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Abstract

We investigated ship navigation records known as Automatic Identification System (AIS) data near the source
region of the 2011 Tohoku, Japan, tsunami. The AIS data of 16 ships in the offshore navigation could be compiled
by about 40 min after the tsunami generation. Most of the AIS data showed notable deviation of the ship heading
from the course over ground during the tsunami passage. There was good agreement in terms of amplitude/phase
between the ship velocity and the simulated tsunami velocity in the direction normal to the ship heading. An
equation of motion due to wave drag and inertia forces was examined for an offshore movable floating body. We
explain that the ship movement in the direction normal to the heading immediately responds to the tsunami
current, and relative velocity between the ship and the tsunami current asymptotically become zero. This indicates
the movement velocity of navigating ships in the direction normal to the heading derived from AIS data will work
as an offshore tsunami current meter. We examined the AIS data during the 2011 Tohoku tsunami and showed
these data could be useful for tsunami source estimation and forecast. The AIS data in the current framework will
possibly be a crowd-sourced tool for monitoring offshore tsunami current and tsunami forecast.
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Introduction
Great earthquakes and tsunamis have caused significant
loss of life and property in coastal communities (ITIC
2015). In the 2004 Sumatra-Andaman, Indonesia, earth-
quake and the 2011 Tohoku, Japan, earthquake, most cas-
ualties (200,000 for the 2004 disaster and 20,000 for the
2011 disaster) were caused by the flooding due to the tsu-
namis (Satake 2014). Coastal mega cities have to prepare to
reduce these losses especially from the tsunamis. In
addition to constructing proper embankments in advance
of earthquake and tsunami occurrences (Tomita et al. 2012;
Suppasri et al. 2013; Raby et al. 2015), immediate actions of
individuals and groups after the earthquake/tsunami occur-
rences are critical for reducing significant, early-stage loss
of life (Mas et al. 2013; Makinoshima et al. 2016).
Real-time forecasting of great earthquakes and tsunamis

can be utilized for suitable decision-making for disaster miti-
gation. Real-time forecast systems should be robust and
reliable. Current systems are based on real-time Earth
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monitoring that uses onshore and offshore observations.
These observations include seismic waves (Allen et al. 2009;
Kamigaichi 2009), crustal deformation (Sagiya 2004; Ruhl
et al. 2017), and offshore sea level or the tsunami itself (Falck
et al. 2010; Kawai et al. 2013; Rabinovich and Eblé 2015).
Rapid earthquake-source estimation systems using

seismic-wave observations are popular. However, these
methods estimate a point source that may be indirectly
related to tsunamis, and are somehow difficult to
accurately constrain the tsunami source dimension par-
ticularly for great earthquakes (Katsumata et al. 2013;
Hoshiba and Ozaki 2014). Earthquake-source estimation
using Global Positioning System/Global Navigation
Satellite System (GPS/GNSS) observations of land de-
formation will suitably constrain the source dimension
with moment magnitude of nearshore (< 100 km from
the coast) earthquakes (Melgar and Bock 2015;
Kawamoto et al. 2017). For greater earthquakes (Mw >
8.5), in addition to the fault slip, seafloor failure due to
strong ground motion likely causes a certain portion of
tsunami (Kawamura et al. 2014; Løvholt et al. 2015). It is
better to use direct observations of offshore sea level to
estimate the resultant tsunami size.
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Real-time forecasting of great tsunamis based on off-
shore tsunami observations has been popular. The tsu-
nami forecast system using the Deep-ocean Assessment
and Reporting of Tsunamis (DART) buoys is well known
(Wei et al. 2013; Tang et al. 2016). The Japan Meteoro-
logical Agency (JMA) developed a tsunami forecast sys-
tem using cabled seafloor pressure and GPS-buoy
observations (Tsushima et al. 2011, 2012). These forecast
systems will be enhanced using real-time geodetic moni-
toring as well (Tsushima et al. 2014; Wei et al. 2014).
Forecast methods using very dense seafloor observation
networks have been also proposed independently (Maeda
et al. 2015; Igarashi et al. 2016; Yamamoto et al. 2016).
These forecast systems using offshore tsunami observa-
tions will be robust and reliable.
The observatories have to be maintained and sustained at

least until the next devastating tsunami. Such an event may
occur once typically during tens to hundreds of years at a
certain place (McCaffrey 2008; Rong et al. 2014). In general,
offshore observatories require higher maintenance costs
than onshore observatories, and replacements will be neces-
sary after endurance periods, typically several decades after
installation (Hirata et al. 2009). Tsunami forecast methods
especially measurement systems need sustainability as well
as reliability (NRC 2011; Bernard and Titov 2015). It is de-
sirable to propose and develop other sustainable methods of
monitoring and forecasting of great tsunamis.
Tsunami as sea-level change could be detected by ship-

borne GPS. A 10 cm tsunami caused by the 2010 Maule,
Chile, earthquake was detected by a vertical position change
derived from high-precision GPS of a navigating ship
(Foster et al. 2012). This indicates that navigating ship net-
works will serve as offshore tsunami observation networks
(Inazu et al. 2016). However, this requires high-precision
GPS facilities on most of the vessels to precisely measure
their positions as well as GPS buoys (Terada et al. 2015).
On the other hand, ship positions are currently aggregated
as the Automatic Identification System (AIS) data under
International Maritime Organization (IMO) regulations
(IMO 2002; Earles et al. 2010). The ship positions in the
AIS data do not include vertical position, and they are
mostly measured by ordinary GPS with meter-order preci-
sion which is employed in ordinary car navigation. There-
fore, if we employ ship GPS/AIS data to measure tsunami
height, it is necessary to update current facilities so as to es-
timate the high-precision locations of almost all of the ves-
sels and modify the regulations of the IMO.
During the 2011 Tohoku tsunami, a number of vessels

in ports drifted significantly and collisions occurred due
to strong tsunami currents (Suga et al. 2013; Suppasri
et al. 2014; Matsuda and Tomita 2015). The behaviors of
the ship horizontal drifts with collision in a port were
examined using AIS data with tsunami simulation
(Matsuda et al. 2012). The ship drifts should be affected
by tsunami currents; however, the relationship between
them still seems unclear due to a complicated situation
in the port. On the other hand, AIS data were also avail-
able in offshore regions during the tsunami. It was re-
ported that movement directions of several offshore
ships deviated during the tsunami (Makino 2013; Liu
et al. 2015). However, these reports merely showed the
facts and hardly described any quantitative relationship
between the deviations and the tsunami. There is still
much room to be clarified regarding the expected rela-
tionship between ship drifts and tsunamis.
In the present study, we examine the AIS records of

multiple ships navigating near the source region of the
2011 Tohoku tsunami. The relationship is investigated
quantitatively between the ship horizontal movement or
drift and the tsunami current. We describe the usefulness
of the AIS data to measure offshore tsunami currents and
to be applied to tsunami forecast.

AIS data
We can browse almost real-time ship distributions derived
from AIS data on web sites such as MarineTraffic (https://
www.marinetraffic.com/). According to the IMO
regulations, ships exceeding 300 gross tonnage and all pas-
senger ships have to send their AIS information via
very-high-frequency (VHF) radio transmission (Tetley and
Calcutt 2001; IMO 2002). The AIS data include dynamic
and static information. The dynamic information includes
latitude/longitude (without vertical height), speed over
ground (SOG), course over ground (COG), and ship head-
ing (HDG). The static information includes draft, Maritime
Mobile Service Identity (MMSI), ship type, and ship name.
The AIS data from nearshore vessels (< ~ 100 km from
coast) are received by coastal stations, and those from ships
farther offshore can be also received by low-Earth-orbit sat-
ellites such as ORBCOMM (Carson-Jackson 2012). The
number of ships recognized with AIS data is increasing year
by year with increasing seaborne trade and number of satel-
lites (Tournadre 2014; Willick 2014).

Ship distributions during the Tohoku tsunami
The 2011 Tohoku earthquake occurred at 05:46 (UTC) on
11 March 2011, and the resultant tsunami reached the
coasts with significant wave heights (> 10 m) 40–60 min
after the tsunami generation (Tsushima et al. 2011; Wei
et al. 2013; Saito et al. 2014). The tsunami currents were ex-
pected to be greater than 1 m/s near the coastal areas where
sea depth is shallower than 200 m (Sugawara and Goto
2012). Our tsunami simulation also shows such tsunami
heights and currents (Fig. 1). Due to such strong tsunami
currents, as mentioned above, a number of vessels in the
ports drifted significantly, resulting in collisions and severe
damages to buildings and structures there. On the other
hand, there were actually many offshore vessels navigating

https://www.marinetraffic.com
https://www.marinetraffic.com
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Fig. 1 a Tsunami source as sea-surface elevation due to the 2011 Tohoku tsunami (Saito et al. 2011). b Simulated maximum tsunami height with
its arrival time (contours in minutes). c Simulated maximum tsunami current velocity with its arrival time (contours in minutes). The tsunami
simulation is based on non-linear long-wave equations (Saito et al. 2014)
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near the earthquake/tsunami source. Just after the earth-
quake occurrence, although most of the AIS data offshore
of Miyagi were lost because coastal stations failed to receive
the AIS data probably due to near-source strong ground
motion, some data were obtained until the tsunami devas-
tated the coast (Fig. 2). The offshore navigating ships prob-
ably experienced tsunami currents of around 1 m/s (Fig. 1).

Ship drifting and tsunami current
AIS records
It was found that AIS messages were successfully re-
ceived from 16 vessels in offshore regions (depth > ~
100 m) during about 40 min after the earthquake occur-
rence. These ships were typical commercial ships such
as cargo ships and tankers. In the present study, the AIS
data of 13 vessels (#1–#13) were used for the tsunami
analysis, and 3 other vessels (*1–*3) were not used due
to data quality issues (Fig. 2 and Table 1).
We examined the speed over ground (SOG), the

course over ground (COG), and the heading (HDG)
of the offshore ships (Fig. 3). COG is the direction of
true ship movement. HDG denotes the direction of
ship heading that is measured by an ordinary mag-
netic/gyro compass. SOG and COG are measured by
the time evolution of ordinary GNSS positioning.
Though COG and HDG are expected to be consistent
under normal weather/ocean conditions, it was re-
ported that there were significant deviations between
COG and HDG during this tsunami as mentioned
above (Makino 2013; Liu et al. 2015).
We show examples of time evolution of AIS records of

navigating ships (Fig. 4). One ship offshore of Iwate (#3)
was moving northward (HDG ~ 10°) before and after the
earthquake occurrence. Just after the earthquake, the
captain may have reduced the ship velocity (from 6.8 to
5.7 m/s) probably because of receiving an early tsunami
warning. Although there was no significant deviation
between COG and HDG until 15 min after the earth-
quake, there was significant deviation (> 5°) after that.
Another ship offshore of Fukushima (#5) was moving
southward (HDG ~ 185°). While this ship was going with
constant speed (~ 6.0 m/s) during this earthquake and
tsunami, the deviation between COG and HDG was evi-
dent (> 5°) after 20 min after the earthquake. Other ex-
amples that were used or not for the analysis are shown
in Additional file 1: Figure S1.
We investigate the relationship between the devi-

ation and the tsunami current. Ship propulsion during
ordinary offshore navigation is imposed mostly in the
HDG direction. The deviation between COG and
HDG is reasonably caused by the normal component
of external force against the HDG. Here, ship velocity
and tsunami current are examined in the direction
normal to the HDG (Fig. 3).
The ship velocity component in the direction normal

to the HDG is:
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Fig. 2 Ship distributions derived from AIS data during the 2011 Tohoku
tsunami. Distributions at a 0 min, b 2 min, c 24 min, and d 45 min after
the earthquake occurrence are shown. In c and d, the right panel
enlarges the rectangular area in the left panel, and blue lines trace ship
tracks of 13 offshore vessels during 0–45 min after the earthquake
occurrence (Table 1). Dashed isobaths of 100 and 500 m are added
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v ¼ SOG sin COG−HDGð Þ: ð1Þ
The tsunami current component in the HDG-normal dir-

ection is calculated at respective ships by using a tsunami
simulation (Saito et al. 2014) with a validated tsunami
source (Saito et al. 2011; Baba et al. 2017). We confirm not-
ably good agreement between the ship velocity and the tsu-
nami current in the HDG-normal direction for almost all
the ships navigating offshore (Fig. 5). The velocity ampli-
tudes are ~ 1 m/s or more and agree within the ship and
the tsunami. Lag time of the velocity between them are
mostly shorter than ± 2 min. Thus, these AIS data are a
clear proxy for tsunami currents with the equivalent ampli-
tude in the HDG-normal direction.

Measurable tsunami current
We evaluate the relationship between the ship velocity
and the tsunami current (Fig. 5) using an equation of
motion of a movable floating body (Reddy and Swamidas
2013). The floating body is the navigating vessel. Since
ship propulsion is likely imposed in the HDG direction
in ordinary offshore navigation with autopilot, the equa-
tion of motion is applied in the HDG-normal direction
in which only the external force works:

m
∂v
∂t

¼ FD þ FI ; ð2aÞ

FD ¼ 1
2
CDρDL vc−vj j vc−vð Þ; ð2bÞ

FI ¼ CMρDLB
∂vc
∂t

− CM−1ð ÞρDLB ∂v
∂t

: ð2cÞ

Variables are summarized in Table 2. The driving
forces are the drag force (FD) and the inertia force (FI)
(O’Brien and Morison 1952; Dean and Dalrymple 1985).
The ship velocity of Eq. (1), v = SOG sin(COG −HDG),
is derived from observational AIS records (Fig. 5). D, L,
and B are given by static information from AIS data
(Table 1). The equation is often rewritten as (Reddy and
Swamidas 2013):

mþm0ð Þ ∂v
∂t

¼ 1
2
CDρDL vc−vj j vc−vð Þ

þ CMρDLB
∂vc
∂t

; ð3aÞ

m ¼ ρDLB; ð3bÞ



Table 1 Static information of vessels derived from AIS data, except for gross tonnage, which was taken from MarineTraffic
(https://www.marinetraffic.com/)

IDa Vessel type Gross tonnage Draught (m) Length (m) Breadth (m) Note

#1 Cargo 1658 5.0 98.52 15.0

#2 Cargo 499 4.5 74.71 12.0

#3 Tanker 2998 6.4 104.81 15.5

#4 Cargo 8566 5.3 119.5 20.4

#5 Tanker 3319 4.5 99.8 15.8

#6 Cargo 14,790 7.5 167 30.2

#7 Tanker 748 4.5 74.99 11.5

#8 Tanker 3869 4.8 104.94 16.0

#9 Cargo 12,526 6.7 199 24.5

#10 Tanker 414 N/A 57.29 10.0

#11 Cargo 3692 6.3 115 20.0

#12 N/A 499 4.0 76.2 13.0

#13 Cargo 748 5.0 83 14.0

*1 Cargo 77,871 9.9 273 47.0 Clock of HDG may have an offset

*2 N/A N/A 4.1 79 14.0 COG = HDG always declared

*3 N/A 9510 5.8 133.16 19.6 Cable-laying vessel, mostly stationary
aSerial IDs are used in this paper instead of MMSIs to protect vessel privacy
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m0 ¼ CM−1ð ÞρDLB: ð3cÞ

m is the mass of the ship that is equal to the water
mass of the submerged portion of the vessel, but this is
not always equal to the declared gross tonnage (Table 1).
m′ is the so-called added mass. Formulations similar to
Eq. (3) were proposed to evaluate ship motion due to
tsunami currents in ports and harbors (Ikeya et al.
2006). Here, we obtain:
Fig. 3 Schematic of speed over ground (SOG), course over ground
(COG), heading (HDG), and HDG-normal components of ship
velocity and tsunami current
∂v0

∂t
¼ −λ v0j jv0; ð4aÞ

v0 ¼ vc−v; ð4bÞ

λ ¼ 1
2
CD

CM

1
B
: ð4cÞ

This differential equation can be solved as:

v0 ¼ 1
λ

1
t þ trþ

for v0 > 0; ð5aÞ

v0 ¼ −
1
λ

1
t þ tr−

for v0 < 0; ð5bÞ

where tr+ and tr− are arbitrary time constants. We sup-
pose a motionless ship is forced by transient tsunami
current (vc) in the HDG-normal direction, and consider
the response of the ship velocity (v) to the tsunami
current. A proper condition is v′ = vc at t = 0, and v′ = 0
at t =∞, which determines the constants. Then,

v0 ¼ vc
1þ vcλt

for v0 > 0; ð6aÞ

v0 ¼ vc
1−vcλt

for v0 < 0: ð6bÞ

The profile of v′ = vc − v is shown in Fig. 6. It is under-
standable that ∣vc − v∣ will shrink to zero with an order
of t−1. We estimate λ = 1/40–1/120 m−1 from representa-
tive values of CD ~ 1 with CM ~ 2 (Dean and Dalrymple
1985), and B = 10–30 m (Table 1), and consider the
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Fig. 4 a SOG, b COG/HDG, and c COG minus HDG of two selected ships (#3 and #5 in Fig. 2)
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tsunami current as vc ~ 1 m/s (Fig. 5). Once T1/2 is the
time that v becomes greater than half of vc (Fig. 6), we
obtain T1/2 = 1/vcλ = 40–120 s, indicating that the re-
sponse time is effectively less than a few minutes.
An estimation of the ratio of drag force (FD) to inertia

force (FI) known as the Keulegan-Carpenter number
(KC) (Keulegan and Carpenter 1958; Dean and Dalrym-
ple 1985) is:

KC ¼ vc
T
D
∝
FD

FI
: ð7Þ

We obtain a value as large as KC = 103 from the reasonable
condition of vc= 1 m/s (tsunami current),T= 103 s (tsunami
period), and D= 100 m (submerged depth of vessel) (Fig. 5
and Table 1). Tsunamis involve long waves with longer pe-
riods than ordinary wind waves. It is reasonable that ships
quickly respond to the drag force due to great tsunamis with
such amplitudes and time scales (Heo et al. 2015).
Thus, we can understand the result of equivalent ampli-

tude without a significantly biased lag time (less than ±
2 min) between the ship and tsunami velocity (Fig. 5).
This interpretation is very useful since Eq. (1) will be a
good proxy for measuring tsunami velocity. We may con-
sider that the short lag time (< ~ 120 s) is mostly negligible
compared to the great tsunami periods of 103 s. Then,

SOG sin COG−HDGð Þ ¼ v ≈ vc: ð8Þ
Regarding this approximation, we need to consider λ

and vc instead of ship mass for the response time of the
ship drift to the tsunami current (Eq. (6)). If vc is much
smaller than 1 m/s, the response time will be effectively
long. But what is important is great tsunamis as much as
~ 1 m/s or more. In such severe cases, the response will
be more immediate and the approximation is more ro-
bust. If B is larger, the response time will be longer. But a
large portion (~ 80%) of the total number of vessels is oc-
cupied by small- and/or medium-sized (< 25,000 gross
tonnage) vessels that typically involve breadths of < ~
30 m (EMSA 2017). Thus, most AIS data in the current
framework are already suitable as tsunami current meters,
especially for great tsunamis.

Tsunami inversion/forecast
Once the tsunami velocity can be measured by the ship vel-
ocity component in the direction normal to the ship head-
ing, it is worth carrying out inversion for real-time tsunami
forecast to estimate source and tsunami height. Fuji et al.
(2013) examined a tsunami inversion/forecast experiment
using pseudo observation of tsunami current derived from
coastal ocean radars (Hinata et al. 2011; Lipa et al. 2012;
Benjamin et al. 2016). They employed the tsunami current
instead of tsunami height for the inversion for the tsunami
source. In the present study, we employ tsunami currents
derived from the observational ship drifting (Fig. 5). Green’s
functions are composed by tsunami current components in
the HDG-normal directions of the respective moving vessel
by calculating from unit sources. Referring to our previous
study (Inazu et al. 2016), we allocate unit sources with the
same size/spacing and carry out the inversion/forecast.



Fig. 5 Observed ship velocity (green) and simulated tsunami current
(red) components in the HDG-normal direction. The ship velocity
component is calculated from Eq. (1)

Table 2 Notation used in equations

Symbol Notation

m Mass of ship

m′ Added mass

v Ship velocity component in the HDG-normal direction

vc Tsunami current component in the HDG-normal direction

t Time

FD Drag force due to the tsunami current relative to the ship
velocity

FI Inertia force due to water acceleration with respect to the
ship acceleration

CD Coefficient of drag force

CM Coefficient of inertia force

ρ Density of seawater

D Draught of ship

L Length of ship

B Breadth of ship

a

b

Fig. 6 Time evolution of a the solution of Eq. (6), and b tsunami
velocity (red) and associated response of ship velocity (green). T1/2
is time when v = vc/2
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The inversion/forecast is carried out using the AIS
data for 25 min after the earthquake occurrence
(Fig. 7). The result can show mostly similar features
in terms of both the source and the maximum tsu-
nami height at the coast, compared to those from the
validated source (Fig. 1). This indicates that ship vel-
ocity components in the HDG-normal direction of
multiple ships derived from AIS records will be pos-
sibly useful for tsunami source estimation and fore-
cast in addition to conventional tsunami height
observations at fixed stations.

Summary and remarks
The AIS records of offshore navigating vessels were ex-
amined during the 2011 Tohoku tsunami. The AIS re-
cords from 13 vessels near the tsunami source showed



a
b c

Fig. 7 Result of inversion using AIS data during 0–25 min after the earthquake occurrence: a observed ship velocity (green) and estimated
tsunami current (red) in the HDG-normal direction, b estimated tsunami source, and c estimated maximum wave height at the coast. In b, dots
are allocated unit sources. Red and gray curves in c are derived from the estimated source and from Fig. 1b, respectively

Inazu et al. Progress in Earth and Planetary Science  (2018) 5:38 Page 8 of 11
significant deviation of COG from HDG during the tsu-
nami passage.
We compared the observed ship velocity component to

the simulated tsunami velocity in the direction normal to
the ship heading and confirmed good agreement in terms
of amplitude (~ 1 m/s) with short lag times (< ~ 2 min) be-
tween them. Using an equation of motion of an offshore
movable floating body, we obtained an analytical solution
and understood that the ships immediately respond to the
great tsunami current with the equivalent velocity ampli-
tude in the HDG-normal direction.
This study indicates AIS data in the current frame-

work can be used as a tsunami current meter in one dir-
ection for each vessel. We also showed that the observed
tsunami velocity derived from the AIS data of multiple
vessels during the 2011 Tohoku tsunami could be useful
for tsunami source estimation and forecast.
The current AIS data are already provided via almost

real-time successive transmission. The number of ships rec-
ognized by the AIS has been increasing year by year
(UNCTAD 2017). We hope to exploit this large amount of
data and expect the use of AIS data will become a new
method for measuring and forecasting great tsunamis. Simi-
lar concepts of diverting information from crowd-sourced
agents to Earth monitoring recently have been also applied
to grasp earthquakes (Kong et al. 2016), winds, and ocean
currents (Miyazawa et al. 2015).
Suitable methods for forecast will need to be developed.

Assimilation/inversion of tsunami wave/current fields using
moving point observations will be a possible way (Fujii and
Satake 2007; Mulia et al. 2017). Such methods will be
adopted also for assimilating wave height fields derived
from satellite altimetry (Hamlington et al. 2012) and GNSS
reflectometry (Stosius et al. 2011; Clarizia et al. 2016).
Efforts to ensure a good quality of AIS data should be

made so that sophisticated forecast methods will work
well (Table 1 and Additional file 1: Figure S1). The mini-
mum requirement is to obtain the right records of the
HDG and the GNSS ship position. SOG and COG are
derived from GNSS. Ship officers can make adjustments
so that HDG and COG are consistent and there is no
substantial bias between them during offshore autopilot
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navigation in calm weather/ocean conditions. As long as
based on Eq. (1), tsunami current evaluation may be dif-
ficult when SOG is very slow. We may easily pick up
and omit very-slow-SOG vessels (< ~ 0.5 m/s) when a
great earthquake occurs. Further discussion will be ne-
cessary for automatically obtaining high-quality AIS data
in real-time operation.
Although Japan already has dense offshore observator-

ies for real-time tsunami monitoring and forecasting
(Kawai et al. 2013; Kaneda et al. 2015; Yamamoto et al.
2016), most countries, in particular developing coun-
tries, will not be able to install and maintain similar
dense offshore observatories mainly for economic rea-
sons. Hopefully, the use of the AIS data will play a role
in new tsunami monitoring/forecasting methods espe-
cially for developing countries such as those in South-
east Asia and South America. The density of vessels
increases in coastal mega cities with highly economic ac-
tivities. Tsunami disaster mitigation is especially import-
ant for such coastal mega cities due to their large
populations. Maritime activities will continue as long as
populations remain large. The use of the AIS data for
tsunami current monitoring may be a sustainable way of
tsunami disaster mitigation.

Additional file

Additional file 1: Figure S1. (a) SOG, (b) COG/HDG, and (c) COG minus
HDG of selected ships (#8 and #11 for upper panels and *1 and *3 for
lower panels). #8 and #11 are examples that were used for the tsunami
current analysis (See also Fig. 4). *1 and *3 were not used due to the
data quality issues noted in Table 1. (PDF 353 kb)
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