliefs or decisions [22, 23]. This 
discomfort in turn encourages certain behavior that causes polarization.

Among these behaviors, one that is attributed the most as the cause of polarization is 
selective exposure [25, 43] which is the tendency for individuals to expose themselves 
only to information that aligns with their preexisting beliefs. Research on selective expo-
sure predates the mass adoption of internet; the behavior has been observed in control 
studies where participants were asked to examine pieces of information after forming an 
initial decision/opinion [41]. More recently within the context of online social networks, 
selective exposure has also been observed empirically on Facebook [4].

Another behavior is called confirmation bias, or biased assimilation [54]. This concept 
is related the assimilation or interpretation of information, where regardless of what 
the actual information is (contradictory or supportive), individuals have a higher ten-
dency to interpret it as supportive, reinforcing their beliefs. Similar to selective expo-
sure, research on biased assimilation have existed prior to the internet in the form of 
controlled experiments [47]. Other than selective exposure and confirmation bias, other 
behaviors have also been proposed as the driver of polarization such as free choice [11] 
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and induced compliance [21]. Interested readers can consult [29] for more information 
on these behavior.

Moving on to the second category, one factor that has been connected to polarization 
is the algorithmic personalization employed by many social media sites [10]. As widely 
known, contents which appear in the home page of a Facebook or Twitter users are 
curated by an algorithm which aims order to maximize engagement or relevance. The 
general idea is that these relevant contents are usually contents which align with a user’s 
predisposition, creating a string of posts which can reinforce personal opinions. Another 
factor is the existence of ‘stubborn’ agents whose opinions are static and extreme (e.g., 
political twitter bots [19, 76], partisan news sources). The idea is through exchanging 
opinions with these stubborn agents, opinions will inevitably shift to the extreme ends of 
the spectrum since the opinion of these agents are unchangeable.

Table 1  Comparison of the proposed model to popular opinion model families and recent 
polarization models

Model name Opinion 
spectrum

Stochastic 
process

Interaction 
mode

Model 
parameters

Modeled aspect

Families of opinion models

 Voter [13] Binary Node selection Singular Opinion Majority influence

 Sznajd [70] Binary Pair selection Pair Opinion Social validation

 Averaging [16] Continuous None Global Opinion Opinion averaging, positive 
influence

 Bounded confi‑
dence [48]

Continuous Pair selection Pair Opinion, deviation 
threshold, confi‑
dence value

Positive influence, selective 
exposure, confidence

Recent polarization models

 Argument 
exchange [50]

Continuous Pair selection, argu‑
ment selection

Pair Opinion, argu‑
ments

Argument exchange, homo‑
phily

 Social feedback 
[6]

Binary Pair selection Global Opinion, opinion 
perception, 
learning rate, 
deviation prob‑
ability

Social validation

 Algorithmic bias 
[63]

Continuous Pair selection Pair Opinion, deviation 
threshold, bias 
strength

Positive influence, selective 
exposure, algorithmic bias

 Bounded 
confidence w/
propaganda 
[71]

Continuous Pair selection Pair Opinion, deviation 
threshold, con‑
fidence value, 
propaganda 
threshold

Positive influence, selective 
exposure, confidence, propa‑
ganda influence

 Bounded 
confidence w/
emotion [67]

Continuous Pair selection Pair Opinion, deviation 
threshold, confi‑
dence value

Positive influence, selective 
exposure, confidence, 
emotion

 Algorithmic bias 
[74]

Continuous Pair selection Pair Opinion Positive influence, selective 
exposure, algorithmic bias

 Confidence-
tolerance [59]

Continuous Pair selection Pair Opinion, deviation 
threshold, confi‑
dence, rewiring 
probability

Positive influence, selec‑
tive exposure, confidence 
dynamic, connection 
rewiring

 News percolation 
[72]

Continuous Seed selection Propagating 
broadcast

Opinion, news 
fitness, sharing 
threshold

News influence, homogeneity

 Proposed model Continuous Seed selection, 
propagation 
success

Propagating 
broadcast

Individual opinion, 
connection 
strength, news 
opinion, update 
rate, tolerance

News influence, selective expo‑
sure, connection strength
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The model proposed in this work incorporates concepts from both categories: selec-
tive exposure and the existence of partisan news items. This is not to say that other 
factors have no contribution in inducing polarization. As described above, each factor 
plausibly contributes to the complex social system in some way. Our model simply pro-
vides an abstraction and focus on the concepts we chose to include in our mechanism.

Opinion drivers

Most models of polarization were designed with the underlying assumption that the 
polarization of a network is reflected by the polarization of individuals that construct it. 
In these models, opinions of individuals are commonly driven by another individual(s)’ 
opinion; interaction between individuals will result in some sort of change to their opin-
ion. There are two ways opinion influence could happen between individuals in these 
models: positive and negative. Positive influence means when individuals interact, their 
opinion move in the positive direction to each other in order to reach consensus. While 
the exact reason behind this kind of conformist behavior can yet be conclusively pointed 
out, several explanations have been offered. For example, classic social comparison the-
ory states that people use similar other as guides when evaluating their own opinions 
[20]. Another explanation is that this positive influence is done in order to gain accept-
ance from others [12]. Positive influence is the normal kind of opinion influence com-
monly assumed in opinion modeling [13, 16, 48].

The other kind of opinion influence is termed negative influence. This refers to the 
condition when two individuals with differing opinion interact and their opinion moves 
away from each other, amplifying their difference as a result. The existence of negative 
influence can be understood as implied by the same explanation for positive influence. 
For example, people may use dissimilar others when evaluating their opinions, guiding 
their opinion to the negative directions. However, this kind of negative influence is a 
stronger assumption placed only on a few models of polarization [24, 60] due to weak 
empirical support. As such, only the former positive influence is assumed in the model 
we propose in this work. A more comprehensive review and discussion on positive and 
negative can be found in [37].

Instead of being directly driven by the opinion of others, this work proposes an 
indirect opinion driver in the form of information news. As previously explained, the 
scenario of news and information spread in networks extends intuitively to the phe-
nomenon of polarization. This approach is motivated by works documenting the power 
partisan news have over the opinions of readers [17, 40]. Given that partisan news have 
been found to be able to shift opinion, we argue that the opinion polarization—and in 
turn, echo chambers—observed in online social medias happens through opinion shifts 
caused by news sharing. The idea of a news-driven opinion model has been proposed 
before [49, 72] but never in tandem with the exploration of the news spreading pattern 
itself, which is something that we particularly focus on.

Propagation in complex network

Propagation or diffusion in complex networks is a well-studied topic within the field 
of network science and encompasses many different kinds of spreading process, e.g., 
information, ideas, and diseases. Our model is influenced in particular by the IC model, 
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originally proposed by Kempe [42] to formulate the problem of Influence Maximiza-
tion: given a group of people connected in a certain network topology and assuming that 
information propagates through two connected individuals, which k seed individuals 
will lead to the biggest spread of information? An example of one propagation under this 
model can be seen in Fig. 1. The propagation-focused scenario of the influence maximi-
zation problem is very similar to the one studied within this work, making it natural to 
extend the IC model to the problem of polarization modeling.

Several previous works pertaining to online polarization have also considered polari-
zation through the lens of propagation in complex networks. Garimella et al. formulated 
the problem of minimizing polarization in news propagation [26] in a scenario where 
two pieces of opposing information are propagating simultaneously in a network. Polari-
zation is then defined as an imbalance in the cascade size of the two information and 
thus minimizing it is equal to finding two sets of seed nodes that produced cascades 
with similar sizes. Another work formulated the problem as a maximization problem of 
propagation diversity [3]. Given a set of individuals with their own leanings and a set of 
information also equipped with their own leanings, the problem is to find the individual-
information assignment that maximizes the diversity of the resulting cascade.

Both of the works defined above uses the IC model as their propagation model. Our 
work is more closely related to the latter in the way that they both consider the leanings 
of not only individuals but the spreading information. While the view that online polari-
zation can be mainly seen as a process of propagation in complex networks is relatively 
new, the aforementioned works serve as precedents and motivation of this work.

Fig. 1  An example of one propagation under the IC model: node u tries to propagate to node v in t = i (top). 
If the propagation is successful (bottom, right), node v then propagates to all of its neighbor in t = i + 1 . If it 
fails (bottom, left) the cascade stops because there are no more propagation
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Social learning

Previously, “Modeling opinion dynamics” section presented a brief digest of opinion mod-
eling works. It should be noted that these models are operating within the assumption 
that users/agents continuously update their opinions over multiple cascades. There exists 
a line of work that models sequential decision-making processes of agents over a social 
network. In this setting commonly referred to as bayesian social learning, agents in a given 
social network are required to make a single optimized decision based on two sources of 
information: its personal knowledge on the given subject and decisions of previous agents 
(hence the bayesian namesake). This process, initially investigated by [5, 8, 45], can be 
thought of as a single cascade of opinion adoption. Interested readers can refer to [1, 58] 
for a comprehensive review of the field and exposition on how they relate with our study.

Model description
The proposed model, called Polarizing Independent Cascade (PIC), adopts the news 
propagation scenario of the IC model with three key differences: the existence of model 
parameters, a new formula for propagation probability, and an update process for the 

parameters. A pseudocode of the model’s spreading procedure is given in Algorithm 1.

Algorithm 1: PIC
Given:

– G = (V,E): An undirected graph representing a set of connected users
– Q = {qu ∈ [−1, 1], u ∈ V }: The set of every node’s opinion
– C = {cuv , (u, v) ∈ E}: The set of every edge’s connection strength
– I = {ii ∈ [−1, 1], 1 < i < T}: The set of every simulated news items’ opinion score
– S = {si, 1 < i < T}: The set of initial spreader nodes for every news item
– η: The update rate for opinion and connection strength
– B,µ: Parameters for the logistic function (optional)

Procedure:
for i = 1 to T do // For every news item

/* Initialize variables:
- t: current time step, set to 1 at the beginning of every news item’s spread
- Ai

t: the set of nodes that can still spread news item i at t
- Inf i: the set of nodes that have been infected by news item i

*/
t ← 1 ;
Ai

t ← Si ;
Inf i ← Inf i ∪ Si ;
while Ai

t �= ∅ do
for u ∈ Ai

t do // While an active node exists

for v : euv ∈ E, v /∈ Inf i do // Spread to uninfected neighbors

if Random() < Puv(qv , cuv , ii) then
// Neighbor become infected and active

Inf i ← Inf i ∪ {v} ;
Ai

t+1 ← Ai
t+1 ∪ {v} ;

// Opinion shifts and connection strengthens
qv ← Uq(uv , ii, η) = qv + (η × sign(ii − qv)) ;
cuv ← Uc(quv) = cuv + η ;

else
// Connection weakens
cuv ← Uc(quv) = cuv − η ;

end
end

end
// Go to next time step
t ← t+ 1;

end
end

This model is based on the idea that the expression of opinion in online social media 
happens in the form of news sharing, i.e., a change in opinion is a result of news 
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propagating through users in the network. As listed in the beginning of the pseudoc-
ode, the PIC model has 7 parameters: Q,C , I , S, η,B, and µ . Later, we will investigate 
how some of these parameters affect the polarization dynamic through sets of simu-
lations. Note also that throughout the procedure, some values are stored inside the 
variables t,Ai

t , and Inf i . These variables should not be mistaken as parameters of the 
model since they are temporary in nature. Figure 2 explains how the PIC model works 
in the scenario of multiple propagation.

One fundamental change to the original IC model that we propose pertains to the 
propagation probability. In the original model, it is directly reflected by the connection 
strength and is assumed to be static. This is not the case in our scenario where the opin-
ion of an individual factors in his/her decision to propagate information. To mimic this 
behavior, we formulate Puv , the probability of a successful propagation, as follows:

where f(x) is a function that models the growth of opinion similarity’s influence. Here, 
we test the effect of using three functions: linear, logistic, and step function.

The behavior of Puv can be simply described as follows: the probability that a neigh-
bor v of user u will accept a piece of news with opinion ii is a combination of the 
strength of his connection with u and the similarity between his opinion and i. The 
proportion of these two factors depends on how strongly connected u and v are. If u 
and v are strongly connected, then the probability will depend more on the strength 

(1)Puv = (cuv × cuv)+ ((1− cuv)× (1− f (|ii − qv|/2))),

Fig. 2  A flowchart describing the scenario of multiple propagation under the PIC model
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of this connection. Otherwise, the probability will depend more on how similar the 
opinion of v is to the opinion of the news.

The first half of the equation directly takes from the original IC model, which 
assumes that propagation success is determined by a probability value associated 
with each edge. This probability illustrates the strength of influence between the con-
nected nodes. Here, we refer to this strength as connection strength and denote it 
as cuv Meanwhile, the second half of the equation simulates the concept of selective 
exposure observed in [4]. The similarity function f(x) in which the similarity value is 
feed to enables the tweaking of the strength of selective exposure. Putting cuv as the 
variable that controls the proportion of the two factors creates a duality of behavior 
between weak and strong connections. This design is inspired by the work of Gran-
ovetter on weak and strong ties [33]. Weakly connected users can be thought of as 
acquaintances (weak ties) and strongly connected users as close friends (strong ties).

Updates to the model parameters happen as a consequence of propagation; depend-
ing on whether the information is accepted, the update functions behave differently. If 
v decides to accept the information and spread it, it updates its own opinion qv to be 
closer to ii and increases its connection strength with v cuv according to the equations:

Should v decide to reject the information, cuv will instead decrease according to the 
equation:

Uq is motivated by the effect partisan news has been found to cause on people’s opin-
ion [17, 40]. Essentially, the equation stipulates that any accepted news will directly 
persuade users to shift their opinions towards itself, following the results found in [17]. 
On the other hand, Uc basically assumes that the more information successfully propa-
gates between two users, the stronger the bond between them will become. Conversely, 
the more information failed to propagate, the weaker the bond will become. Finally, it 
should be noted that the proposed model can be perceived as a dynamic extension of the 
IC model. It reduces to the normal IC model when η = 0 and the ratio is 1 instead of cuv . 
An example of one propagation can be seen in Fig. 3.

Experimental setup
General procedure

The simulation scenario performed on the model consists of sequentially propagating T 
items that represent news on the social network and observing the changes that happen 
to the parameters, Q and C. However, if all T news have the same opinion score i, it is 
obvious that opinions will eventually converge to i. Therefore, the particular scenario of 
interest in this work is when items whose opinion scores are sampled from a certain dis-
tribution are propagated. The distribution of I then will reflect the polarization of news, 
making it possible to see how the polarization of news translates to the polarization of 

(2)q′v = Uq(uv , ii, η) = qv + (η × sign(ii − qv))

(3)cuv = Uc(quv) = cuv + η

(4)cuv = Uc(quv) = cuv − η
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opinion and the segregation of propagation structure. All simulations are performed 
with T = 10, 000 . This number is obtained from initial experiments and has shown to 
always be sufficient for the model to enter a state in which the distribution of opinions 
either converges or diverges completely, making any further change in modality unlikely. 
I is sampled from a symmetrical beta distribution:

where γ (z) stands for the gamma function. The simulation parameter Θ then signifies 
the degree of polarization of the news items. A Θ value of 1 yields a uniform distribu-
tion and anything below yields a u-shaped polarized distribution. Every news item starts 
propagating from one random seed node.

Initial values for q and c are randomly sampled from a given range. For q, this is the full 
opinion range, [−1, 1] . However, this is not the case for c, which are sampled from the 
low range of [0, 0.5]. This is due to the fact that in preliminary simulations, it was found 
that pre-established strong connections cause news to always propagate between nodes 
with different opinions, often leading to an opinion convergence.

Every value presented in “Simulation result” section is an average over multiple simu-
lations. The number of repetition for simulations performed on synthetic networks is 50 
while for simulations performed on real networks it is 20 due to constraints on time and 
computational resource.

(5)f (x,Θ) =
γ (2Θ)((x + 1)/2)Θ−1((1− x)/2)Θ−1

2γ (a)γ (b)
,

Fig. 3  An example of one propagation under the PIC model: node u tries to propagate to node v in t = i 
(top). If the propagation is successful (bottom, right), node v then propagates to all of its neighbor in 
t = i + 1 . If it fails (bottom, left) the cascade stops because there are no more propagation
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Network dataset

For this work, we utilize two network types for different purposes: synthetic and real. 
First, synthetic networks are used to understand the model through ablation studies and 
extensive parameter exploration. Afterward, the model is simulated over real Twitter fol-
low networks in order to ascertain the consistency of its behavior on real networks.

Synthetic networks

All of the synthetic networks used in our simulations are generated using the Lanchichi-
netti Fortunato Radicchi (LFR) algorithm [44]. This algorithm works by first creating a 
network with power-law degree distribution before assigning them to communities and 
rewiring the edges according to the given parameter. The power-law degree distribution 
of the generated network has also been found in multiple social networks. In addition, 
the algorithm also has the ability to control community structures, making it suitable for 
the task of model exploration. Unless specified otherwise, the synthetic networks com-
prise 250 nodes with approximately around 2000 edges. This size was decided through 
several experiments with consideration to the running time of the simulation. With the 
exception of the set of simulation that involves different community number, the syn-
thetic networks are divided into two communities with roughly equal sizes. The mixing 
value µ between these communities is set to 0.1.

Twitter networks

For validation, simulations are performed over real network structure taken from Twit-
ter’s follow relationships between users that discuss certain topics. In these networks, 
nodes signify users while an edge signifies a follow relationship. While Twitter’s Fol-
low mechanism is one-directional, the resulting graph is considered as undirected. The 
Twitter follow data set used in the research was first constructed and used by [28] to 
develop a measure of polarization over a given network. The data set consists of multiple 
networks each constructed from users that participated in a Twitter of a certain topic 
through a given hashtag. A brief overview of the Twitter networks is presented along 
with the simulation results in “Simulation result” section.

Polarization measures

Here we explain two measures that are used in our analysis of the simulation results. 
Each of these measures pertains to polarization in different ways. The first measure, 
called m-value, concerns itself with the polarization in the opinion distribution; the sec-
ond one, called edge homogeneity, is more closely related to the segregation of propaga-
tion structure and the relationship between connection strengths and opinions in the 
social network.

m‑value

M-value is a simple measure of modality introduced by [34]. In this work, it is used to 
measure the modality of the users’ final opinion distribution. Given a histogram x with n 
bins (including zero bin terminators) and maximum bin value M, m-value is defined as:
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A perfectly bimodal distribution (two peaks of the same height) yields m-value = 4 and 
a perfectly unimodal distribution yields m-value = 2 . Any number higher than 4 means 
the distribution is spread across multiple peaks and is not considered to be polarized. As 
proposed by [34], we use the value of 2.4 as a rough threshold to determine whether a 
distribution can be considered as bimodal.

It should be noted m-value does not take into account the position of the peaks on 
the polarization spectrum. This makes it by itself insufficient for determining polariza-
tion; after all, a distribution with two separated peaks on −0.1 and 0.1 will have the same 
m-value with a distribution two peaks at the opposite ends of the opinion spectrum, −1 
and 1. Therefore, we also measure the mean absolute opinion score of the distribution, 
qabs , and visually inspect individual histograms. We use all three measures in the inter-
pretation of our results. Together, these measures can give us an idea of the number of 
peaks and their position in the spectrum of the final opinion distribution.

Edge homogeneity

Contrary to models which only updates opinion, our proposed model also updates the con-
nection strength between users. This adds an extra dimension to the notion of polarization; 
we can now observe whether users with a similar opinion are strongly connected to each 
other and weakly connected to everyone else. To do this we use edge homogeneity, a measure 
of opinion similarity between two connected nodes [72] defined as hom(u, v) = qu × qv . 
We modify this measure to include the strength of the edge and averages it for every edge in 
a given graph to obtain average weighted mean edge homogeneity:

High homw indicates a network structure where nodes of similar, strong opinions are 
connected by strong edges and nodes with different or weak opinions are connected by 
weak edges. By observing how homw changes through our simulation, we can see how 
the propagation structure evolves w.r.t. to the evolution of opinions and connection 
strengths.

Simulation result
In this section, we present the result of our simulations. The sets of simulations performed 
in this study are divided into three main parts, each performed with different aims in mind: 
ablation study, parameter exploration, and simulations on Twitter networks.

Ablation study

The PIC model comes with multiple mechanisms and rules. Therefore, it is important to 
ascertain that each mechanism is necessary to induce polarization. The model should strive 
to be as simple as possible while still being able to produce the phenomenon of interest 
(i.e., polarization). While the majority of the mechanisms are backed by empirical findings 
(selective exposure [4], opinion update [17, 40]), several remaining ones are adaptation of 

(6)m-value(x) =
1

M

n
∑

i=2

|xi − xi−1|.

(7)homw =

∑

e(u,v) cuvquqv
∑

e(u,v) cuv
.
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concepts in sociology and psychology (connection duality, connection strength update). 
Acknowledging this fact, a preliminary ablation analysis is performed on each of the latter 
mechanisms.

Every experiment performed for this ablation study uses the synthetic LFR network and 
assumes a polarized news distribution with Θ = 0.5.

Connection duality

First, we investigate whether the usage of cuv as the variable ratio in Eq. 1 is indeed neces-
sary to induce polarization. We do this by modifying the equation to:

where α is a static variable ratio replacing cuv . Three values of α are chosen to simu-
late, representing 3 different scenarios: α = 1 (propagation only depends on connection 
strength), α = 0.5 , and α = 0 (propagation only depends on opinion similarity). The 
m-value and qabs produced by these simulations, plus another from a simulation using 
the original equation, is shown in Table 2.

As can be seen from the table, no value of static α is able to induce polarization on 
the model (characterized by both m-value in the range of [2.4 − 4] and a high qabs ). 
The usage of cuv on the other hand, leads to the fulfillment of both characteristics. 
Figure 4 shows the final distributions of Q and C taken from one instance of simula-
tion for all three values of α and cuv.

(8)Puv = (cuv × α)+ ((1− α)× (1− f (|ii − qv|/2))),

Table 2  Statistics of  the  final opinion distribution for  simulations on  varying static 
propagation success ratio α and the original ratio cuv

Italic values indicate a polarized distribution

Ratio ( α) m-value qabs

1.0 5.814 0.232

0.5 2.174 0.282

0 2.255 0.685

cuv 3.021 0.712

Fig. 4  Final distributions of Q (top) and C (bottom) for varying propagation success ratio. From left to right: {
1.0, 0.5, 0, cuv}
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Connection strength update

We next evaluate the update to connection strength, which is underpinned by the 
assumption that propagation success affects the strength of connection (C). It is 
possible to assess the importance of this mechanism by performing simulations 
where the mechanism is omitted and analyzing the result. The question of interest 
is whether the polarization of opinions happens even when connection strength is 
not updated. If so, we can conclude that the update is not a necessary mechanism to 
induce polarization.

Similar to the previous part of the ablation study, a simulation set is performed on 
a modified version of the model where the updates using Eqs. 2 and 4 are skipped. 
The average m-value for 50 iterations of this simulation is 2.027 and the average qabs 
is 0.615; we see that polarization is not induced without connection strength update.

Effect of model parameters

Next, we look into how the parameters of the model affect the polarization process 
happening inside the social network. We perform one set of simulation for each 
parameter; for each set, we vary the values only for the parameter we are interested 
in and keep the values of the other constant. This procedure of isolating one param-
eter at a time prevents unwanted noises from the interaction of multiple parameters, 
making it easier to interpret our results. This also reduces the number of simulations 
that needs to be done considering the large amount of combination possible for all 
parameter values.

As with the ablation study, every experiment performed here uses the synthetic LFR 
network.

News polarization Θ

First, we investigate how polarization in the propagating news items translates to the 
polarization of the population’s opinion. For this we set B = 10 , µ = 0.15 , and η = 0.01

.13 simulations were performed for Θ = 0.3 to 0.9, with the increment of 0.05. As 
every simulated value of Θ is less than 1, news distributions for this set of simulations 
are always polarized. However, this range of Θ is sufficient to explore the behavior of 
the model considering its tendency to converge. The relationship between Θ and both 
measurements of distribution polarization is plotted in Fig. 5.

From the top curve for m-value, it can be seen that for Θ < 0.5 opinions are sepa-
rated to a bimodal final distribution (m-value ≈ 4 ). Furthermore, this separation is 
accompanied by a qabs , indicating that the majority of opinions lies on the extreme 
ends of the opinion spectrum. Contrarily for Θ > 0.5 , m-value falls and stabilizes at 
around 2, signaling opinion convergence to a unimodal final distribution. As can be 
seen from the accompanying qabs , this convergence happens towards the middle of 
the opinion spectrum ( −0.5 to 0.5).

Update rate η

Next we investigate the effect of η . We increment η by half an order of magnitude in 
the simulation set; 5 simulations were performed with η = {0.001, 0.005, 0.01, 0.05, 0.1} . 
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Θ = 0.5 is used for all of these simulations. m-value and qabs of the final distribution of Q 
is calculated and plotted in Fig. 6.

It is immediately apparent that only η values of 0.05 and 0.01 produce a polarized final 
opinion distribution (m-value ≈ 4 and large qabs).

Sample final opinion histograms taken from one instance of simulation for differ-
ent η are shown in Fig. 7. It can be seen that the large m-values for low η are caused by 
the existence of multiple peaks. Despite that, this low value of η seems to still induce 
a tendency for opinion to polarize. On the contrary, larger values of η tend to induce 
convergence.

Similarity function

We explore two alternative similarity functions f(x): a generalized logistic function and a 
step function. A generalized logistic function is given by the following equation:

with two parameters, B and µ . Meanwhile, a step function is given by the following 
equation:

with only µ as the parameter.
Changing the value of µ translates the function along the x-axis, changing the value of 

x where these functions start outputting 1. The second parameter B for the logistic func-
tion controls the uncertainty of the logistic function by changing the steepness of the 
logistic slope.

Simulations for the two functions were performed for B = {10, 20, 50} (for the logistic 
function) and µ = {0.1, 0.2, 0.3, 0.4, 0.5} . For all of the simulations, Θ was set to the value 
of 0.5. The results from the two simulation sets can be seen in Fig. 8.

(9)f (x) =
1

1+ e−B(x−µ)

(10)f (x) =

{

1 if x ≥ µ

0 if x < µ

Fig. 5  Relationship between Θ and m-value (top), qabs (bottom). Values are averaged over 50 iterations, error 
bars indicate range
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Results for both similarity functions indicate that opinion polarization (m-value ≈ 4 
and large qabs ) is only induced on µ lower than 0.3. Any increase in µ leads to conver-
gence. Figure 9 shows several examples of the final opinion distribution from the simula-
tions, which are very reminiscent of the results from BCM [48].

Simulations on Twitter networks

One way to validate our model is to make sure that the observed behavior persists when 
the simulation is done on real networks. To this end, a set of simulations is performed 
over 18 Twitter follow networks. For all of these simulations, Θ is set to 0.50, η − 0.01 , 
and the logistic similarity function is used with µ = 0.2 , B = 10 . Table 3 shows the final 
m-value and qabs for all of the simulations along with several measures for the networks.

As can be seen in the table, there exist Twitter networks which polarizes on average 
and networks that does not. The numbers in the table suggest that the combination of a 
high clustering coefficient and a low average shortest path length produce more suscep-
tibility to polarization. Nevertheless, a more extensive investigation is needed to draw a 
more definite conclusion; note that the result presented in Table 3 is an average of only 
20 iterations.

All defining characteristics of a polarized network found in the simulations over syn-
thetic networks are also produced in Twitter networks. Figure 10 shows the final distri-
bution of opinions Q and connection strength C for two instances of simulations on the 
Twitter follow networks; one converging and one polarized. The bimodality of the final 
opinion distribution and the clear separation for the weak edges can be observed for the 
polarizing simulation. Conversely, the converging simulation exhibits neither of those 
characteristics.

Upon plotting the homw growth of the cascades for both instances in Fig.  11, it is 
apparent that the homw growth for the converging instance’s cascades are on a down-
ward trend with low value. The cascades for the polarizing instance exhibit the exact 
opposite. Finally, Fig. 12 visualizes the strong graph of both of these instances after the 
final cascade.

Fig. 6  Relationship between η and m-value (top), qabs (bottom). Values are averaged over 50 iterations, error 
bars indicate range
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Discussion and analysis
Model design and validation

As shown by the ablation study, both of our proposed mechanisms (connection strength 
duality and update) are indeed necessary in order to induce polarization of opinion. To 
understand why this is the case, it is helpful to see how each of the chosen values of 
static α failed in inducing polarization. Interestingly, failures happened in different ways 
for each value of α , as suggested by the different combination of m-values and qabs in 
Table 2. This difference can be explained by closely inspecting the distribution of con-
nection strength in each case of α in Fig. 4.

First, when propagation success depended entirely on connection strength cuv 
( α = 1.0 ), the behavior of the model became predictable considering how cuv is 
updated. Edges with weak initial strengths (i.e., cuv < 0.5 ) most likely failed in propa-
gating news, decreasing their connection strengths even further until eventually they 
hit 0. Conversely, initially strong edges eventually hit cuv = 1 . Propagation became 
essentially arbitrary, subject to only the initial values of connection strength. Since 
the initial value of C was sampled on the range [0, 0.5] for all simulations, every edge 
eventually became very weak. As can be seen in the leftmost pair of histograms of 
Fig. 4, this resulted in a very slow convergence of opinion.

For the opposite scenario ( α = 0.5 ), it can be seen that opinions convincingly con-
verged (Fig. 4, second from right). This behavior exhibits the model’s innate converg-
ing tendency, which can be intuitively understood. Consider any point in the opinion 
spectrum [−1, 1] which is not the center, 0. At any point, the range of opinion that 
will pull a user’s opinion to the middle will always be larger than the ones attracting 

Fig. 7  Sample final distributions of Q for different η . From a to e: η = 0.001 , η = 0.005 , η = 0.01 , η = 0.05 , 
η = 0.1
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one’s opinion to the extreme. Given that the distribution of I is symmetrical, there 
will always be more news that attracts users opinion to converge.

Finally, consider the middling scenario where both factors contributed equally to 
propagation success ( α = 0.5 ). In this case, to successfully propagate news a user 
needs both strong connection and opinion similarity to his/her target. This led to a 
general decrease in the number of successful propagation. As a result, connection 
strengths cuv of the entire graph once again plummeted to near 0 as a consequence 
of the connection strength update (Fig. 4; second from left, bottom). When this hap-
pened, the behavior of the model was again reduced to the second case explained 
above.

The usage of dynamic propagation success ratio is necessary to resolve the issues 
explained above. As exhibited in the ablation study, it led to a clear separation of edges 
in terms of their connection strength and a polarized opinion (Fig. 4, rightmost). This 
was caused exactly by the duality of behavior in determining propagation success: weak 
edges that connected nodes with a similar opinion were able to consolidate when they 
became strong enough, which then proceeded to amplify the differences in opinion to 
the point of extreme polarization. This duality of behavior can then be deemed as neces-
sary to produce polarization.

Fig. 8  Relationship between µ , B of both similarity functions and m-value (top), qabs (bottom). Values are 
averaged over 50 iterations, error bars indicate range

Fig. 9  Sample final distributions of Q for µ = 0.1 using the step similarity function
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The same thing can be said for connection strength update. In the ablation study, 
removing updates to cu,v also resulted in no polarization. This can be easily understood 
by following the line of thoughts above; since C was initialized in the range [0, 0.5] and 
remains static throughout the simulation, the model operated almost completely by 
selective exposure. As seen previously, the PIC model has an innate tendency to con-
verge when it relies completely on selective exposure. It is then clear that the update to 
connection strength is also imperative in inducing polarization in opinion.

Table 3  Statistics and final m-value of the Twitter follow dataset

Italic fonts indicate polarization

Hashtag Nodes Edges Density Average 
shortest 
path

Average 
clustering 
coefficient

Assortativity Transitivity m-value qabs

 nepal 4242 42,833 0.0048 4.038 0.265 − 0.191 0.125 2.019 0.411

german‑
wings

2111 7329 0.0033 4.267 0.133 − 0.127 0.111 2.031 0.278

indias‑
daugh‑
ter

1542 9480 0.0079 3.614 0.184 − 0.078 0.174 2.042 0.446

mothers‑
day

2245 14,160 0.0057 4.364 0.314 − 0.016 0.364 2.057 0.445

ff 3899 63,672 0.0084 3.696 0.328 0.072 0.277 2.076 0.432

onedirec‑
tion

3151 20,275 0.0041 3.226 0.103 − 0.087 0.040 2.096 0.516

jurrasic‑
world

4395 31,802 0.0033 3.998 0.219 − 0.143 0.142 2.215 0.408

beefban 799 6026 0.0189 3.338 0.235 − 0.063 0.215 2.244 0.422

ukraine 3382 84,035 0.0146 3.104 0.302 − 0.89 0.256 2.300 0.511

baltimore 1441 28,291 0.0272 2.861 0.227 − 0.241 0.192 2.344 0.523

indiana 946 24,328 0.544 2.530 0.351 − 0.202 0.286 2.399 0.473

ultralive 2113 16,070 0.0072 2.464 0.359 − 0.250 0.031 2.504 0.699

leadersde‑
bate

9566 344,088 0.0075 2.547 0.310 − 0.231 0.146 2.643 0.521

nemtsov 2156 46,529 0.0200 2.692 0.322 − 0.126 0.236 2.660 0.693

russia‑
march

1189 16,471 0.0233 2.798 0.285 − 0.222 0.215 2.723 0.613

sxsw 4558 91,356 0.0088 2.638 0.257 − 0.135 0.086 2.824 0.619

netanyahu 4292 297,136 0.0322 2.341 0.329 − 0.274 0.183 2.896 0.563

gunsense 1821 103,840 0.0626 2.342 0.434 − 0.159 0.312 3.288 0.720

Fig. 10  Sample final distributions from the Twitter follow network simulations. One from a converging 
simulation instance (left) and the other from a polarizing one (right)
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While we have established the importance the model’s mechanisms, it is also impor-
tant to confirm that the behavior of the PIC model can persists over different network 
structure. It is quite possible that the polarization showed in the ablation study will not 
be reproduced when the model is operating inside a larger and more complex network 
structure. However, the results on the Twitter networks simulation show that this is not 
the case.

The results for simulations done in Twitter networks show that the PIC model was still 
able to induce polarization. While this does not validate the model in the sense that it 
confirms that the dynamics of the real social system is 100% as predicted by the model, 
it does testify to the generalizability of the model by showing that its behavior are repro-
ducible across different networks. Furthermore, all defining characteristics of a polarized 

Fig. 11  Cascades’ homw growth of two simulation instances on the Twitter network

Fig. 12  Strong graph visualization of the same two simulation instances after the final cascade
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network found in the simulations over synthetic networks were also produced in Twitter 
networks. The strong graph for the polarizing instance exhibited a clear modular struc-
ture that corresponds to node opinion, signaling the existence of echo chambers. These 
signature characteristics were not observed when opinion converges.

In sum, all of these results prove that the PIC model is able to retain its behavior across 
networks of different sizes and structure.

Parameter initialization

One vital aspect of the experiment design is the initialization of the model param-
eters, namely Q, and C. The question of finding proper values for these parameters is 
not something that can be answered easily. One obvious reason is the difficulty in quan-
tifying these parameters. It goes without saying that the ideal values to initialize these 
parameters are ones that matches exactly what is observed empirically. However, assign-
ing exact numerical values to user opinions and connection strengths given only traces 
of interaction/propagation is a difficult question in itself. Earlier works that attempted to 
do this eventually rely on the notion of interaction frequencies [4, 7, 73]: more interac-
tion translates to stronger connection/tendency for a side in the opinion spectrum.

The second problem presents itself when we consider that we are looking for initial 
values of these parameters before any interaction occurs. Suppose we chose to initial-
ize our opinions and connection strengths based on empirical findings that measure 
opinion/connection strengths based on frequency, such initialization would make little 
sense, because these values can only be calculated after interactions happened.

As explained in “Experimental setup” section, in the end we opt to simply do a random 
initialization for Q and C within a certain range. This make sense for us since we are 
looking to study how polarization was formed; there is no reason to initialize Q and C 
from any non-uniform distribution with any degree of polarization. We initialize Q in 
the full opinion range [−1, 1] . However, initializing C in the full range makes less sense 
because in combination with the initialization for Q, this leads to unlikely situations such 
as two users with opposite opinions but very strong connection. In turn, these situa-
tions produces an arbitrary behavior for the PIC model (since high connection strength 
translates to very high acceptance) which almost always lead to convergence. Given that 
it’s impossible to study the behavior of the model this way, we settle with initializing 
Q in a lower range of [0− 0.5], i.e., everyone in the social network starts off as weakly 
connected.

While the aforementioned scenario of initialization in the full connection strength 
range may be the case in the real world (e.g., family member with differing views), a 
low-ranged initial connections strength produces an organic connection formed solely 
through selective exposure (i.e., strangers with the same views bonding together). This 
kind of scenario is likely to happen in online social media where people from different 
places and background can meet. In fact, the evolution of connection strengths from a 
lower range of value through the mechanism described by the PIC model can be seen as 
a process of trust establishment in online social media as reviewed by [32]. The assign-
ment of initial values of C could be considered as the initial phase of trust building where 
users’ trust are based on on rapid, cognitive cues or first impressions, as opposed to 
personal interactions [51]. Considering that high values of C in the PIC model signifies 
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unconditional trust (as news acceptance and propagation is almost certain), the C ini-
tialization on the low range of values is a likely scenario. Early interactions, governed by 
opinion similarity can also be seen as representing calculus-based trust based on calcu-
lation of cost and reward of interaction.

After a number of interactions, judgments of users become the function of the inter-
action itself. This represents the second stage of trust developments which is governed 
by established knowledge and understanding between users knowledge- or experience-
based trust [46]. In the PIC model, we update C based on interaction results; if we con-
sider C as trust, then the process described in PIC is exactly this second stage of trust 
development. Within the broader context of trust, this process can be considered as the 
relational facet of trust. This particular facet of trust acts as a basis for many trust model 
in computer science, as expounded in [62].

Design choices for the entire simulation process, from initialization to the growth of 
the parameters, were made with the considerations explained above. While online trust 
was not the primary focus of this work, the particular scenario we chose for our simu-
lations can be sufficiently motivated seeing how the dynamics of connection strength 
in the PIC model can also be viewed as a trust development in online social networks. 
Readers interested in the topic of online trust can consult either [32] or [62].

Effect of model parameters

Results from the set of simulations involving the model parameters indicate that each 
parameter has a significant amount of contribution in inducing polarization. Without a 
correct combination of parameters, opinion polarization will likely not form.

One of the more intuitive result came from the simulation set for the effect of news 
polarization degree Θ . As seen in Table 5, both m-value and qabs increased along with Θ . 
This shows that news polarization translates to the polarization of opinion; this behav-
ior is both intuitive and observable in the real world. The result also confirms the mod-
el’s tendency to converge. This tendency can be assumed as a semblance of realism: the 
more extreme one’s opinion is, the more argument is available to make it less extreme.

Note that the relation between news polarization Θ and the produced modality of the 
final distribution is nonlinear. On individual examination of each simulation instance, 
we found that opinion distribution either ended in two peaks or one peak but never in-
between. This is also apparent from the wide m-value range on the critical area, where 
the final opinion distribution alternated between convergence and polarization. This 
suggests the existence of a certain threshold condition in our model that determines 
whether the network will converge or polarize. This threshold is at least determined by 
the news polarization Θ and for the parameter values used in this set of experiment, the 
threshold lies around Θ ≈ 0.50 . Given the state transition-like nature exhibited by the 
model, the average m-value can then be interpreted as the tendency or probability for 
the distribution to polarize.

On the other hand, qabs is linearly correlated with Θ ; the more polarized the propagat-
ing news is, the more extreme the average opinion of the population. This means that 



Page 24 of 35Prasetya and Murata ﻿Comput Soc Netw             (2020) 7:2 

while a certain polarizing threshold exists, increasing or reducing news polarization 
beyond the threshold will always have an impact on the overall distribution of opinions.

Results from the set of simulations involving the update rate η can also be easily under-
stood; small values of η induced polarization and large values did not. The obvious takea-
way is that opinions must update slowly for polarization to happen. However, the large 
updates of opinions seem to produce big and unusual m-values. To comprehend this, we 
examine individual histograms for each simulation shown in Fig. 7.

It turns out that large m-values were caused by opinions taking only a set of values, 
resulting in small gaps throughout the histogram. This is easily understandable. Sup-
pose updates happen in increments of 0.1; if any opinion hits the maximum/minimum 
bound of the [−1, 1] range, its value will always be a multiple of 0.1 from that point on. 
Given enough time, eventually, every opinion will only be a multiple of 0.1. Despite this, 
large values generally led to a converging opinion distribution shape. On the other hand, 
the reason why η = 0.001 seemed to not result in a polarized state (indicated by high 
m-value) is that the update to opinion was too slow. When we examine the histogram, it 
can be seen that the distribution was actually leaning towards a bimodal shape.

In the final set of simulation on the parameters of the similarity function, µ can be 
interpreted as the tolerance of individuals to opinion difference. Smaller µ means even 
for small differences, individuals tend to reject propagating news. Conversely, large µ 
means individuals are tolerant. In a way, the step function could be viewed as an extreme 
case of the logistic function. B on the other hand can be interpreted as the how consist-
ent users are with their decision to accept news items. With this in mind, we can try to 
understand the simulation results contained in Fig. 8.

We see that polarization of opinion happened when the tolerance of individual is low 
enough. For the simulated parameter values, the limit lies in µ ≈ 0.3 , which translates 
to around 0.6 point differences on the [−1, 1] opinion spectrum. This behavior, in fact, 
aligns with the findings of previous models, particularly BCM [48] which is exactly 
designed to model tolerance.

Increasing the steepness of the logistic function through the parameter B seemed to 
increase the probability of polarization happening. While the general behavior of the 
two alternative functions is similar, a particular behavior was observed when the steep-
ness of the function becomes maximal in the form of a step function. Consider a pair of 
connected nodes u and v in a network where the overall connection strength is low. For 
the step function, if the opinion difference between u and v is at least four times µ , it will 
be almost impossible for news to propagate between the two. Neither of these nodes will 
accept and propagate news with an opinion the other can accept. The result is a more 
deterministic process (relative to when using the logistic function) which will lead to 
the existence of multiple isolated groups based on their opinions. This is what happened 
when we set µ = 0.1 , as indicated by the large m-value.

Overall, the results from the simulations involving the model parameters indicates that 
each parameters needs to be in a specific range of values so that polarization can happen. 
In the case that even one of these parameters is out of range, opinions will most likely 
converge. In our sets of simulations, requirements for these parameters was Θ < 0.5 , 
η ≈ 0.1 , and µ ≈ 0.3.
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Segregated propagation structure

To study the propagation structure of the network, we turn to the distribution of the 
connection strength parameter, cuv and its relation to the opinion parameter, qu . Fig-
ure 13 shows the growth and the final distribution of Q and C taken from two simula-
tion instances from the simulation described in “Effect of model parameters” section. 
One of these simulations converged (top) and the other polarized (bottom). The final 
distribution of c shown in the bottom part of the figure shows a clear separation between 
weak edges (cuv = 0) and the rest. While this separation happened in both simulation 
instances, the shape of the separation is different. Strong edges are clearly separated in 
both case, but weak edges are not distinctly separated in the converging instance as indi-
cated by the smooth decrease along the beginning of the x-axis. In addition, the number 
of edges with cuv = 0 is less (∼500) compared to the polarizing instance (∼1000).

This means that when opinions converge, the propagation structure is not segre-
gated. What is even more important than the simple existence of this edge separation 
is whether they function differently throughout the simulation. Even if the edges on the 
converging simulation can be considered to be separated, all of them is still identical in 
the sense that they connect nodes with similar opinions. For the polarized simulation, 
the distinction is functional: weak edges are seldom used in news propagation between 
nodes with opposing opinions and strong edges are responsible for the propagation of 
news in the network between nodes with similar opinions. The latter can be thought of 
as representing the true propagation structure of the network.

The subgraph of the network induced by the strong edges is visualized in Fig. 14. Ini-
tially, two communities with diverse opinion existed. After t = 1000 , opinion started to 
polarize. While the initial community structure still persisted, each community was then 
divided with regard to opinion. At t = 2500 , the initial structure faded and the opinion 
of the network was split into three: the extreme left, the moderates, and the extreme 
right. The propagation structure also clearly highlights this separation. It can be seen 
that nodes of moderate opinion acted as intermediaries between the two extremes. The 
behavior shown here is similar to the notion of polarization proposed in [35]. Subse-
quent propagation further exacerbated both structural segregation and opinion polari-
zation until finally the two opinion groups were fully separated. Note how the similarity 
between the subgraphs based on cuv and number of success increased until becoming 
almost identical at the end.

The main takeaway from the figure is the fact that polarization of opinion (signified by 
the darkening hue of the nodes and the disappearance of the intermediary white nodes) 
happened at the same time with the segregation in propagation structure (signified by 
the increasingly modular layout of the network). As a result of these two processes, echo 
chambers are formed in the network. This can also be observed earlier in the 2d growth 
histogram of Fig. 13 which also suggests that the opinion polarization and propagation 
structure segregation happens concurrently. One does not cause the other, but both of 
them happens as a consequence of the behavior of the PIC model. The same conclusion 
is also drawn upon individual examinations of the final opinion and connection strength 
histograms of every simulation instances. The polarization of opinion and connection 
strength always happened hand-in-hand; in no simulation instance either of them hap-
pened exclusively.
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To further confirm this idea, we examine the growth of homw for the polarizing simu-
lation instance. As shown in Fig. 15, homw increased overtime in both the entire net-
work and individual news propagation cascades. This means as opinion became more 
polarized (Fig. 13, top), so did both the structure of the entire network and the individ-
ual cascades. In the beginning, news propagated through nodes with different opinions, 
reflecting an inter-belief discussion in social media. However, this kind of discussion 
diminished as the network became more polarized. We also found that in later stages of 
polarization, the opinion of the news circulating inside a community was similar to the 
opinion of the member of the community, which is exactly what the echo chamber effect 
is.

Fig. 13  Average 2d growth histograms of qu (left diagrams of both boxes) and cuv (right diagrams) along 
with the histograms of their final state, taken from a converging (top) and a polarizing (bottom) simulation. 
Top: (Θ = 0.90, m-value ≈ 2) . Bottom: (Θ = 0.50, m-value ≈ 3)

Fig. 14  Visualization of the graph (leftmost) and subgraphs (right) of the network from a polarizing 
simulation instance constructed only from edges with c > avg c (top) and edges with number of 
propagation success > average number of propagation success (bottom) after t propagations of news for the 
same experiment instance. The shade of a node indicates its polarization q 
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Other resulting network structures

We established that the PIC model is capable of producing a polarized network struc-
ture (i.e., echo chambers) as observed in many empirical researches. Looking forward, 
one interesting question to be explored is what other network structure could it pro-
duce/replicate. We know that the PIC model itself is conceptually very particular in 
its design; each mechanism was chosen with the aim of producing polarization. How-
ever, there are specific parameter configurations that end up producing propagation 
structures that can not exactly be categorized as converging or polarizing. Given this 
ability, it would be insightful to check whether the PIC model can reproduce common 
archetypes of network structures in online social media.

While there are many past works that identified various network structures in 
online social medias, [65] in particular observed 6 typical Twitter network structures, 
one of which is exactly the segregated propagation structure produced by the PIC 
model. Here we briefly discuss the possibility of producing the other 5 with the model 
described in this work, and the modification it will take to do so should any of it is 
impossible for produce. This discussion can serve as pointers in future works to gen-
eralize the PIC model to encompass more network structures and phenomenon.

[65] identified 6 network archetypes, which are divided further into 3 pairs of 
related two. The first of these three pairs are polarized crowd and tight crowd. The 
former is characterized by the existence of two big communities with very few con-
nections among them. This is exactly a segregated propagation structure explained in 
“Segregated propagation structure” section. The PIC model is able to reliably produce 
this kind of network. The required conditions as identified in our simulations sets are 
propagation of polarized news items, low tolerance, and slow updates to opinion. The 
findings of [65] regarding the polarized crowd network archetype agrees with the first 
requirement, as most web URLs which circulates in it was found to be highly political 
and partisan.

Fig. 15  Growth of homw for the entire graph (left) and the propagation cascade (right) measured every 50 
propagation for the same experiment instance. A value of 0 on the right graph indicates the news item fails 
to propagate on the very first node
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On the other hand, the tight crowd network archetype features multiple large com-
munities which are highly connected. Interaction networks with more a large number 
of interacting communities were not produced in any simulation sets we performed. 
However, converging simulation instances matches other characteristics of the tight 
crowd network types: high participation among all members of the network and the 
absence of disconnected members. We believe that the absence of multiple commu-
nities in the network structure produced by the PIC model is simply a byproduct of 
simulating in LFR networks with two communities, i.e., the PIC behave is indifferent 
to initial network structure. In fact, looking at Fig. 14, we see that polarization hap-
pened almost independently w.r.t. community structure. Each of the two initial com-
munities splits into two. The same goes happens when opinions converge. Network 
with two initial communities will end up having the same two communities, only with 
converging opinions.

Figure 16 shows a sample of the resulting strong graph, representing the propaga-
tion structure for a simulation done in an LFR network with 3 communities. As can 
be seen, in the end the network still comprised exactly the 3 initial communities. We 
believe this is also the case with the tight crowd networks found in Twitter; their com-
munity structure is carried over from the actual communities of the Twitter users 
(e.g., group of friends, acquaintances, or families). Other than the community struc-
ture, the non-divided trait of this tight crowd is identical to converging simulation 
instances of the PIC model. The required condition for this type of network is non-
polarized news (high Θ).

The second network archetype pair found by [65] are called brand clusters and commu-
nity clusters. Both are characterized with a large proportion of lone nodes, representing 
those who are not engaged in any interactions with other members of the node. Another 
trait of these two network archetypes are multiple small/medium-sized communities 
that are isolated from one another. Within the context of our opinion model, multiple 
communities inside the interaction network should be signified by multiple peaks in the 
opinion distribution. Each peak will represent one community with similar opinion val-
ues. This matches well with one explanation from [65] about these clusters of communi-
ties; that they may be formed around different influencers, news sources, and audience. 
In our case, one community is centered around audiences with similar opinions.

One example of propagation structure matching the characteristics of brand clusters 
and community clusters produced by the PIC model can be seen in Fig. 17. This propaga-
tion structure is produced using the logistic similarity function, with µ = 0.025 (low tol-
erance) and B = 1000 (high certainty in news acceptance). In this simulation instance, Θ 
was set to 0.9, and η was set to 0.01 for connection strength update and 0.005 for opinion 
update. We found that in order for multiple peaks of opinion to form, the most impor-
tant condition to fulfill is low µ . Within the context of polarization study, this means that 
people are intolerant to different opinion. In a broader sense, the value of µ could also 
just be viewed as the amount of interest in different discussion groups. Low µ means 
members of the network in general have little interest in interacting with different sets of 
people, preferring to stick within a small community.

Having said that, we are unable to find parameters that exactly control the size of these 
small communities and connection between them so that we are able to confidently 
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differentiate between producing interaction networks of the brand clusters type and the 
community clusters type. Subsequent simulations with the previously mentioned param-
eters produced different sizes of communities and isolated nodes. Thus, the distinction 
between the two is determined by a factor not captured by the PIC model.

Among the 3 pairs of network archetypes explained in [65], we found that the only pair 
we are unable to reproduce is the last. The final two network archetypes, broadcast net-
work and support network, are characterized with the existence of very large hub nodes 
which are connected to the rest of the network. The former network type happens when 
these hubs broadcast news to the network, and the latter happens if the opposite hap-
pens. In addition, non-hub nodes are also not connected to each other.

There are several obvious reasons why our PIC model is unable to reproduce this kind 
of network. First, the relation between hub nodes and common nodes in these networks 
are asymmetric. As of current, the PIC model operates only on undirected networks, 
which means every connection is symmetric. This also makes it almost impossible to 
naturally develop any node in the network to become a hub node. In Twitter, many 
accounts are natural hub (e.g., celebrity, news outlet). This is not the case in simulations 
with the PIC model. To reproduce these two types of networks, the model needs to be 

Fig. 16  Example of a network belonging to the tight crowd archetype, produced by the PIC model
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modified to work on directed network. In addition, the underlying network also needs 
to have designated hub. In short, formation of the final two network types is most likely 
unrelated to the PIC model.

Conclusions
Concluding remarks

The phenomenon of polarization and echo chambers has been empirically observed in 
multiple corners of the online community. High degree of polarization has been con-
nected to unfavorable consequences such as extremism. Thus, the investigation of its 
behavior and evolution is consequential especially in the increasing prevalence of social 
media.

The PIC model we proposed is rooted in the idea that news affects the opinion of the 
masses. It incorporated a dynamic propagation probability rule based on selective expo-
sure and connection strength. The simulations we performed exhibited how news prop-
agates inside a social network and affect opinion of the nodes.This process will in turn 
govern future propagation pattern. The broadcast nature of information propagation and 
opinion updates is a natural translation of news sharing in social media, making the PIC 
model a more realistic depiction of opinion polarization than most existing models. In 
addition, the temporally dependent and consecutive nature of news propagation allowed 
us to observe the structure and growth of news propagation and opinion change.

We found that opinion polarizes under a reasonable degree of news polarization 
( Θ ≈ 0.50 ) with a state transition-like behavior. In relation to this, one important point 

Fig. 17  Example of a network belonging to the community clusters archetype, produced by the PIC model
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of discussion then is whether this degree of news polarization observed in the real world 
or not. While it is impossible to answer this question directly since news polarization I 
is immeasurable in real life, the common public perception of news media is that they 
are partisan [31]. In addition, empirical findings indicate that major online news outlets 
cater to and are mainly consumed by individuals from identical political leaning [53]. 
These suggest that the notion of polarized online news is not unfounded in real social 
media, especially with the increasing popularity of partisan news [17, 40].

The state transition-like behavior of polarization may seem to suggest that that the any 
effort to reduce partisan news will have little impact in eliminating polarization up until 
a certain threshold point. However, this is not true when we consider that news polari-
zation still retains a linear relationship with the average extremity of people’s opinion. 
What this means for policy-makers or stakeholders in the social media industry is that 
disregarding whether it would eradicate polarization or not (by crossing the polariza-
tion threshold), efforts in reducing news polarization will always be a worthwhile; even if 
people are still divided, their opinions will not be as extreme.

Other than the polarization of the cascading news itself, we found that important 
contributors to polarization are slow opinion update and low tolerance for opinion dif-
ference. All of these findings can be understood intuitively and matches what has been 
observed in previous models without news propagation [48]. The polarization of opinion 
happens concurrently with the segregation of the news propagation structure, reflected 
by strong edges of the network, resulting in the formation of echo chambers. This 
matches what has been empirically observed in [7, 9, 14, 18, 39, 73] and connects these 
aforementioned researches to the modeling of opinion dynamics. Structure segregation 
and opinion polarization share no apparent causal relationship.

We note that the design choices of our model are supported by the results of our abla-
tion study. In addition, the model is also able to reproduce its behavior on large, complex 
network. This means, similar to the IC model [42] it is based on, our model possesses a 
certain degree of validity for it to be used to explore problems related to news propaga-
tion and opinion. Problems such as finding parts of the social network which contribute 
the most to the flow of information and opinion change can be an extremely valuable 
asset for companies who are interested in generating favor for a new product or a politi-
cian on a campaign, for example.

In summary, the contributions of our work is as follows: it proposes a novel opinion 
model which describes how the propagation of news drive opinion dynamics; it stud-
ies the condition needed for polarization to happen inside a network of interconnected 
individuals; and it uncovers the relationship between the polarization of opinion and the 
segregation of propagation structure, which was never explained by previous opinion 
models.

Limitations and future works

The work described in this article is limited in more ways than one. First of all, the model 
is not truly validated in an empirical manner in the sense that there are no real data 
pulled from social networks that can exactly confirm that it was formed from the mech-
anisms described by the model. This kind of empirical validation is a non-trivial task 
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plagued with many difficult questions such as how to ethically collect such empirical 
data or how to truly quantify the opinion of a social network user at any given time. Con-
sidering the absence of such validation, it should be understood that causation between 
the mechanism explained by the PIC model and online polarization is not explicitly 
guaranteed. Instead, this work can be viewed as one of many mechanistic explanations 
[36] of online polarization. Nevertheless, we believe that our proposed mechanism will 
be invaluable in guiding the effort of identifying the actual mechanism behind echo 
chambers.

The second limitation is that behavior comparison with other recent models of polari-
zation has not yet been conducted. As such, we urge readers to refrain from referring to 
the PIC model as state-of-the-art. This would imply not only the existence of an absolute 
measure for goodness in predicting polarization, but also that other models are obsolete. 
In the first place, the aim of this study was never to offer one true model that exhaus-
tively and most accurately illustrate echo chambers, but to give an abstraction consisting 
of mechanisms we believe are of importance. Nevertheless, we reaffirm that the mecha-
nism proposed through the PIC model is one that has not yet been explored thoroughly 
by other past models.

Finally, the effect of network topology on the behavior of the model has yet to be inves-
tigated. In the results for the Twitter networks simulation we found that different net-
works display different degree of polarization tendency. We have yet to found a network 
measure that could match exactly this tendency.

The obvious future direction to this line of research is to overcome these limitations. 
Empirical validation or a systematic comparison with other models of polarization to 
evaluate is one important direction to take if one is aiming to identify the actual mecha-
nism of online polarization. It would also be particularly useful to find out exactly how 
network topologies affect polarization, as implied by the results of the Twitter networks 
simulation. This can be done by further scrutinizing the model through more extensive 
sets of simulation or even a rigorous mathematical analysis similar to what have been 
done to other families of opinion models. After all, the illustrative power of the model 
comes with additional parameters and complexity allowing rooms for more explorations 
such as investigating the effect of other news polarization distribution shapes.

Another interesting aspect to study in particular is the polarization threshold and the 
state transition-like behavior of the model. As is the case for the epidemic threshold in 
epidemiology study, finding the polarization threshold would immensely assist policy-
makers to prevent polarization in the most cost-efficient way possible. Finally, the model 
can be extended or modified to fit different scenarios such as the inclusion of biased 
assimilation, negative influence, or a stubborn agent. A more algorithmic take on the 
research could be done in the future, similar to [26, 27] in which the model is used to 
formulate a polarization minimization problem.
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