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Abstract 

Spatial change detection is a fundamental technique for finding the differences between two or more pieces of 
geometrical information. This technique is critical in some robotic applications, such as search and rescue, security, 
and surveillance. In these applications, it is desirable to find the differences quickly and robustly. The present paper 
proposes a fast and robust spatial change detection technique for a mobile robot using an on-board range sensors 
and a highly precise 3D map created by a 3D laser scanner. This technique first converts point clouds in a map and 
measured data to grid data (ND voxels) using normal distributions transform. The voxels in the map and the measured 
data are then compared according to the features of the ND voxels. Three techniques are introduced to make the 
proposed system robust for noise, that is, classification of point distribution, overlapping of voxels, and voting using 
consecutive sensing. The present paper shows the results of indoor and outdoor experiments using an RGB-D camera 
and an omni-directional laser scanner mounted on a mobile robot to confirm the performance of the proposed 
technique.
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Introduction
Spatial change detection is a fundamental technique for 
finding the differences between two or more pieces of 
geometrical information. This technique is indispensa-
ble in several applications, such as topographic change 
detection in airborne laser scanning [1, 2] or terrestrial 
laser scanning [3, 4], map maintenance in urban areas [5], 
preservation of cultural heritage [6], and analysis of plant 
growth [7]. In robotics, the detection of spatial changes 
around a robot is often used in some applications, such 
as daily service, search and rescue, security, and sur-
veillance. For example, service robots, such as cleaning 
robots or delivery robots, which are used on a daily basis, 
require the ability of spatial change detection in order 
to safely and efficiently co-exist with humans, because 

the environment can change dynamically according to 
human behavior. For these service robots, precise locali-
zation is also required in order to perform a desired 
task. To improve the accuracy of the localization, spatial 
change detection is also important. For example, when 
using scan matching (or ICP) for localization in an envi-
ronment where spatial changes exist, some points meas-
ured by an on-board range sensor are different from the 
points in the map created previously. In this case, these 
points caused by the spatial changes should be detected 
and removed before applying scan matching.

In our previous paper [8], we proposed a fast spa-
tial change detection technique by comparing 3D range 
data obtained by an on-board RGB-D camera (Kinect for 
Xbox One) and a high-precision 3D map created by a 3D 
laser scanner. This technique first converts point clouds 
in the map and measured data to grid data [normal distri-
butions (ND) voxels] by normal distributions transform 
(NDT) [9], and classifies the voxels into three categories. 
The voxels in the map and the measured data are then 
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compared according to the category and features of ND 
voxels. Overlapping and voting techniques are also intro-
duced in order to detect spatial changes more robustly. 
We conducted the preliminary experiments using a 
mobile robot equipped with a RGB-D camera in order to 
confirm the performance of the proposed spatial change 
detection techniques mainly in an indoor environment.

The present paper shows the experimental results of 
on-line localization and spatial change detection tech-
niques mainly in outdoor environment using an omni-
directional laser scanner (Velodybe HDL-32e). We also 
show the additional results of indoor experiments using 
an on-board RGB-D camera (Kinect for Xbox One). In 
the following sections, we firstly introduce the fast spatial 
change detection technique proposed in [8], and show 
the system settings. In addition, we conduct experiments 
in indoor and outdoor environments and compare the 
performance quantitatively with cutting-edge techniques.

Related research
Spatial change detection is a critical problem in some 
robotic applications [10–16]. Andreasson et al. [10] pro-
posed autonomous change detection for a security patrol 
robot. They used color and depth information obtained 
from a 3D laser range finder and a camera. A precise ref-
erence model was first created from multiple color and 
depth images and was registered by 3D normal distri-
butions transform (3D-NDT) [17] representation. Spa-
tial changes are detected by calculating the probabilistic 
value of the current point being different from the refer-
ence model using the 3D-NDT representation and color 
information. Saarinen et al. [18] proposed Normal Distri-
butions Transform Occupancy Maps (NDT-OM), which 
concurrently represent the occupancy probability and 
the shape distribution of points (NDT) in each voxel. The 
occupancy probability is calculated from a sensor model 
and the point distribution in the voxel, and the similarity 
measure of two NDT-OMs is defined by L2 distance func-
tion. Nùüez et  al. [11] proposed a fast change detection 
technique using a mixture Gaussian model and a fast and 
robust matching algorithm. Point-based comparison of an 
environmental model and a large number of point cloud 
data measured by an on-board range sensor requires 
a large calculation cost. In order to solve this problem, 
they represented the environmental model and the meas-
ured data with a mixture Gaussian model and processed 
the difference calculation using a high-speed algorithm. 
Fehr et al. [14] presents a 3D reconstruction technique of 
dynamic scenes involving movable objects using the trun-
cated signed distance function (TSDF). They represented 
the current scene with TSDF grids and compared them 
with previous TSDF grids to obtain segmented movable 
objects in the scene. Luft et al. [15] proposed a stochastic 

approach to evaluate whether a grid is changed in time 
according to full-map posteriors represented by real-
valued variables. Their technique enables consideration 
of the full-path information of the laser measurement, 
as opposed to end-point based approaches. Moreover, it 
considers the confidence about the cell values as opposed 
to occupancy maps or a most-likely maps. [16]. Palazzolo 
et al. [16] proposed a fast spacial change detection tech-
nique using a 3D model and a small number of 2D images. 
They assume a 3D model is given and spacial changes are 
detected using re-projection of 2D images without 3D 
reconstruction of the model.

In general, spatial change detection can be classified 
into three groups: point/mesh-based, height-based, and 
voxel-based comparisons. Point/mesh-based compari-
son [6, 19] is a technique that compares the distance of 
nearest points or meshes in two point clouds, which is 
similar to the ICP algorithm [20]. Lague et  al. [4] pro-
posed the use of the distance along normal direction of 
a local surface to make the algorithm robust to errors in 
3D terrain data measured by a terrestrial laser scanner. 
In [3], point clouds are converted to panoramic distance 
images, which are compared directly. The problem with 
this technique is the degree to which the proper thresh-
old is determined [19].

Height-based comparison is often used in geographi-
cal analysis in earth sciences. The digital elevation map 
(DEM) of difference (DoD) is a popular technique to 
compare geographical data captured by airborne or ter-
restrial laser scanners [2, 5, 21]. This technique also has 
the problem of selecting a proper threshold.

In voxel-based comparison, a point cloud is first con-
verted to a voxel representation using, for example, an 
octree structure. Performing the XOR of occupancy vox-
els is the simplest way [22] to find spatial differences. In 
[23], three metrics are compared in order to calculate the 
difference of voxels, which are the average distance, the 
plane orientation, and the Hausdorff distance. The Haus-
dorff distance is the maximum value of the minimum 
distances of points in two voxels and indicates the best 
performance. However, the computational cost of the 
Hausdorff distance is quite high, because closest point 
pairs must be determined. In spatial change detection in 
3D, not only point clouds but also a sequence of camera 
images has been used [24, 25].

The proposed technique is a voxel-based comparison 
method. However, rather than comparing the distances 
of points or meshes or the existence of occupied voxels 
directly, we used the point distribution in each voxel cal-
culated by 3D-NDT. We classify the distribution of points 
in a voxel into three categories and compare the voxels 
in different scans according to the category of voxels. 
Although Andreasson et  al. [10] also used 3D-NDT for 
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spatial change detection, their technique can be classified 
as a point-based comparison because they used 3D-NDT 
to calculate the probability of a point being different from 
the reference model.

Scona et al. [26] presented the construction technique 
of a static map using a RGB-D camera. This method uti-
lizes an energy function consisting of the errors in 2D 
images and the errors in the label assignment. Firstly 
the acquired color and depth images are segmented into 
several clusters, and the camera position and the label 
which indicates whether the current cluster belongs to 
a static object or not are determined simultaneously by 
minimizing the error function. A robust estimator using 
Cauchy penalty function is also adopted. In this method, 
the errors in color and depth images are simply defined 
as the difference of pixel values between the synthesized 
images from the map and the measured RGB-D data. 
In addition, the main purpose of the paper is to extract 
static objects to build a static map and not to detect 
newly appeared objects.

Fast 3D localization using NDT and a particle filter
We have proposed an efficient 3D global localization and 
tracking technique for a mobile robot in a large-scale 
environment using 3D geometrical map and a RGB-D 
camera [27]. Conventional 3D localization techniques 
using 3D environmental information utilize a registration 
method based on point-to-point correspondence such as 
Iterative Closest Point (ICP) algorithm [28, 29], or voxel-
to-voxel correspondence such as occupancy voxel count-
ing [30]. However, these techniques are computationally 
expensive or low accuracy due to the costly nearest point 
calculation or the discrete voxel representation, and hard 
to be applied for a global localization using a large-scale 
environmental map. To tackle this problem, the proposed 
technique utilizes a ND voxel representation (Fig.  1) 
[28]. Firstly, a 3D geometrical map represented by point-
clouds is converted to a number of ND voxels, and local 
features are extracted and stored as an environmental 
map. In addition, range data captured by a RGB-D cam-
era is also converted to the ND voxels, and local features 

are calculated. For global localization and tracking, the 
similarity of ND voxels between the environmental map 
and the sensory data is examined according to the local 
features, and optimum positions are determined in a 
framework of a particle filter.

Spatial change detection using ND voxels
In this section, we introduce a spatial change detection 
technique using ND voxels [8]. In “Fast 3D localization 
using NDT and a particle filter” section, the fast 3D local-
ization using NDT and a particle filter is introduced [27]. 
The proposed spatial change detection technique re-uses 
the ND voxels generated and used for the proposed local-
ization technique [27], and thus the computational cost 
for the spatial change detection can be saved.

The proposed spatial change detection technique is 
based on the voxel comparison. The most simple tech-
nique for spatial change detection using voxels is to com-
pare the existence of occupied voxels in a same space by 
XOR operation [22], in which a spatial change is con-
sidered to have occurred if an occupied voxel exists on 
the map data but does not exist in the measured data, 
or vice versa. This technique is simple and similar to the 
occupancy grid mapping in 2D localization. However, 
due to quantization errors or localization and measure-
ment errors, this simple technique does not work well in 
many cases. For example, if the localization error is larger 
than the voxel size, most of the voxels are labeled as spa-
tial changes. We cannot detect the changes if an object 
is replaced with another object at the same position. In 
order to tackle this problem and realize robust spatial 
change detection, the technique proposed in this section 
adopts the following three techniques. The procedure of 
the proposed technique is shown in Fig. 2.

1.	 Classification of point distribution in an ND voxel
2.	 Overlapping of voxels in map data

Normal distributions transform (NDT)

ND Voxels

Eigenplanes

Measured points

3D normal distribution

Fig. 1  Concept of NDT and ND voxels [17]

Map data Reference data

ND voxelOverlapping ND voxels

Comparison with
27 adjacent voxels

Voxel classificationVoxel classification

Voting 

Fig. 2  Spatial change detection procedure
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3.	 Voting of spatial change detection through sequential 
measurements.

Classification of point distributions in ND voxels
If we use the simple technique for spatial change detec-
tion by taking XOR between the map and the measured 
voxels mentioned above, it is impossible to detect spatial 
changes if the voxel includes not only point clouds to be 
detected as spatial change but also other stationary point 
clouds such as a floor or a wall. In addition, if an object is 
replaced with another object at the same position, this is 
not detectable because both voxels are occupied and the 
voxel occupancy is not changed.

To solve this problem, the proposed technique 
adopts the classification of the point distribution in 
ND voxels into three categories. In the calculation of 
NDT during the localization [27], three eigenvalues 
�1, �2, �3 (�1 < �2 < �3) and eigenvectors of a covari-
ance matrix of a point cloud in a voxel are obtained. The 
localization process uses these eigenvalues and eigenvec-
tors to extract representative planes and compares the 
map data with the measured data using a particle filter. In 
the spatial change detection, according to the following 
criteria for the eigenvalues, we classify the point distribu-
tion in ND voxels into three categories, that is, “Sphere”, 
“Sheet”, and “Line” (Fig.  3). In addition, if there are no 
measured points in a voxel, then we refer to the voxel as 
“Empty”. Thus, one of four labels, “Sphere”, “Sheet”, “Line”, 
and “Empty”, is assigned to each voxel.

Magnusson et  al. [31] also proposed a loop detection 
technique using the histogram of three shapes (spherical, 
planar, and linear), which are classified from point clouds 
according to the eigenvalues. In our case, we use these 

(1)Sphere �3 ≈ �2 ≈ �1 ≫ 0

(2)Sheet �3 ≈ �2 ≫ �1 ≈ 0

(3)Line �3 ≫ �2 ≈ �1 ≈ 0

classifications to evaluate the difference between the map 
and measured voxels.

If the voxels in the map and measured data are labeled 
with different categories, then we say that there is a 
spatial change in this space of the voxel. However, this 
technique cannot distinguish between similarly shaped 
objects. Thus, in addition to the technique above, we 
compare the normal or direction vectors of the sheets 
and the lines, which are the eigenvectors corresponding 
to minimum and maximum eigenvalues, respectively. If 
these vectors are sufficiently matched, then we consider 
that these voxels to have the same labels and ignore their 
spatial change. On the other hand, if both voxels have the 
same labels of “Sheet” or “Line”, but normal or direction 
vector of the sheet or line is significantly different, we 
consider there are spatial changes.

where n and v are the normal and direction vectors of 
the sheets and the lines which are eigenvectors corre-
sponding to the smallest and the largest eigenvalues, and 
Nt and Vt are proper thresholds. nmap and vmap are cal-
culated beforehand from the environmental map (point 
cloud) measured by a 3D laser scanner, and nmeasured and 
vmeasured are obtained using the measured map (point 
cloud) by an on-board range sensors. In the experiments 
in “Experiments in indoor and outdoor environments” 
section, we set Nt and Vt as 0.5. Similar idea can be seen 
in [23], in which “best fitting plane orientation” was used 
to evaluate the spatial changes.

Overlapping of voxels in map data
The proposed technique inherently involves a quantiza-
tion error because we divide the entire space into sev-
eral voxel grids and perform NDT for each voxel. Thus, 
the classification mentioned above is also affected by the 
quantization error. For example, the boundary between a 
floor and a wall is classified as “Sheet” if the majority of 
points in the voxel belong to either a floor or a wall. On 
the other hand, the boundary is classified as “Sphere” if 
both planes are evenly included.

In order to suppress the influence of quantization 
error, the proposed technique uses overlapping ND 
voxels [9]; that is, adjacent voxels overlap each other so 
that the centers of the voxels are displaced with half the 
voxel size, as shown in Fig.  4. As a result, every point 
in 3D space is involved with eight adjacent voxels since 
the voxels are overlapped with half the voxel size. In 
practice, 27 adjacent voxels are considered to increase 
robustness against measurement and localization 

(4)(nmap,nmeasured) < Nt (Sheets)

(5)(vmap, vmeasured) < Vt (Lines)

Fig. 3  Classification of point distribution in an ND voxel
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errors. Thus we compare the target voxel in the meas-
ured data with up to 27 adjacent voxels in the map data, 
and if at least one voxel in 27 voxels in the map data 
is similar enough to the target voxel in the measured 
data, that voxel is marked as “no change”. By comparing 
with 27 adjacent voxels, we can evaluate the degree of 
coincidence of the map and the measured data robustly 
with respect to the quantization error. Note that, in the 
proposed technique, overlapped ND voxels in the map 
can be calculated beforehand in order to reduce the on-
line calculation cost.

Voting of spatial change detection through sequential 
measurements
The measurement data taken from a range sensor are 
corrupted by noise, and the measurement noise tends 
to be detected as spatial change in some cases. However, 
sensor data can be acquired continuously and noise is 
added randomly. In order to suppress the influence of 
measurement noise, voting technology through sequen-
tial measurements is adopted. Here, we first extract the 
voxels that are regarded as spatially changed voxels in 
each measured datum. Then, we vote on these results for 
the voxels adjacent to the extracted voxel in a global coor-
dinate system with the following weights according to the 
3D normal distribution. Finally, if the voted score of the 
voxel becomes larger than a pre-determined threshold, 
the voxel is marked as “spatially changed”.

where p is the center of the adjacent voxel in the map 
data and c is the center of the original voxel in the meas-
ured data.

In the experiments in “Experiments in indoor and out-
door environments” section, we set the voxel size as 400 
mm and σ as 200 mm, and voted for the information of 
the spatial change to 27 adjacent voxels. We implemented 
the calculation of 3D NDT and the categorization of ND 
voxels with C++ using the PCL library (ndt_3d.cpp).

(6)w(p) = N (c, σ 2)

Experiments in indoor and outdoor environments
Indoor experiments
We conducted experiments in two indoor environ-
ments in order to confirm the performance of the pro-
posed technique. The mobile robot system used in the 
experiments is shown in Fig. 5. This robot is equipped 
with an omni-directional laser scanner (Velodyne 
HDL-32e) and an RGB-D camera (Kinect for Xbox 
One, Microsoft).

The procedure of localization and spatial change 
detection is shown in Fig.  6. Firstly, the map data is 
measured by a precise 3D laser scanner and (over-
lapped) ND voxels and their labels (“Sphere”, “Sheet”, 
“Line”, or “Empty”) are calculated beforehand. For 
detecting the spatial changes, the reference data meas-
ured by Velodyne HDL-32e is transferred to the ND 
voxels. Then the ND voxels in the map and reference 
data are compared and the robot position is determined 
by the NDT-based localization technique in “Fast 3D 
localization using NDT and a particle filter” section 
[27]. Obtained coordination transformation informa-
tion is applied to the reference data measured by Kinect 
and ND voxels are calculated. Finally, the overlapped 

Fig. 4  Overlapping ND voxels

Velodyne HDL-32e

Kinect for Xbox One

Fig. 5  Mobile robot system equipped with an omni-directional laser 
scanner (Velodyne HDL-32e) and an RGB-D camera (Kinect, Microsoft)

Map data
Reference data
Velodyne HDL32e

ND voxel ND voxel

Alignment

Coordinate 
transform

Reference data
Kinect

ND voxel

Voxel classification

Overlapping ND voxels

Comparison and voting

Change detection

Voxel classification

Fig. 6  Procedure of localization and spatial change detection
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ND voxels in the map and the ND voxels in the refer-
ence data are compared by the proposed technique and 
the spatial changes are detected.

Spatial change detection in a corridor
Firstly, we conducted an experiment for spatial change 
detection in a narrow corridor. The environmen-
tal map of the corridor was created by scanning from 
three positions using the high precision laser scan-
ner (Faro Focus 3D) beforehand. Figures  7 and  8 show 
the experimental setup and the positions of five objects 
placed as spatial changes. The sizes of these objects are 
1�, 40 cm× 40 cm× 40 cm ; 2�, 40 cm× 40 cm× 120 cm ; 
3�, 40 cm× 40 cm× 80 cm ; 4�, 40 cm× 80 cm× 40 cm ; 
and 5�, 40 cm× 40 cm× 80 cm ; respectively. The robot 
moved straight for 8 [m], turned right at the corner, and 
moved straight for 7 [m] again. In this experiment, we 
used the RGB-D camera for the localization instead of 
the omni-directional laser scanner and captured 75 range 
images using the RGB-D camera when the robot stopped 
on the route. These range images were used offline for 
localization and spatial change detection. The voxel size 
for localization and the spatial change detection is 40 cm 
and the number of particles is fix set to be 2000. The pro-
cessing time of this experiment is shown in Table 1, and 
the localization was not processed in real-time since the 

RGB-D camera used for the localization takes the huge 
number of points and the localization takes much time.  

Figure  9a shows the detected regions (red cubes) 
which are estimated to be spatially changed using XOR 
calculation of occupied voxels [22]. Figure  9b–d show 
the detected regions (red, blue, and green cubes) using 
the classification of point distribution (“Classification of 
point distributions in ND voxels” section), classification 
and overlapping of voxels in map data (“Overlapping of 
voxels in map data” section), classification, overlapping, 
and voting of spacial changes through sequential meas-
urements (“Voting of spatial change detection through 
sequential measurements” section), respectively. In 
Fig. 9b–d, detected voxels classified as “Sphere”, “Sheet” 
and “Line” are illustrated by red, blue, and green cubes, 
respectively. Table 2 shows the number of voxels detected 
as spatial changes. As shown Fig. 9d, the regions of spa-
tial changes are mostly detected by the proposed tech-
nique in “Spatial change detection using ND voxels” 
section. One region is misdetected as a spatial change. 
In this region, the measured points by the RGB-D cam-
era are classified as “Line” due to the occlusion caused 
by a single viewpoint. However, this region is classified 
as “Sheet” in the map created by the high precision laser 
scanner since no occlusion was occurred in the measure-
ment from multiple viewpoints.

In addition, we measured the precise position of the 
robot when the robot stopped using the laser scanner in 
order to evaluate the accuracy of localization. The aver-
age of the positioning error at 16 positions was 0.171 [m].

Spatial change detection in a hall
Next, we conducted an experiment for spatial change 
detection in a large hall with dimensions of 40 m× 11 m . 
We placed eight objects having dimensions of a� 10 cm× 
10 cm× 10 cm ( 1© and 5© ), b� 20 cm× 20 cm× 20 cm 
( 2© and 6© ), c� 30 cm × 30 cm× 30 cm ( 3© and 7© ), and 

Fig. 7  Indoor environment (Corridor)

8m

7m

1

2

3

5

4

Fig. 8  Spatial changes (5 boxes)

Table 1  Processing time

Localization 18.04 [s]

Spatial change detection 0.103 [s]

Table 2  Number of voxels detected as spatial changes

(a) XOR 296

(b) Classification 328

(c) Classification and overlapping 691

(d) Classification, overlapping, and voting (proposed) 84
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d� 40 cm× 40 cm× 40 cm ( 4© and 8© ) at the positions 
shown in Fig. 10.

The robot (Fig.  5) then moves along the desired path 
shown in Fig.  10 automatically and fuses the position 
information from the particle filter [27] and odometry at 
1 Hz. The omni-directional laser scanner is used for the 
real-time localization. The range data from the RGB-D 
camera (measured data) are transformed using the esti-
mated position information and compared with the envi-
ronmental map using the proposed technique. In this 
experiment, the voxel size for localization and the spatial 
change detection is 40 cm.

Figure  10 shows the detected spatial changes by the 
proposed method. Though one region is misdetected as 
indicated by a white circle, the four kinds of objects that 
are placed at eight positions later are correctly detected 
in this experiment. We run the robot from the same ini-
tial position to the target position by taking RGB-D data 
ten times, and obtained the detection rate of the spatial 
changes as shown in Table 3. Note that we considered the 
object is detected in case that at least one voxel contain-
ing vertexes, edges, or planes of the object is detected as 
spatially changed.

We also compared the performance of the proposed 
method with the 3D-NDT based spatial change detection 
by Andreasson et al. [10], L2 distance function [18], and 
simple methods using XOR calculation [22]. The detec-
tion rates of the spatial changes for these techniques are 
shown in Table  3. Figure  11a shows the detected spa-
tial changes by the 3D-NDT based method [10]. In this 
experiment, we used the depth images captured by the 
RGB-D camera only and the color images were not used. 
Although the changed regions are mostly detected, some 
regions are misdetected or undetected.

Figure  11b shows the detected spatial changes by L2 
distance function [18]. Figure  11c, d show the detected 
spatial changes by taking XOR between the map and the 
measured voxels [22]. Figure  11d uses the overlapped 
voxels in the map and we judged that the voxel is not 
spatially changed if at least one voxel among 27 map vox-
els adjacent to the measured voxel is occupied. In these 
experiments using XOR calculation, a number of misde-
tected regions are found, which are mainly caused by the 
positioning error of the mobile robot. On the other hand, 
the proposed method (Fig. 10) is robust against position 
error due to voxel classification and voting technique.

voxels distribution

false detection

distribution and overlapping

a XOR calculation of occupied b Classification of point

c Classification of point
d Proposed technique

(Classification of point distribution,
overlapping, and voting)

Fig. 9  Detected spatial changes (red) in a corridor
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Finally, we show the precision and recall of the detec-
tion of voxels which are specially changed for each 
method in Table  4. We used the overlapped voxels in 
the map and considered the voxel in the map should 
be detected as spatially changed if it contains vertexes, 
edges, or planes of the objects. Table  4 shows that the 
proposed method, which uses classification of point dis-
tribution, overlapping voxels, and voting techniques, 
gives highest precision (98.50 %) and outperforms other 
techniques. Figure  12 shows PR and ROC curves for 
each method using various parameters. In these figures, 
we can say that the proposed technique outperforms the 
conventional 3D-NDT [10] and L2 distance based tech-
niques. Note that the recalls are considerably low in all 
methods. This is because all voxels including at least one 
vertex, edge, or plane of the object are regarded as the 
correct voxels to be detected, and therefore, for example, 

the voxels on a wall hidden by the object are considered 
as missing voxels which are not correctly detected.

Table  5 shows the average processing time for one 
cycle of each step during the experiments (Intel Core 
i7, 3.40  GHz). The average processing time for spatial 
change detection by the proposed technique is 20.4  ms 
including the conversion process of the depth images 
captured by the RGB-D camera to the ND voxel repre-
sentation. On the other hand, the processing time by the 
3D-NDT based spatial change detection [10] is 570.0 
ms and the proposed technique is 27.9 times faster than 
the 3D-NDT based technique. The simple method using 
XOR calculation [22] is slightly faster than the proposed 
method. Note that, since these processes can be executed 
independently, we run processes of localization and spa-
tial change detection at 1 Hz in the experiments.

Outdoor experiments
We conducted experiments in an outdoor environment. 
In an outdoor environment, it is very difficult to acquire 
range data using a RGB-D camera in direct sunlight. 
Therefore, the omni-directional laser scanner (Velodyne 
HDL-32e) was used not only for localization but also for 
spatial change detection. The horizontal resolution of the 
omni-directional laser scanner is about 1260 points for 
360°, and the vertical resolution is 32 lines for 41.3°. Thus, 
if the space is divided by uniform voxels, the number 

Initial position

Detected change

Final position

2

3 4Detected change Detected change

Misdetected
Detected change

Detected change

Misdetected

Misdetected

10 m

1234

56

78

Fig. 10  Detected changes. Four kinds of objects placed at eight positions are correctly detected using the proposed method

Table 3  The detection rate for four kinds of objects

Object (size) Detection rate [%]

Proposed 3D-NDT [10] L2 [18]

A ( 400× 400 mm) 100 100 95

B ( 300× 300 mm) 100 100 95

C ( 200× 200 mm) 85 75 50

D ( 100× 100 mm) 50 15 0
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of points measured by the laser scanner at each voxel 
decreases as it measure long distances. This makes the 
normal distribution calculation in each voxel very unsta-
ble. In addition, the objects in front of the robot should 
be detected correctly compared to the objects behind. 
Two techniques are used to overcome these problems; 
one is to attach the laser scanner to the robot at a slight 
angle, and the other is to accumulate consecutive scans in 
each voxel while moving.

Firstly, the omni-directional laser scanner is tilted 15° 
to increase the resolution of scanning in the front area of 
the robot as shown in Fig.  13. Figure  14 shows the dif-
ference of scan lines with and without tilting the omni-
directional laser scanner. If the laser scanner is tilted, the 
laser beams are densely projected on the floor in front 
of the robot. In addition, as shown in Fig  15, if a robot 
moves along a wall, the laser beam is projected diagonally 
on the wall and the range data is obtained densely as the 
robot moves. On the other hand, if the laser is not tilted 
and placed parallel to the floor, the laser beam is pro-
jected horizontally on the wall, and no new data can be 
obtained even if the robot moves.

In addition, in order to increase the number of 3D 
points in NDT calculation for each voxel, we uses the 
consecutive scan data assigned to each voxel and the 
accumulated scan data are converted to ND voxels. In 
the experiments, two consecutive frames are used for 
the calculation of ND voxel at once.

In the experiments, we first scan the outdoor environ-
ment from three positions using a high-precision laser 

Misdetected regions

Undetected objects

a 3D-NDT based spatial change detection [10]

Misdetected regions

Undetected objects

b L2 distance function [18]

Misdetected regions

c Taking XOR of occupancy voxels [22]

Misdetected regions

Undetected objects

d Taking XOR of overlapped occupancy voxels

Fig. 11  Detected changes by a 3D-NDT based spatial change detection [10], b L2 distance function [18], c taking XOR of occupancy voxels [22], and 
d taking XOR of overlapped occupancy voxels. Misdetected regions and undetected objects are indicated by white circles and crosses

Table 4  Precision and recall [%]

Precision Recall

3D-NDT [10] 61.90 4.79

L2 [18] 81.19 1.11

XOR [22] 17.55 3.95

XOR (overlapped) 69.99 1.71

Classification 22.74 2.47

Classification, overlapping 61.77 26.06

Classification, overlapping, voting 
(proposed)

98.50 7.58
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scanner (Faro Focus 3D) and obtained an environmen-
tal map. The procedure of the outdoor experiments is 
shown in Fig. 16. This procedure is almost the same as 
the procedure in indoor environment shown in Fig.  6, 
but the on-board sensor for the spatial change detec-
tion is changed from Kinect to Velodyne HDL-32e.

We then placed eight objects having dimen-
sions of a© , 10 cm× 10 cm× 10 cm at 1© and 
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Fig. 12  PR and ROC curves in indoor experiment

Table 5  Processing time for each step

Localization Spatial change detection

827.2 [m]  3D-NDT [10] 570.0 [ms]

 L2 [18] 17.2 [ms]

 XOR [22] 17.9 [ms]

 XOR (overlapped) 19.4 [ms]

 Proposed 20.4 [ms]

Velodyne HDL-32e 

tilting 15 degrees

Fig. 13  Mobile robot tilting the omni-directional laser scanner 15°

a Without tilting

sparse

b With tilting

dense

Fig. 14  Scan lines (black lines) with and without tilting the 
omni-directional laser scanner

b Laser scanner is not tilted.a Laser scanner is tilted. 

Sweep area

Fig. 15  If the laser scanner is tilted, laser beams sweep an object 
such as a wall along the moving direction densely

Map data
Reference data
Velodyne HDL32e

ND voxel ND voxel

Alignment

Coordinate 
transform

ND voxel

Voxel classification

Overlapping ND voxels

Comparison and voting

Change detection

Voxel classification

Consecutive data
Velodyne HDL32e

Fig. 16  The procedure of the outdoor experiments
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5© ; b© , 20 cm× 20 cm× 20 cm at 2© and 6© ; c© , 
30 cm× 30 cm× 30 cm at 3© and 7© ; and d© , 
40 cm× 40 cm× 40 cm at 4© and 8© as shown in Fig. 17.

The robot moved 15 m as shown in Fig. 17 automati-
cally while voting spatial changes in 0.5 Hz. Total num-
ber of scans by the omni-directional laser scanner is 910 
frames. The localization and spatial change detection are 
processed on-line and in real-time.

Figure  18 shows the detected regions (red cubes) by 
the proposed procedure while moving the robot. In this 
experiment, 1© , 2© , 5© cannot be detected because the 
density of the measured points by the omni-directional 
laser scanner is not high compared to the RGB-D camera 
even if the omni-directional laser scanner is tilted.

Table 6 shows the average of the detection ratio by the 
proposed method, 3D-NDT [10], and L2 [18] after ten tri-
als. In this experiment, the smallest object D cannot be 
detected by all techniques.

Table  7 shows the precision and recall of the detec-
tion of voxels and Fig. 19 shows PR and ROC curves for 
each method using various parameters. In these figures, 
we can say that the proposed technique outperforms 
the conventional 3D-NDT [10] and L2 distance based 
techniques.

Fig. 17  Spatial changes (8 boxes)

Fig. 18  Detected spatial changes

Table 6  The detection rate for four kinds of objects

Object (size) Detection rate [%]

Proposed 3D-NDT [10] L2 [18]

A ( 400× 400 mm) 100 100 100

B ( 300× 300 mm) 100 85 100

C ( 200× 200 mm) 50 0 50

D ( 100× 100 mm) 5 0 0

Table 7  Precision and recall [%]

Precision Recall

3D-NDT [10] 59.22 5.63

L2 [18] 79.56 2.76

XOR [22] 9.96 0.91

XOR (overlapped) 42.71 0.34

Classification 13.13 2.54

Classification, overlapping 28.62 28.08

Classification, overlapping, voting 
(proposed)

91.55 9.95
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Conclusions
The present paper presented the results of the indoor and 
outdoor experiments of the fast spatial change detection 
technique for a mobile robot [8] using an on-board range 
sensors and a high-precision 3D map created using a 3D 
laser scanner. This technique first converts point clouds 
in a map and measured data to grid data (ND voxels) 
using NDT and classifies the voxels into three categories. 
The voxels in the map and measured data are then com-
pared according to the category and features of the ND 
voxels. The proposed technique consists of the following 
three techniques.

1.	 Classification of the point distribution
2.	 Overlapping of voxels in map data
3.	 Voting of spatial change detection through sequential 

measurements

The contributions of the paper are threefolds:

•	 We proposed a real-time spatial change detection 
technique using 3D-NDT and voxel classification. 
The proposed technique can be integrated with the 
real-time localization technique [27] using 3D-NDT 
and a particle filter and reduce the calculation cost.

•	 We implemented the proposed technique using PCL 
library and conducted the experiments in indoor 
and outdoor environments using the RGB-D camera 
(Microsoft Kinect) and the omni-directional laser 
scanner (Velodyne HDL-32e).

•	 Through the experiments in indoor and outdoor 
environments, we confirmed the proposed localiza-
tion and spatial change detection techniques can be 
processed in real-time using on-board sensors and 
the performance of the proposed techniques outper-
forms other cutting-edge techniques.

Future work includes performance evaluation of 
actual scenes, such as stations or market areas, and 

improvement of the performance by using other infor-
mation, such as color or laser reflectance. In particular, 
laser reflectance, which is obtained as a side product of 
range measurement by a laser scanner, is measured sta-
bly independent of the lighting condition, even at night. 
Therefore, as additional information, evaluating the spa-
tial change robustly is very useful.
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