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Abstract

Background: Imaging techniques can provide information about the tumor non-invasively and have been shown
to provide information about the underlying genetic makeup. Correlating image-based phenotypes (radiomics)
with genomic analyses is an emerging area of research commonly referred to as “radiogenomics” or “imaging-
genomics”. The purpose of this study was to assess the potential for using an automated, quantitative radiomics
platform on magnetic resonance (MR) breast imaging for inferring underlying activity of clinically relevant gene
pathways derived from RNA sequencing of invasive breast cancers prior to therapy.

Methods: We performed quantitative radiomic analysis on 47 invasive breast cancers based on dynamic contrast
enhanced 3 Tesla MR images acquired before surgery and obtained gene expression data by performing total RNA
sequencing on corresponding fresh frozen tissue samples. We used gene set enrichment analysis to identify significant
associations between the 186 gene pathways and the 38 image-based features that have previously been validated.

Results: All radiomic size features were positively associated with multiple replication and proliferation pathways and
were negatively associated with the apoptosis pathway. Gene pathways related to immune system regulation and
extracellular signaling had the highest number of significant radiomic feature associations, with an average of 18.9 and
16 features per pathway, respectively. Tumors with upregulation of immune signaling pathways such as
T-cell receptor signaling and chemokine signaling as well as extracellular signaling pathways such as cell adhesion
molecule and cytokine-cytokine interactions were smaller, more spherical, and had a more heterogeneous texture
upon contrast enhancement. Tumors with higher expression levels of JAK/STAT and VEGF pathways had more
intratumor heterogeneity in image enhancement texture. Other pathways with robust associations to image-based
features include metabolic and catabolic pathways.
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Conclusions: We provide further evidence that MR imaging of breast tumors can infer underlying gene expression by
using RNA sequencing. Size and shape features were appropriately correlated with proliferative and apoptotic
pathways. Given the high number of radiomic feature associations with immune pathways, our results raise the
possibility of using MR imaging to distinguish tumors that are more immunologically active, although further studies
are necessary to confirm this observation.
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Background
Recent advances in image acquisition, computational
power, and algorithmic development have increased the
awareness of computational image analysis methods,
allowing for computer-extracted features, i.e. pheno-
types, from computer-aided diagnosis and quantitative
imaging algorithms to yield “radiomics”, i.e., the high
throughput conversion of complex imaging data sets
into a multi-dimensional feature space with extractable
characteristics [1–3]. Imaging techniques can provide
extractable information about the tumor non-invasively
and have been shown to provide information about the
underlying histopathology [4–9] as well as genetic makeup
of the tumor and tumor microenvironment [10–13].
Adoption of this technology in an effort to phenotypically
characterize solid tumors have been performed primarily
in patients with glioblastomas, head and neck, lung, and
breast cancers [10, 12, 14–26].
Correlating specific image-based phenotypes (radiomics)

with large-scale genomic analyses (genomics) is an emer-
ging area of research commonly referred to as “radioge-
nomics” or more specifically “imaging-genomics”. This
emerging field addresses novel high-throughput methods
of associating information-rich radiographic images with
genomic data as well as other clinically relevant informa-
tion [2, 12, 13, 21–25, 27]. Radiogenomics has the poten-
tial to impact diagnostic and therapeutic strategies by
creating more individualized prognostic signatures and
real time measurements in response to therapy.
The application of radiogenomics to breast cancer has

recently been gaining more attention. For example, studies
using mammographic images showed that radiographic
texture analysis could identify patients who are more likely
to carry BRCA1/2 mutation [28], and parenchymal pattern
and breast density were associated with UGT2B gene vari-
ation [29]. Higher-dimensional imaging data such as mag-
netic resonance imaging (MRI) have also been used to
associate radiologic features with underlying clinical or
histological characteristics [12, 13, 16, 17, 30–34]. However,
most of these studies have focused on a few clinical, histo-
pathologic, or genetic features. For example, Bhooshan et
al. classified features that were correlated with the ability to
distinguish invasive vs. non-invasive lesions as well as with
tumor grade [12, 13]. Mazurowski et al. demonstrated a

relationship between MRI enhancement dynamics with the
luminal subtypes of breast cancer [33]. Agrawal et al. was
able to show a correlation between certain MRI pheno-
types and HER-2 receptor subtype [16]. Gene expression
profiling was examined to a limited degree in another
study that correlated MRI phenotypes with Oncotype DX
output that predicted for survival [31].
Recent studies conducted by the TCGA Breast Pheno-

type Group examined breast MRI radiomics with clinical
stage, molecular classification, risk of recurrence, gene ex-
pression profiling, and other genomic analyses [21–25]. In
the most comprehensive breast radiogenomics study to
date, they analyzed 91 breast cancer cases that were ex-
tracted from The Cancer Genome Atlas (TCGA) and The
Cancer Imaging Archive (TCIA) datasets. In that study,
MRI tumor phenotypes derived from 1.5 Tesla scanners
were examined in relation to genomic features including
DNA mutation, copy number variation, miRNA expres-
sion, protein expression, and gene expression profiles.
Their data showed that gene expression profiling provided
the most robust information in terms of correlation with
radiomic phenotypes [25].
Here, we sought to further elucidate and validate rela-

tionships between imaging phenotypes and gene expres-
sion pathways by analyzing clinical MRI data of breast
cancers taken from higher resolution 3 T scanners at the
University of Chicago Medical Center using RNA sequen-
cing transcriptomic data extracted from corresponding
frozen tissue samples.

Materials and methods
Sample size and selection
Case selection was initially derived from a pool of 1236
patients with breast cancer who had undergone surgery
between 2007 and 2012. All patients had IRB consent to
allow for use of their tissue samples for further research.
We limited our search to 226 potential cases after includ-
ing only patient cases with frozen tissue available and
those that had breast MRI performed prior to surgery for
their breast cancer. We further excluded patients with
only DCIS, those with documented BRCA1/2 mutations,
and those who had received neoadjuvant chemotherapy,
as we were interested in pre-treatment gene expression
and imaging profiles. Out of the remaining 139 cases, we
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selected 50 for this study, which included only images
taken from our institution’s Phillips 3 T MRI scanner in
order to reduce image acquisition variability. Forty-seven
of these cases had complete dynamic contrast enhanced
time-lapsed images, while three cases only had a single
pre and post-contrast image. These 47 cases used for fur-
ther analyses included 12 triple negative breast cancer
cases as well as 26 randomly selected ER positive cases, 4
ER/HER2 positive cases, and 5 ER negative, HER2 positive
cases. Three pairs of cases were derived from bilateral
breast cancers, and two cases represented separate biopsy
areas from the same tumor. (Full case characteristics in-
cluded in Additional file 2: Figure S1).

RNA extraction, sequencing, and expression
quantification
Areas of malignant tissue were identified through light
microscopy using representative top slides derived from
5 μm sections of frozen tumor samples. These areas
were marked and scraped off for RNA extraction and
purification, which was performed using the Qiagen All-
Prep DNA/RNA/Protein mini kit protocol. All samples
were treated with the optional DNase step as described
in the protocol, and quality control was performed with
the Agilent 4200 Tapestation system. cDNA libraries
were constructed using the Illumina Truseq Stranded
Total RNA with Ribo-Zero Human kit. RNA sequencing
using 100 bp paired-end reads was performed on the Illu-
mina HisSeq 4000 at a depth of 80 million reads per sam-
ple. Adapter sequences were removed from raw sequencing
reads using Trimmomatic [35], a flexible trimmer designed
for Illumina sequence data. Alignment was performed
using the Spliced Transcripts Alignment to a Reference
(STAR) software [36], and expression quantification was
achieved using the python library HTSeq [37].

DCE-MRI data acquisition
Dynamic contrast–enhanced MR images (DCE-MRI) were
acquired using a dedicated 16-channel Philips SENSE-16
M breast coil on a 3 T Philips Healthcare Achieva system
(Best, Netherlands). The DCE-MRI protocol acquires one
pre- and 5 post-contrast-enhanced axial T1-weighted
images with fat suppression using 3D gradient-echo se-
quences (TR/TE 5.0/2.5, flip angle 10°, acquisition
matrix 448 X 448, slice thickness 1.6 mm, 250 slices, FOV
340mm, acquisition time 75 s). Gadodiamide contrast ma-
terial of 0.1 mmol/kg (Omniscan, GE Healthcare, Milwau-
kee, WI) was injected intravenously followed by a 20-mL
saline flush at 2mL/s. (Sample MRI images included in
Additional file 3: Figure S2).

Quantitative radiomics
The radiomics dataset had been calculated from MRIs in a
de-identified fashion [12, 18–20, 24, 32]. Out of the 50

cases, there were 47 MRI cases available with full dynamic
contrast enhanced images and 3 cases with only a single
pre- and post-image available. Each MRI case had been
reviewed by experienced academic radiologists at the
University of Chicago. The primary tumor location was in-
dicated by one of the radiologists (HA) and served as the
only input to our quantitative image analysis MRI worksta-
tion for the subsequent quantitative radiomics calculations
(Additional file 4: Figure S3). Each primary breast tumor
was automatically segmented from background parenchyma
using a fuzzy c-means clustering method [38]. Next, a total
of 38 mathematical features of the breast tumors were auto-
matically extracted. These features can be divided into six
MRI phenotypic categories describing the tumor [1] size,
[2] shape, [3] morphology, [4] enhancement texture, [5] kin-
etic curve assessment, and [6] enhancement-variance kinet-
ics [12, 18–20, 24, 32, 39] (Additional file 5: Figure S4). The
radiomic features were normalized to zero mean unit vari-
ance prior to downstream computerized analysis.

Gene set enrichment analysis
We studied the associations between the transcriptional
activities of genetic pathways included in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
[40] and the tumor radiomic phenotypes using Gene Set
Enrichment Analysis (GSEA) [41]. We used the GSEA
tool implemented in Bioconductor R package PIANO
[42] and the gene sets were KEGG pathways collected in
the Molecular Signature Database [43] that includes 186
genetic pathways or modules covering a wide range of
genetic and molecular functionalities. The RNA-seq data
were filtered to remove the genes with unreliable expres-
sions that could introduce significant noise or bias to the
analysis results. A gene was excluded from the analysis, if
its normalized read count was zero in 10 or more samples
or its average read count over all samples was smaller than
eight. After filtering, 15,544 genes were kept.
For each of the 38 radiomic phenotypes, we performed

the GSEA for identifying the KEGG pathways whose tran-
scriptional changes associated with the change of radiomic
phenotype. The gene-level statistic used to characterize
the relationship between a gene’s expression and a radio-
mic phenotype was the correlation coefficient resulted
from the Spearman rank correlation test. Nominal p-value
for evaluating the statistical significance of an association
was calculated based on 10,000 random gene sets. The
False Discovery Rate (FDR) was controlled for each radio-
mic phenotype over its association tests with all KEGG
pathways using the Benjamini-Hochberg procedure [44].
An association was deemed as statistically significant if
the adjusted p-value was ≤0.05. The associations between
gene sets and radiomic phenotypes were tested separately
for two different directions, i.e. positive association and
negative association.
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Results
We successfully obtained radiomic and gene expression
data from 47 cases (Fig. 1). Analysis of clinical DCE-
MRI images of these cases along with corresponding
gene expression data derived from RNA sequencing re-
vealed 119 gene expression pathways that had at least
one significant association with a radiomic phenotype
(Additional file 1: Table S1). Several of these pathways
were disease-specific pathways for particular organ sys-
tems, such as cardiovascular or neurological disease
associations. As we were interested in basic cellular and
physiologic pathways, we proceeded to analyze only non
disease-specific pathways, which resulted in a total of 91
expression pathways representing 26 major categories,
as denoted in the KEGG database (Additional file 1:
Table S1). To analyze which pathway categories had the
largest number of associations with radiomic pheno-
types, we examined the average number of significant as-
sociations per pathway according to each of the 26
major categories (Fig. 2). The most heavily represented
category involved immune regulation pathways. Other
pathways that were also highly represented included
those involved in cytokine-cytokine and cell adhesion re-
ceptor signaling, cellular proliferation and growth, lipid
and glycan metabolism, and canonical signaling cascades
including the JAK/STAT and VEGF pathways. We exam-
ine several of these major categories in further detail.

Cell growth and death
We first examined the relationship of radiomic features to
gene expression pathways involved in replication, prolifer-
ation, and apoptosis (Fig. 3). Based on prior studies, we
hypothesized that replication and proliferation pathways

would be positively correlated with size features [25]. We
included the apoptosis pathway as we expected it to offer
a negative contrast. In support of this hypothesis, our
results show that all size features (S1-S4) were positively
associated with multiple replication and proliferation
pathways and were negatively associated with the apop-
tosis pathway. Of note, all shape features (G1-G3) were
also significantly associated with the apoptosis pathway.
Sphericity was positively correlated to apoptosis while sur-
face area to volume ratio and irregularity were negatively
correlated to apoptosis.

Immune pathways
Out of all pathway categories, those related to immune
regulation had the highest number of significant corre-
lations with radiomic features, with an average of 18.9
associations per pathway (Fig. 2). A diverse set of im-
mune pathways was found to be associated with several
imaging features, ranging from adaptive immune re-
sponses such as B and T-cell signaling to more innate
immune responses such as toll-like and NOD-like re-
ceptor signaling and complement activation (Fig. 4).
Notably, the directionality of association for the im-
mune pathways were the same across individual im-
aging phenotypes, suggesting that these pathways,
which cover many different types of immune cells and
functional components of the immune system, influ-
ence the appearance of the tumor on the MRI in a simi-
lar fashion. Overall, higher immune pathway activation
was associated with smaller size, increased sphericity,
shaper margins, and more variable texture on contrast
imaging, all indicating better prognosis.

Fig. 1 Schematic of radiogenomic pipeline and analysis. From each case we obtained fresh frozen tumor tissue as well as the corresponding set
of dynamic contrast-enhanced MRI images of that tumor. Frozen tissue was then processed for total RNA extraction, sequencing, and expression
quantification while the images were subjected to quantitative radiomic analysis after a staff radiologist indicated the tumor center for input.
Final radiogenomic analysis combined these two datasets for gene set enrichment analysis
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Cell-cell interaction
Pathways related to extracellular signaling molecules had
the second highest number of significant correlations, with
an average of 16 associations per pathway (Fig. 2). We com-
pared these pathways to those involved in direct epithelial
cell-cell signaling, which only had an average of 2.7 associa-
tions per pathway. Of the pathways representing these inter-
actions, the two that had the most robust association with
radiomic features include the cell adhesion molecule (CAM)

signaling and the cytokine-cytokine receptor signaling cas-
cades (Fig. 5). All size phenotypes were negatively correlated
with these two pathways. All shape phenotypes were also
significantly associated with these two cascades, with posi-
tive associations seen with sphericity and negative associa-
tions with irregularity and surface area to volume ratio.
These correlations suggested that tumors that had higher
CAM and cytokine signaling events tended to be smaller,
more spherical, and less irregular in shape. All enhancement

Fig. 2 Radiomic feature associations by major pathway categories. Twenty-six major pathway categories pertaining to basic cellular and
physiologic functions are denoted on the x-axis. a The total number of radiomic to pathway feature associations for each category is shown on
the y-axis and graphed in descending order of frequency. b The average number of radiomic feature associations per pathway for each category
is shown on the y-axis, with the number of pathways in each categories labeled in parenthesis on the x-axis
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texture features (T1-T14) were significantly associated with
the cytokine cascade. Notably, positive correlations with
contrast, difference variance, entropy, and negative correla-
tions with image linearity and energy (image homogeneity)
suggest that higher cytokine signaling was associated with
more variability and less homogeneity on contrast MRI.

Signal transduction pathways
We next examined the relationship between the sig-
naling pathways and radiomic features. Six pathways
had at least one significant association with a radio-
mic feature (Fig. 6). Two of the pathways, the VEGF
and JAK/STAT signaling cascades, had the largest
number of associations, with 9 of 14 enhancement texture
phenotypes represented. These correlations suggested that
tumors with higher expression of these two pathways ap-
peared to have more intratumor heterogeneity in image
enhancement texture: positive correlation with contrast,
difference variance, and entropy, and negative correlation
with homogeneity and image linearity (correlation). Of
note, higher expression of the JAK/STAT pathway was also
negatively correlated with all size phenotypes, whereas no
such association was found with the VEGF pathway.

Discussion
Many of our findings suggest biological plausibility and
highlight interesting associations between the gene ex-
pression pathways and radiomic phenotypes that may be
clinically relevant. For example, all size phenotypes were
positively correlated with cell proliferation pathways and
negatively correlated with the apoptosis pathway. The re-
lationship between cell death and shape phenotypes sug-
gests that increased expression of the apoptosis pathway
was associated with more spherical and less irregular tu-
mors. While this particular relationship is biologically
predictable, it provides reassurance about the validity of
using these imaging features to gain insight about others,
perhaps less obvious gene expression pathways.
Perhaps most interestingly, we found that a diverse

array of immune related pathways had the most robust
relationship with imaging features. As a group, these
pathways tended to associate with similar features in the
same directionality: tumors with increased degree of
overall immune activation appeared to be more confined
on imaging as shown by negative correlation with size
features and positive correlation with sphericity. They
also tended to be more heterogeneous in texture upon
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Fig. 3 Cell Growth and Death. Associations between gene pathways and radiomic features are depicted via hierarchical clustering. Pathways involved
in replication and proliferation that have at least one significant positive (green) or negative (red) association with a radiomic features are included in
this diagram. These pathways include the canonical cell cycle, DNA replication, base excision repair, non-homologous end joining, mismatch repair,
and homologous recombination. Radiomic features are classified by the six characteristic categories, including size, shape, morphology, enhancement
texture, kinetic curve assessment, and enhancement-variance kinetics. The apoptosis pathway was also included for contrast
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contrast enhancement as seen by positive correlation
with entropy and negative correlation with energy. Many
of these imaging features were also similarly associated
with cytokine-cytokine and CAM pathways as well as
the JAK/STAT signaling cascades, which play an import-
ant role in immune regulation and in particular, lympho-
cyte signaling and activation. For example, Additional
file 3: Figure S2C and 2D show two tumors of similar
size, but the former represents a tumor with the highest
level of T-cell receptor signaling activity while the latter
represents a tumor with the lowest (Additional file 3:
Figure S2). Whether this may in part represent an in-
flux of tumor infiltrating lymphocytes deserves further
characterization, as it may assist in the prediction of
response to immune based therapies and neoadjuvant
chemotherapy [45, 46] and potentially other treatment
options as well.
The association between the VEGF pathway and several

radiomic phenotypes was also demonstrated in our study
and has a plausible mechanistic link. Dynamic contrast
enhanced MRI can quantify changes in the microvascular

physiology of tumors [47], and studies have shown the
ability for VEGF to alter the trans-endothelial transport of
contrast agent by diffusion [48]. In our study, increased
expression of VEGF was positively correlated with vari-
ability of enhancement and negatively correlated with en-
hancement texture homogeneity, supporting the idea that
VEGF activation may result in the disorganized formation
of “leaky vessels” quantifiable on DCE-MRI.
This is the first report to our knowledge that inte-

grates whole transcriptome analysis using RNASeq with
3 T DCE MRI data of patients with breast cancer. How-
ever, we acknowledge limitations of the study including
the relatively small sample size leading to an inability to
determine the causal relationship between the gene
pathway and radiomic features. Nevertheless, the associ-
ations that we do see are biologically plausible and could
lead to further advances in the analysis presented here.
Several other challenges remain that must be overcome
in order to better utilize the potential offered by this ap-
proach. For example, studies to date have only centered
on data gathered from a single tissue sample of a given
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Fig. 4 Immune Regulation. Pathways involved in immune regulation that have at least one significant positive (green) or negative (red)
association with a radiomic features are included in this diagram. These pathways include a broad array of cascades: antigen processing and
presentation, complement and coagulation, leukocyte migration, IgG mediated phagocytosis, RIG1-like receptor, cytosolic DNA sensing, IgE
receptor, hematopoiesis, chemokine signaling, B and T-cell signaling, NOD-like and toll-like receptors, and NK cell mediated cytotoxicity. Radiomic
features are classified by the six characteristic categories as described previously
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primary tumor. It is well known that the genetic makeup
of tumors is spatially heterogeneous, and thus, a more
accurate approach would be to correlate multiple tumor
biopsies with their respective anatomic location on MRI.
With techniques such as whole mount pathology being
developed, it may become more feasible to pursue this
idea. Also, standardization of imaging features poses a
challenge. While our focus on obtaining images from
one type of scanner and protocol improved the reliability
of our radiomics data set, we acknowledge that image
acquisition protocols also vary across institutions, and
generalization of our findings will need further valid-
ation with larger sample sizes and examination of ro-
bustness studies as previously conducted for computer
aided detection [39]. Lastly, as advanced MRI and other
imaging techniques [49] become more widely employed,
further harmonization and refinement of novel relation-
ships may be discovered.
The recently published TCGA/TCIA Breast Phenotype

Group study also combined DCE-MRI with RNA sequen-
cing data in 91 patients, using the same quantitative radio-
mic approach developed by the Giger lab, although the

MRIs performed in that study were acquired across
several different institutions and used 1.5 T scanners. Our
work further supports the feasibility of incorporating
radiomics from clinical MRIs with gene expression data in
support of the TCGA/TCIA Breast Phenotype Group ap-
proach using higher resolution 3 T scanners [25].
The incorporation of automated feature extraction

algorithms (i.e. quantitative radiomics) into routinely per-
formed, noninvasive imaging modalities, such as DCE-
MRI has the ability to stimulate the development and use
of imaging biomarkers that may provide clinicians inferred
biological information otherwise attainable only through
direct tissue biopsy. Potential applications include not
only improvement of diagnostic ability, but also adapta-
tion of neoadjuvant treatment plans of primary tumors in
real time, such as that seen in the recent I-SPY trials [50].

Conclusions
We provide further evidence that MR imaging of breast
tumors can infer underlying gene expression using RNA
sequencing data. As expected, size and shape features
were appropriately correlated with proliferative and
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Fig. 5 Cell-cell Interaction. Pathways involved in cell-cell interaction that have at least one significant positive (green) or negative (red) association with a
radiomic features are included in this diagram. These pathways include the gap and adherens junctions, extracellular matrix receptors, focal adhesion, cell
adhesion molecules, and cytokine-cytokine receptor cascades. Radiomic features are classified by the six characteristic categories as described previously
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apoptotic pathways. We also discovered a large number
of radiomic feature associations with immune path-
ways, which raises the interesting possibility of using
MR imaging to distinguish tumors that are more im-
munologically active, although further studies are neces-
sary to confirm this observation.

Additional files

Additional file 1: Table S1. Gene Set Enrichment Analysis and
Significant Pathways. The first tab includes all statistically significant
associations between radiomic features and genetic pathways included
in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. All
these associations are identified through Gene Set Enrichment Analysis
(GSEA). In the second tab, pathways are grouped by major categories
and listed with the total number of radiomic associations. (XLS 129 kb)

Additional file 2: Figure S1. Clinicopathologic Characteristics of Patient
Cases. Clinicopathologic parameters including age, pathologic stage,
grade, histologic subtype, receptor status, as well as additional
parameters involving type of surgery, chemoradiation, recurrence, and
death are shown. (PPTX 61 kb)

Additional file 3: Figure S2. Sample 3T MR Images. Four representative
cases are shown (A-D) with transverse cross-sections of breast tumors
depicted in each image. Figs. C and D represents the case with the high-
est and lowest score with respect to T-cell receptor
signaling pathway, respectively. Pathway score was obtained as follows:
for each gene in a pathway, gene’s expressions were ranked over

samples from high to low, and the average rank of all genes in the
pathway for each sample was obtained. (PPTX 225 kb)

Additional file 4: Figure S3. Radiomic Feature Extraction Pipeline.
Time-lapsed dynamic contrast enhanced MR images of breast cancer
tissue are collected, and a staff radiologist manually indicates the tumor
center. This serves as the input for computerized tumor segmentation,
which delineates the boundaries for the final step, extraction of image
phenotypes. Image phenotypes fall under six characteristic categories.
(PPTX 79 kb)

Additional file 5: Figure S4. Radiomic Features by Category. All thirty-
eight radiomic features extracted are listed according to six characteristic
category including size, shape, morphology, enhancement texture, kinetic
curve assessment, and enhancement-variance kinetics. (PPTX 205 kb)
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