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Abstract 

Steroidal compounds are of great interest in the pharmaceutical field, with steroidal drugs as the second largest 
category of medicine in the world. Advances in synthetic biology and metabolic engineering have enabled de novo 
biosynthesis of sterols and steroids in yeast, which is a green and safe production route for these valuable steroidal 
compounds. In this review, we summarize the metabolic engineering strategies developed and employed for improv-
ing the de novo biosynthesis of sterols and steroids in yeast based on the regulation mechanisms, and introduce the 
recent progresses in de novo synthesis of some typical sterols and steroids in yeast. The remaining challenges and 
future perspectives are also discussed.
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Introduction
Steroidal compounds are specific polycyclic terpenoids 
identified by a carbon skeleton called perhydrocyclo-
pentanophenanthrene (Tantuco et  al. 2000), with sterols 
and steroids which can be further divided into steroi-
dal hormones, steroidal saponins and steroidal alka-
loids as typical examples (Fig. 1). Sterols and steroids are 
extremely valuable in the pharmaceutical field. Ergos-
terol and 7-dehydrocholesterol (7-DHC) as typical ster-
ols are important precursors of vitamin D2 and vitamin 
D3, respectively (Bikle 2014; Tan et  al. 2003). Steroidal 
saponins such as diosgenin are mainly used for synthe-
sis of steroidal drugs (Wang et al. 2007), while steroidal 
alkaloids possess potential antimicrobial, analgesic, anti-
cancer and anti-inflammatory effects (Dey et  al. 2019). 
Steroidal hormone drugs are the second largest category 
of medicine in the world, right after the antibiotics, and 
the global market exceeds 10 billion dollars (Fernandez-
Cabezon et al. 2018).

The natural sources of sterols and steroids are animals 
and plants, extraction from which is costly due to the lim-
ited contents. Chemical synthesis of sterols and steroids 
from simple molecules has been developed (Kovganko 
and Ananich 1999; Nemoto et al. 1986), but the lengthy 
synthetic route and poor yields are obstacles to industri-
alization. Manufacturing steroids from natural substrates 
with the basic steroidal nucleus, like cholesterol, phytos-
terols and tigogenin, by semi-synthetic modification has 
also been realized (Ohta et al. 1997; Sambyal and Singh 
2020). With rapid development of synthetic biology, de 
novo biosynthesis of steroids from simple carbon sources 
like glucose using engineered microbial cell factories has 
emerged as a promising alternative approach.

Saccharomyces cerevisiae has been extensively 
employed as the chassis organism for steroids bio-
synthesis since it is generally regarded as safe (GRAS) 
feature, well-studied genetic background and read-
ily available manipulation tools. Up to now, de novo 
synthesis of cholesterol (Souza et  al. 2011), phytos-
terols (Xu et  al. 2020), diosgenin (Cheng et  al. 2021), 
hydrocortisone (Szczebara et  al. 2003), pregnenolone 
(Duport et al. 1998) has been enabled in S. cerevisiae. 
Besides, non-conventional yeast like Yarrowia lipol-
ytica and Pichia pastoris have also been engineered 
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to produce some sterols and steroids, like pregne-
nolone and cholesterol (Hirz et  al. 2013; Zhang et  al. 
2019). Recently, the advances on steroid bioproduc-
tion in yeast through biotransformation have been well 
reviewed together with the construction of de novo 
synthesis pathways for steroids without C24‑alkyl and 
steroids with saturated C7–C8 bond (Xu and Li 2020). 
In the present review, we will focus on the regulatory 
principles and metabolic engineering strategies for 
improving the de novo production of sterols and ster-
oids in yeast, and introduce the recent progresses in de 
novo biosynthesis of typical sterols and steroids. The 
existing challenges and future perspectives are also 
discussed.

The regulation mechanisms of sterols and steroids 
biosynthesis in yeast
Ergosterol synthesis pathway is the natural sterol syn-
thetic pathway in yeast and shares a number of inter-
mediates with the biosynthesis of cholesterol and 
phytosterols such as zymosterol (Souza et  al. 2011) and 
episterol (Xu et  al. 2020). Therefore, yeast is a suitable 
host for production of cholesterol and phytosterols, and 
can be further engineered for de novo synthesis of other 
valuable steroids (Xu and Li 2020). However, the biosyn-
thesis efficiency of heterogenous sterols and steroids is 
limited by the native regulation network in yeast, includ-
ing the competition between endogenous pathways and 
heterogenous enzymes (Guo et al. 2018), the rate-limiting 

Fig. 1  Examples of sterols and steroids. The endogenous sterol pathway in yeast is highlighted in yellow, heterogenous synthesis of animal-derived 
sterols in yeast is highlighted in red, heterogenous synthesis of phytosterols in yeast is highlighted in green and steroids derived from sterols are 
highlighted in blue. Solid arrows represent de novo routes examined in yeast and dashed arrows indicate potential synthetic pathways. De novo 
biosynthesis of the steroidal compounds marked in blue are not yet realized in yeast



Page 3 of 14Gu et al. Bioresour. Bioprocess.           (2021) 8:110 	

enzymes in the shared precursor pathway for ergosterol 
and the target sterols and steroids (Veen et al. 2003), the 
mechanism of sterol homeostasis (Wriessnegger and 
Pichler 2013), and other linked metabolic pathways.

Regulation of the ergosterol synthesis pathway
Ergosterol synthesis in yeast has been extensively stud-
ied, and can be divided into three stages: mevalonate 
biosynthesis, farnesyl pyrophosphate biosynthesis, 
and ergosterol biosynthesis [as reviewed in Liu et  al. 
(2019)]. Since excessive accumulation of squalene is 
often observed in biosynthesis of sterols and steroids 
(Polakowski et  al. 1998), the synthesis pathway can also 
be decomposed into the pre-squalene synthesis pathway 
and the post-squalene synthesis pathway (Fig.  2A). The 
flux of the pre-squalene synthesis pathway relies largely 
on the mevalonate (MVA) pathway, with 3-hydroxy-
3-methylglutaryl-CoA reductase (Hmgrp) as the main 
rate-limiting enzyme (Hu et  al. 2017). Hmgrp degrada-
tion via the ER-related degradation (ERAD) pathway acts 
as a native regulation mechanism for maintaining sterol 
homeostasis in case of excessive sterols (Jorda and Puig 
2020), while Hmgrp overexpression is a common meta-
bolic engineering strategy for enhancing sterols pro-
duction. Besides, as the starting material of the MVA 
pathway, supply of acetyl coenzyme A (acetyl-CoA) also 
regulates the pre-squalene pathway flux (Su et al. 2015). 
In the post-squalene pathway, the conversion of squalene 
to squalene epoxide catalyzed by squalene epoxidase 
(Erg1p) is a major rate-limiting step and its activity is 
restricted by oxygen availability (Jandrositz et  al. 1991). 
The catalytic reactions of cytochrome P450 lanosterol 
14α-demethylase (Erg11p), C-4 methyl sterol oxidase 
(Erg25p), C-5 sterol desaturase (Erg3p) and C-22 sterol 
desaturase (Erg5p) also utilize molecular oxygen as the 
electron acceptor. Besides oxygen, iron is also required 
in multiple enzymatic steps of the post-squalene path-
way. For example, Erg11p and Erg5p as members of the 

cytochrome P450 family require both oxygen and iron for 
the synthesis of heme; Erg25p and Erg3p are oxo-diiron 
enzymes belonging to the fatty acid hydroxylase/sterol 
desaturase family (Shakoury-Elizeh et  al. 2010). Among 
the metabolic intermediates in the post-squalene path-
way, zymosterol is the first found to be able to substi-
tute ergosterol as a yeast membrane component (Zinser 
et  al. 1993). The conversion of zymosterol to ergosterol 
involves five Erg enzymes [Erg6p, C-24 sterol methyl-
transferase; Erg2p, C-8 sterol isomerase; Erg3p, C-5 sterol 
desaturase; Erg5p; Erg4p, C24 (28) sterol reductase], the 
deletion of which did not affect yeast viability (Abe and 
Hiraki 2009; Palermo et  al. 1997). Previous studies sug-
gested low substrate specificity of these enzymes, which 
is associated with the generation of various intermediates 
(Heese-Peck et  al. 2002). Therefore, diverse sterols can 
be accumulated by blocking different genes in ERG2-6 
(Liu et  al. 2017). The composition of sterols under dif-
ferent blocking strategies was well summarized in John-
ston’s review (Johnston et al. 2020). Modifying the native 
ergosterol synthesis pathway by combined overexpres-
sion of ERG4 and ARE2 (encoding acyl-CoA sterol acyl-
transferase) genes has been shown efficient in improving 
ergosterol production (He et  al. 2007), which also pro-
vides hints for construction of yeast cell factories with 
high production of sterols and steroids.

The enzymes of the post-squalene pathway locate in 
the endoplasmic reticulum (ER) where sterols synthe-
sis takes place, and some of them [Erg1p, Erg7p (lanos-
terol cyclase/lanosterol synthase), Erg27p (3-keto-steroid 
reductase) and Erg6p] can also be found in lipid drop-
lets (LDs) where neutral lipids including steryl esters 
(SE) and triacylglycerols (TAG) are stored. Intriguingly, 
Erg6p is mainly found in LDs (Leber et al. 1998), and it is 
recruited to nascent LDs, contributing to the emergence, 
growth and stability of LDs (Choudhary and Schnei-
ter 2020). Expansion of the ER by overexpression of the 
regulator Ino2p was found conductive to the production 

(See figure on next page.)
Fig. 2  Regulation mechanisms and the corresponding metabolic engineering strategies for regulating de novo biosynthesis of sterols and 
steroids in yeast. A Mechanism and strategies for regulation of the ergosterol synthesis pathway; B Mechanism and strategies for regulation of 
sterol homeostasis. Enzymes: CoA coenzyme A; Erg10p acetoacetyl-CoA thiolase; Erg13p hydroxymethylglutaryl-coenzyme A synthase; Hmg1/2p 
hydroxymethylglutaryl-coenzyme A reductase; Erg12p mevalonate kinase; Erg8p phosphomevalonate kinase; Erg19p diphosphomevalonate 
decarboxylase; Idi1p isopentenyl diphosphate isomerase; Erg20p polyprenyl synthetase; Erg9p squalene synthetase; Erg1p squalene epoxidase; 
Erg7p lanosterol cyclase/lanosterol synthase; Erg11p cytochrome P450 lanosterol 14α-demethylase; Erg24p sterol C-14 reductase; Erg25p C-4 
methyl sterol oxidase; Erg26p sterol C-4 decarboxylases; Erg27p 3-keto-steroid reductase; Erg6p C-24 sterol methyltransferase; Erg2p C-8 sterol 
isomerase; Erg3p C-5 sterol desaturase; Erg5p C-22 sterol desaturase; Erg4p C24 (28) sterol reductase; Adh2p alcohol dehydrogenase; Ald6p aldehyde 
dehydrogenase; Acsp acetyl-CoA synthetase; Aclp ATP-citrate lyase; Acc1p/Hfa1p acetyl-CoA carboxylase; Pox1-6p peroxisome acyl-CoA oxidase 
1–6; AOX1p alternative oxidase; NOXp NADH oxidase; Are1/2p acyl-CoA sterol acyltransferase; Tgl1p steryl ester hydrolase; Yeh1/2p yeast steryl 
ester hydrolase; Atf2p acetyltransferase; Say1p steryl acetyl hydrolase; Tgl3/4/5p triacylglycerol lipase; Dga1p diacylglycerol acyltransferase; Pah1p 
phosphatidic acid phosphohydrolase; Lro1p triacylglycerol synthase; Fld1p seipin involved in LD assembly; Pex30p peroxisome related protein; 
Pet10p perilipin involved in formation and stability of LDs; Aus1p ABC protein involved in uptake of sterols; Pdr11p pleiotropic drug resistance protein 
11. Substrates: HMG-CoA 3-hydroxy-3-methylglutaryl-CoA; P phosphate; PA phosphatidic acid; DAG diacylglycerol; TAG​ triacylglycerol; SE steryl ester; 
FFA free fatty acids; CDP-DAG cytidine diphosphate-diacylglycerol; PI phosphatidylinositol; PS phosphatidylserine; PE phosphatidylethanolamine; PC 
phosphatidylcholine
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Fig. 2  (See legend on previous page.)
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of squalene and terpenes (Kim et al. 2019). However, this 
strategy failed to improve the production of 22-hydrox-
ycampest-4-en-3-one, which implied expanding ER was 
not as efficient for promoting the post-squalene pathway 
as for the pre-squalene pathway (Xu et al. 2020). In addi-
tion, the yeast peroxisome was confirmed to be a storage 
room and factory for squalene overproduction by com-
partmentalizing the squalene synthesis pathway in perox-
isomes, which may be also applicable for improving the 
production of sterols and steroids (Liu et al. 2020).

Regulation of sterol homeostasis
Sterol homeostasis is the endogenous mechanism to 
adjust membrane components in diverse environments 
and prevent the accumulation of free sterols which is 
toxic to yeast (Espenshade and Hughes 2007; Wriessneg-
ger and Pichler 2013). The mechanisms for sterol homeo-
stasis in S. cerevisiae (Fig.  2B), including transcriptional 
factors, feedback inhibition and sterol detoxification, 
have been well revealed (Jorda and Puig 2020). Expres-
sion of Erg enzymes are regulated at the transcriptional 
level by the sterol regulatory element (SRE)-binding 
proteins Upc2p and Ecm22p, the heme-binding protein 
Hap1p and the repressors Rox1p and Mot3p. Sterol syn-
thesis in the pre-squalene pathway is regulated partially 
by the feedback-regulated degradation of Hmgrp (Gard-
ner et al. 2001). There are four ways to avoid toxification 
by excessive amounts of free sterols in yeast, including 
esterification of sterols with fatty acids by the acyl-CoA 
sterol acyltransferases Are1p and Are2p, downregulation 
of sterol synthesis, sterol acetylation by Atf2p (acetyl-
transferase), and secretion by Pry1-3p (Pathogen related 
yeast protein) (Ploier et  al. 2015). When the amount of 
free sterols is not sufficient, they can be re-mobilized 
from SE stored in LDs by the function of lipases, mainly 
Yeh1p (yeast steryl ester hydrolase 1), Yeh2p (yeast 
steryl ester hydrolase 2) and Tgl1p (steryl ester hydro-
lase) (Rajakumari et  al. 2008; Wagner et  al. 2009) and 
acetylated sterols can be deacetylated by the function 
of Say1p (steryl deacetylase) (Tiwari et al. 2007). There-
fore, LDs play an important role in cellular lipid homeo-
stasis through controlling the metabolic flux as well as 
the availability of sterols and fatty acids (Kohlwein et al. 
2013). Another mechanism of sterol homeostasis is 
sterol transport which involves many proteins (Jacquier 
and Schneiter 2012; Wriessnegger and Pichler 2013). For 
instance, two plasma membrane ABC (ATP-binding cas-
sette) transporters Aus1p and Pdr11p, are involved in the 
uptake of external sterols under anaerobic conditions to 
cope with the blocked sterol synthesis (Kohut et al. 2011).

Besides sterols, there are many other important kinds 
of lipids in yeast such as sphingolipid, phospholipid, 
fatty acids, and SE. Although researches on these lipids 

synthesis pathways are always independent from each 
other, there is a rising body of evidence to reveal tight 
connections among them, which means the metabolism 
of these related lipids is also involved in the regulation of 
sterol homeostasis (Alvarez-Vasquez et  al. 2011; Ploier 
et  al. 2015; Shin et  al. 2012). The dynamic ergosterol 
model constructed by the guidelines of Biochemical Sys-
tems Theory (BST) has illustrated the functional integra-
tion of the yeast sphingolipid–ergosterol (SL-E) pathway 
(Alvarez-Vasquez et  al. 2011). Sterols are transported 
by non-vesicular mechanisms to the plasma membrane 
(PM) and a model about ER–PM contact sites has been 
built to provide a bond for coordinating the complex 
interrelationship between sterols, sphingolipids, and 
phospholipids which are the main components of PM 
(Quon et  al. 2018). Besides, there are many evidences 
to support a metabolic link between the SE metabolism 
and the biosynthesis of sterols and fatty acids (Ploier 
et al. 2015). For instance, the total sterols decreased when 
sterol esterification was blocked by the negative regula-
tion targeting ERG3 (ArthingtonSkaggs et  al. 1996). SE 
metabolism is also linked with triacylglycerol metabolism 
by triacylglycerol lipases, mainly Tgl3p, Tgl4p and Tgl5p, 
which catalyze the degradation of triacylglycerols stored 
in LDs (Schmidt et al. 2014).

Metabolic engineering strategies for heterologous 
production of sterols and steroids in yeast
To enhance the heterologous production of sterols and 
steroids in yeast, various metabolic engineering strat-
egies have been developed based on the endogenous 
regulation mechanisms. Typical strategies include regu-
lating the ergosterol synthesis pathway via enhancing the 
pathway flux by restriction of the competing branches, 
strengthening precursor supply, overexpression of rate-
limiting enzymes, and/or reconstruction of cofactor bal-
ance; and regulating sterol homeostasis via deletion or 
overexpression of the transcriptional factors, regulation 
of the accumulation of free sterols, and/or regulation of 
lipid metabolism (Fig. 2).

Restriction of competing branches
Diverse sterols can be accumulated by knockout of ERG2-
6 which are found as non-essential genes (Johnston et al. 
2020) and encode enzymes with broad substrate speci-
ficity. ERG6 encodes C-24 sterol methyltransferase that 
converts zymosterol to fecosterol (Hu et al. 2017). By dis-
rupting ERG6, more cholesta-5,7,24-trienol was formed 
from zymosterol through the reactions catalyzed by 
Erg2p and Erg3p, which is the key precursor of 7-DHC 
and could be transformed into cholesta-5,7,22,24-tetrae-
nol by Erg5p (Heese-Peck et  al. 2002). By deletion of 
ERG5 and introduction of the heterologous Gg_DHCR24 
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gene from Gallus gallus encoding Δ24‐dehydrocholesterol 
reductase, a 7-DHC producing yeast SyBE_Sc01250009 
was constructed from the original host SyBE_
Sc01130007 with a strengthened pre-squalene pathway. 
Further knockout of ERG6 as a competing branch led to 
increased accumulation of zymosterol and thus improved 
7-DHC production by 77.6% (Guo et al. 2018). Campes-
terol is another key intermediate for many valuable ster-
oids. A campesterol-producing Y. lipolytica strain was 
built by disruption of ERG5 causing the accumulation of 
ergosta-5,7-dienol together with heterologous expression 
of the 7-dehydrocholesterol reductase gene (DHCR7) 
from Xenopus laevis (Du et  al. 2016). By deleting ERG5 
and ERG4 encoding enzymes for converting ergosta-
5,7,24(28)-trienol to ergosta-5,7,22,24(28)-tetraenol and 
ergosta-5,7-dienol, respectively, the accumulation of 
ergosta-5,7,24(28)-trienol was enhanced, which contrib-
uted to the improved production of 24-methylenecho-
lesterol (Sawai et  al. 2014). In addition to restriction of 
the cross-talk among Erg2-6p, new competitions may 
occur in the reconstructed metabolic pathway due to the 
introduction of exogenous enzymes. For example, in the 
β-sitosterol synthesis pathway constructed by introduc-
ing DWF1 (Δ24(28)-sterol reductase), DWF5 (C7(8)-reduc-
tase), DWF7 (Δ7-sterol-C5(6)-desaturase) and SMT2 
(24-methylenesterol C-methyltransferase  2), 24-meth-
ylenecholesterol as the substrate of SMT2p was com-
petitively consumed by Erg4p. When ERG4 was knocked 
out, the production of β-sitosterol was improved by four 
times (Xu et al. 2020).

Enhanced supply of acetyl‑CoA
As a key metabolite of carbon and energy metabolism in 
yeast, acetyl-CoA serves as the starting compound of the 
mevalonate pathway and is thus an important precursor 
for sterols biosynthesis. The major source of acetyl-CoA 
in S. cerevisiae is the dehydrogenation of acetaldehyde 
followed by ligation of acetate and CoA catalyzed by Aldp 
(acetaldehyde dehydrogenase) and Acsp (acetyl-CoA syn-
thetase) (Saint-Prix et  al. 2004; Takahashi et  al. 2006). 
Fatty acid β-oxidation occurring in yeast peroxisomes is 
another way to generate acetyl-CoA (Chen et  al. 2013; 
Takahashi et  al. 2006). In addition, the ATP-dependent 
citrate lyase (Aclp) naturally present in oleaginous yeast 
(such as Y. lipolytica) uses citric acid as a substrate and 
converts it to acetyl-CoA and oxaloacetate. When Aclp 
was heterologously expressed in S. cerevisiae, the sup-
ply of acetyl-CoA was improved (Lian et  al. 2014; Tang 
et  al. 2013). Co-overexpression of ADH2 (alcohol dehy-
drogenase 2), ALD6, ACSL641P (from Salmonella enterica) 
and ACL (from Mus musculus) in S. cerevisiae redirected 
the glycolytic flux to acetyl-CoA and resulted in 64.29% 
and 41.04% increase of acetyl-CoA accumulation in the 

mid-logarithmic phase and stationary phase, respectively, 
and meanwhile the 7-dehydrocholesterol production was 
improved by 85.44% (Su et al. 2015). When Pox2p (per-
oxisome acyl-CoA oxidase) with high catalytic activity 
and specificity for β-oxidation of long-chain fatty acids 
(Luo et al. 2002; Mlickova et al. 2004) was overexpressed 
together with Aclp in Y. lipolytica, the cytoplastic acetyl-
CoA supply was enhanced by simultaneous improvement 
of citrate cleavage and β-oxidation, leading to elevated 
production of campesterol (Zhang et al. 2017).

Overexpression of rate‑limiting pathway enzymes
Identification and elimination of rate-limiting reactions 
in the synthetic pathway is a common and efficient meta-
bolic engineering strategy towards enhanced produc-
tion of the target metabolite (Paramasivan and Mutturi 
2017a). In the pre-squalene pathway, Hmgrp is the main 
rate-limiting enzyme. By overexpressing tHmg1p in S. 
cerevisiae, large amounts of squalene were accumulated 
and the levels of ergosterol and other sterol compounds 
were also slightly increased (Polakowski et  al. 1998). 
In some studies, the complete MVA pathway (Erg10p, 
acetoacetyl-CoA thiolase; Erg13p, hydroxymethylglu-
taryl-coenzyme A synthase; tHmg1p; Erg12p, meva-
lonate kinase; Erg8p, phosphomevalonate kinase; Erg19p, 
diphosphomevalonate decarboxylase; Idi1p, isopentenyl 
diphosphate isomerase; Erg20p, polyprenyl synthetase) 
were overexpressed to improve the production of ster-
ols (Guo et  al. 2018; Xu et  al. 2020). Overexpression of 
the enzymes in the pre-squalene pathway increased the 
content of sterols and meanwhile caused accumulation of 
squalene, which means improving the conversion from 
squalene to downstream sterols is crucial for further 
enhancement of sterols production (Guo et al. 2018; Xu 
et al. 2020). In the post-squalene pathway, overexpression 
of ERG1 led to a significant decrease in squalene accumu-
lation, accompanied by a large increase in lanosterol and 
a slight increase in later sterols from zymosterol to ergos-
terol, while overexpression of ERG11 reduced the accu-
mulation of lanosterol and increased the amounts of the 
downstream sterols (Veen et  al. 2003). Erg4p is known 
as another rate-limiting enzyme in the sterols synthetic 
pathway, overexpression of which led to an increase of 
ergosterol production in S. cerevisiae (He et  al. 2003). 
In addition, overexpression of Erg2p and Erg3p from M. 
musculus enhanced the production of 7-DHC in yeast 
(Lang and Veen 2006). Furthermore, the heterologous 
enzymes are often rate-limiting, so their copy number 
should also be considered. The campesterol synthesis in 
Y. lipolytica was boosted by introducing two copies of 
DHCR7 (Qian et al. 2020). Similarly, the yield of 7-DHC 
in S. cerevisiae was improved by 16.5% when introducing 
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a second copy of Gg_DHCR24 from Gallus gallus (Guo 
et al. 2018).

Cofactor engineering
Redox imbalance is a common issue in strains harboring 
heterologous pathways, while redox homeostasis plays 
important roles in cell activities (King and Feist 2014). 
Therefore, reconstruction of redox balance through 
cofactor engineering is an important strategy to improve 
the production of the target metabolites. In S. cerevisiae, 
the intracellular redox potential is mainly determined 
by the NADH/NAD+ ratio and to a lesser extent by the 
NADPH/NADP+ ratio (Vemuri et al. 2007). Studies have 
found that knocking out ERG5 caused redox imbalance 
and the ratio of cytosolic free NADH/NAD+ became 
higher than that of the wild type (Su et al. 2015). By con-
struction of a cofactor regeneration system composed 
of a water-forming NADH (nicotinamide adenine dinu-
cleotide) oxidase (NOXp) and an alternative oxidase 
(AOX1p), the ratio of cytosolic free NADH/NAD+ was 
efficiently decreased alleviating the redox imbalance, 
and the production of 7-DHC by engineered S. cerevisiae 
in shake-flask culture was increased by 74.4% (Su et  al. 
2015).

NADPH (nicotinamide adenine dinucleotide phos-
phate) is another important cofactor for oxidoreductases. 
In the ergosterol synthesis pathway, many enzymes such 
as tHmg1p and cytochrome P450 enzymes (CYPs) are 
NADPH-dependent, and 16 molecules of NADPH are 
demanded for production of one molecule of ergosterol 
(Hu et  al. 2017). In the production of terpenoids in S. 
cerevisiae, improving the supply of NADPH by overex-
pression of Zwf1p (glucose-6-phosphate dehydrogenase) 
(Zhao et  al. 2015), Stb5p (transcription factor) (Hong 
et  al. 2019), or Pos5p (mitochondrial NADH kinase) 
(Zhao et al. 2015) increased the yield by 18.8–65.6%. Sim-
ilarly, co-expression of Pos5p and tHmg1p significantly 
enhanced the production of squalene (Paramasivan and 
Mutturi 2017b). In addition, involvement of heterologous 
CYPs such as CYP11B1p (11β-steroid hydroxylase) in 
the sterols and steroid pathway indicates requirement of 
additional redox potential (Szczebara et al. 2003). There-
fore, cofactor engineering may be a promising strategy 
for improving the de novo synthesis of heterologous ster-
oids and sterols, which is, however, seldom reported.

Transcriptional factor‑mediated regulation of the synthetic 
pathway
There are a set of transcription factor regulation systems 
that respond to sterol deficiency in S. cerevisiae, such 
as Rox1p, Mot3p, Hap1p, Ecm22p and Upc2p (Davies 
and Rine 2006; Klinkenberg et  al. 2005; Montanes et  al. 
2011). In sterol-rich and aerobic conditions, the basic 

expression of ERG genes is maintained to achieve sterol 
homeostasis through binding of Hap1p, Ecm22p and, to a 
lesser extent, Upc2p to their promotors (Davies and Rine 
2006; Vik and Rine 2001). Meanwhile, Rox1p and Mot3p 
are transcriptional repressors of hypoxic genes, ergos-
terol uptake genes and genes in the ergosterol biosyn-
thesis pathway, and ROX1 deletion has been reported to 
increase the mevalonate level (Liu et al. 2021). In the defi-
ciency of sterols, the Ecm22p-mediated activation of ERG 
genes is repressed by the interaction between Mot3p and 
Ecm22p, while the content of Upc2p and its binding to 
the promotors of ERG genes is highly strengthened which 
is responsible for the activation of ERG genes under this 
condition (Davies and Rine 2006; Davies et al. 2005; Vik 
and Rine 2001). Overexpression of Ecm22p in S. cerevi-
siae was found to enhance the production of ergosterol 
by upregulation of ERG genes except for ERG4, ERG9 
(squalene synthetase) and ERG28 (ER membrane pro-
tein) (Wang et  al. 2018). Similarly, overexpression of 
Upc2-1p (the G888D mutant of UPC2 (Dong et al. 2020)) 
improved the production of sterols, such as phytosterols 
and ergosterols (Ma et al. 2018; Xu et al. 2020). However, 
overexpression of Upc2-1p in S. cerevisiae ∆ERG5 strain 
led to decreased ergosta-5,7-dienol and overall sterol 
contents, which could be explained by the exacerbated 
redox imbalance in the strain without ERG5 (Ma et  al. 
2018).

Regulation of the accumulation of free sterols
Excessive free sterols in yeast can cause cell damage, and 
this issue could be solved by esterification of sterols with 
fatty acids, as well as acetylation and secretion of sterols 
(Ploier et  al. 2015). Are1p and Are2p are homologous 
proteins of mammalian acyl-coenzyme A (CoA): choles-
terol acyl transferase (Acatp) in yeast, which catalyze the 
esterification of sterols with fatty acids to form SE (Yang 
et al. 1996). Are1p mainly esterifies intermediates in the 
post-squalene pathway, such as lanosterol, while Are2p 
is responsible for the esterification of the final product 
ergosterol (Jensen-Pergakes et  al. 2001). Overexpres-
sion of Are2p had no effect on the accumulation of early 
sterols (such as lanosterol), but enhanced the esterifica-
tion of ergosterol (Polakowski et  al. 1999). In addition, 
overexpression of Are2p in S. cerevisiae led to increased 
production of ergosterol (He et  al. 2007). However, in 
the 7-DHC-producing S. cerevisiae, the deletion of ARE1 
and ARE2 improved the proportion of 7-dehydrodemos-
terol which is the direct precursor of 7-DHC, leading to 
increased 7-DHC production (Hans-Peter et  al. 2021). 
These findings indicate that the production of some ster-
ols such as ergosterol can be improved by enhancing the 
esterification of free sterols, while biosynthesis of other 
sterols such as 7-dehydrodemosterol can be increased by 
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weakening sterol esterification and increasing the ratio of 
free sterols. Interestingly, ARE1 and ARE2 deletion seems 
to be necessary for production of sterols and steroids 
with limited precursor supply. When constructing the de 
novo synthesis pathway of sitosterol in S. cerevisiae, sitos-
terol could only be detected after disrupting ARE1 and 
ARE2 to allow for enough free 24-methlyenecholesterol 
as the substrate of SMT2p, otherwise 24-methlyenecho-
lesterol became inaccessible to SMT2p because of the 
competitive consumption by highly efficient esterifica-
tion (Xu et al. 2020). Similarly, the production of hydro-
cortisone whose precursor is pregnenolone could also 
be improved by knocking out the gene encoding Atf2p 
which is responsible for pregnenolone acetylation (Szcze-
bara et  al. 2003). When there is a shortage of free ster-
ols in the cells, S. cerevisiae improves the supply of free 
sterols through SE hydrolysis catalyzed by SE hydrolases 
including Yeh1p, Yeh2p and Tgl1p (Koffel et  al. 2005). 
Tgl1p overproduction was shown to increase the content 
of ergosta-5-eneol, leading to increased production of 
pregnenolone and progesterone in S. cerevisiae (Duport 
et al. 2003).

Regulation of lipid metabolism
The complex interactions among lipids metabolism 
pathways suggest that the synthesis of sterols and ster-
oids might be affected by regulating lipid metabolism. 
Regulation of lipid metabolism via engineering ER and 
LDs was reported to improve the production of ster-
ols (Arendt et  al. 2017; Fei et  al. 2008). In phospholipid 
synthesis pathway, diacylglycerol (DAG) is formed from 
phosphatidic acid (PA) which is one of the membrane 
lipids under catalysis of phosphatidic acid phosphatase 
(Pah1p), and the deletion of PAH1 led to PA accumula-
tion which caused the drastic proliferation of the outer 
nuclear membrane and the ER (Arendt et al. 2017; Noh-
turfft and Zhang 2009). The expansion of ER has been 
successfully used for the functional overproduction of 
ER-localized proteins which may be beneficial to the 
production of corresponding metabolites (Arendt et  al. 
2017). Disruption of PAH1 boosted the contents of ergos-
terol and its esterified form in S. cerevisiae (Park et  al. 
2015). However, because DAG is the precursor for TAG 
which is the main component of LDs (Sorger and Daum 
2003), knockout of PAH1 caused a decrease of the TAG 
content in yeast, resulting in a decline of the LDs number 
(Adeyo et  al. 2011). LDs are intracellular storage com-
partments for neutral lipids, and the enhanced formation 
of LDs through overexpression of Dga1p (TAG synthase) 
resulted in a 250-fold increase of squalene production 
(Wei et al. 2018). Similarly, overexpression of PAH1 and 
DGA1 enhanced the production of TAG and lycopene by 
increasing the storage capacity of LDs (Ma et  al. 2019). 

These results indicate an important role of LDs in the 
production of lipid-soluble compounds including ster-
ols or steroids. In addition, Nem1p (nuclear envelope 
morphology-related protein) and Fld1p (seipin in yeast) 
together play a crucial role in recruiting proteins, includ-
ing Yft2p (member of the highly conserved FIT family of 
proteins involved in triglyceride droplet biosynthesis), 
Pex30p (peroxisome related protein), Pet10p (perilipin), 
and Erg6p, to the ER subdomains where LDs biogenesis 
occurs (Choudhary et  al. 2020; Choudhary and Schnei-
ter 2020). After knocking out FLD1 or NEM1, giant size 
of lipid droplets or clusters of small LDs were formed 
in yeast (Fei et al. 2008; Zhu et al. 2015) and increase of 
the neutral lipid content was also found, exemplified by 
the 70% increase in SE synthesis (Fei et  al. 2008). Dele-
tion of FLD1 or NEM1 in 7-DHC-producing yeast strains 
increased the production of 7-DHC by 15.7% and 48.3%, 
respectively (Guo et al. 2018).

De novo synthesis of typical sterols and steroids 
using engineered yeast strains
Sterols
Sterols, including cholesterol from animals, ergosterol 
from fungi, campesterol and phytosterols from plants, 
are generally used as key precursors for production of 
vitamin D, steroid intermediates, and steroid hormone 
drugs (Fernandes et al. 2003). Great progresses have been 
made in the de novo synthesis of sterols in yeast by meta-
bolic engineering (Table  1). Advances in production of 
two typical sterols, 7-dehydrocholesterol and campes-
terol, are introduced below.

7‑Dehydrocholesterol
De novo synthesis of 7-dehydrocholesterol in yeast was 
reported in 2006. By deletion of the intrinsic genes ERG5 
and ERG6 and overexpression of tHMG1, ERG1 and 
ERG11, together with the introduction of Erg2p, Erg3p 
and DHCR24p from mice (M. musculus), a 7-DHC-pro-
ducing S. cerevisiae was successfully constructed (Lang 
and Veen 2006). In 2011, a stable yeast strain RH6826 
constructed by deletion of ERG5 and ERG6 and intro-
duction of DHCR24 from Danio rerio produced 7-DHC 
as the main free sterol (86%) (Souza et al. 2011). The pro-
duction of 7-DHC in S. cerevisiae was then improved by 
increasing the supply of acetyl-CoA and alleviating redox 
imbalance. ADH2, ALD6, ACS and ACL were overex-
pressed to strengthen the supply of acetyl-CoA in cyto-
sol, leading to 85.44% improvement in the 7-DHC yield. 
After NOX and AOX1 were introduced to alleviate redox 
imbalance caused by the deletion of ERG5, the produc-
tion of 7-DHC was further improved by 74.4%, reach-
ing 44.49 ± 9.63  mg/L in fed-batch fermentation (Su 
et  al. 2015). Recently, the highest ever reported 7-DHC 
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production of 1.07 g/L was achieved in S. cerevisiae strain 
constructed from CEN.PK2‐1D expressing Gg_DHCR24 
from G. gallus by using a combinatorial engineering strat-
egy. All the functional genes in MVA pathway, including 
one copy each of ERG10, ERG13, ERG12, ERG8, ERG19, 
IDI1, and ERG20 as well as three copies of tHMG1, were 
overexpressed, the competitive branches ERG5 and 
ERG6 were deleted, the expression of PGAL1-driven Gg_
DHCR24 was improved by knocking out GAL7,10,1 and 
doubling the copy number, and NEM1 involved in lipid 
metabolism was also knocked out (Guo et al. 2018).

Campesterol
The de novo synthesis of campesterol in yeast was 
first reported as early as 1998, by disruption of ERG5 
and introduction of the Arabidopsis thaliana Δ7-
reductase(Δ7REDp) in S. cerevisiae, which was then 
used as the precursor for production of pregnenolone 
and progesterone (Duport et  al. 1998). Since then, 
campesterol-synthesizing yeast strains were used as 
the starting strains for production of other sterols and 
steroids, such as (22S)-22-hydroxycampest-4-en-3-one 
(Xu et  al. 2020) and hydrocortisone (Szczebara et  al. 

Table 1  De novo synthesis of typical sterols in yeast

CYP90A1 encoding C3-oxidase; CYP90B1 encoding C22-hydroxylase; StDWF5 encoding sterol Δ7 reductase; PpCYP90B27 encoding steroid C22 hydroxylase

Products Strain Approach Cultivation 
mode

Yield/titer/
content

References

Genes deleted Genes 
introduced

Genes 
overexpressed

Ergosterol S. cerevisiae – – UPC2 Flask fermenta-
tion

11.91 mg/g (Ma et al. 2018)

Ergosterol S. cerevisiae – – ECM22 5-L bioreactor 32.7 mg/g (Wang et al. 2018)

Ergosterol S. cerevisiae – – ARE2, ERG4 5-L bioreactor 1707 mg/L (He et al. 2007)

Campesterol S. cerevisiae ERG5 Mo∆7SR – – – (Zhang et al. 2007)

Campesterol S. cerevisiae ERG5 ArDWF1 – – – (Tsukagoshi et al. 
2016)

Campesterol S. cerevisiae – DWF1 /5/7 All the MVA 
pathway genes, 
UPC2

Flask fermenta-
tion

40 mg/L (Xu et al. 2020)

Campesterol Y. lipolytica ERG5 DHCR7 – 5-L bioreactor 453 ± 24.7 mg/L (Du et al. 2016)

Campesterol Y. lipolytica ERG5, MFE1, 
PEX10

DHCR7 DHCR7 5-L bioreactor 837 mg/L (Qian et al. 2020)

Campesterol Y. lipolytica ERG5 DHCR7 POX2 5-L bioreactor 942 mg/L (Zhang et al. 2017)

Cholesterol S. cerevisiae ERG5, ERG6 DHCR7, DHCR24 – Flask fermenta-
tion

1 mg/g dry cell 
weight

(Souza et al. 2011)

Cholesterol S. cerevisiae ERG6, ATF2 DHCR7, DHCR24 ERG20, ERG9, 
ERG1

Flask fermenta-
tion

16 mg/L (Cheng et al. 2021)

Cholesterol Pichia pastoris ERG5, ERG6 DHCR7, DHCR24 – – – (Hirz et al. 2013)

7-DHC S. cerevisiae ERG5, ERG6 DHCR24, ERG2, 
ERG3

ERG1, ERG11, 
tHMG1

– – (Lang and Veen 
2006)

7-DHC S. cerevisiae ERG5 DHCR24, ACS, ACL tHMG1, ADH2, 
ALD6

5-L bioreactor 44.49 ± 9.63 mg/L (Su et al. 2015)

7-DHC S. cerevisiae ERG5, ERG6, 
NEM1

Gg_DHCR24 All the MVA 
pathway genes, 
Gg_DHCR24

5‐L bioreactor 1.07 g/L (Guo et al. 2018)

Ergosta-5,7-dien-
3β-ol

S. cerevisiae ERG5 HMG1, ERG1, 
ERG11

Flask fermenta-
tion

4.12 mg/g dry cell 
weight

(Ma et al. 2018)

22-Hydroxyc-
ampest-4-en-
3-one

S. cerevisiae ARE1, AER2, ERG4 DWF1/5/7, 
CYP90A1, 
CYP90B1

ERG12, ERG13, 
ERG8, ERG19

Flask fermenta-
tion

3.63 mg/L (Xu et al. 2020)

β-Sitosterol S. cerevisiae ARE1, ARE2, ERG4 DWF1/5/7, SMT2 ERG12, ERG13, 
ERG8, ERG19

Flask fermenta-
tion

2 mg/L (Xu et al. 2020)

24-Methylene-
cholesterol

S. cerevisiae ERG4, ERG5 StDWF5 – – – (Sawai et al. 2014)

Desmosterol S. cerevisiae ERG6 StDWF5 – – – (Sawai et al. 2014)

22(R)-Hydroxy-
cholesterol

S. cerevisiae ERG5, ERG6 PpCYP90B27 – – – (Yin et al. 2018)
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2003). Besides, enzymes responsible for the synthe-
sis of campesterol have been found in various organ-
isms, such as MoΔ7SRp (sterol Δ7 reductase from the 
filamentous fungus Mortierella alpina 1S-4) (Zhang 
et al. 2007), ArDWF1p (oxidoreductase from A. thali-
ana) and DHCR7p (dehydrocholesterol 7-reductase 
from D. rerio, Rattus norvegicus, Oryza saliva and X. 
laevis) (Du et  al. 2016; Souza et  al. 2011). Recently, 
campesterol high-producing Y. lipolytica strains 
were constructed by deletion of ERG5 and consti-
tutive expression of the codon-optimized DHCR7 
from X. laevis, with a campesterol production of 
453 ± 24.7 mg/L in high cell density fed-batch fermen-
tation using sunflower seed oil as the carbon source 
(Du et  al. 2016). The yield of campesterol was fur-
ther improved to 942  mg/L by replacing the X. laevis 
DHCR7 with the DHCR7 gene from D. rerio (DHCR7_
Dr) and overexpressing of Pox2p (Zhang et  al. 2017). 
In another recent study, 837 mg/L of campesterol was 
produced by regulation of lipid content in Y. lipolytica 
via blocking the gene of multifunctional β-oxidation 
protein (MFE1) (Qian et al. 2020).

Steroids
The de novo synthesis of steroids received wide atten-
tion due to their versatile functions and huge market 
demands. As early as 1998, the de novo synthesis of preg-
nenolone and progesterone was achieved in S. cerevisiae 
(Duport et al. 1998). Then, hydrocortisone which was the 
important intermediate for the synthesis of steroid drugs 
with potent anti-inflammatory, abortive, or antiprolifera-
tive effects was synthesized from progesterone in 2003 
(Szczebara et al. 2003). These works opened the door for 
steroids fermentation from simple carbon source using 
engineered yeast (Table 2). Below are the progresses in de 
novo biosynthesis of two typical steroids.

Pregnenolone
De novo biosynthesis of pregnenolone in engineered 
yeast was achieved based on the synthesis of campes-
terol, which is the direct precursor of pregnenolone. 
Pregnenolone-producing S. cerevisiae was first con-
structed by disruption of ERG5, introduction of A. 
thaliana Δ7-reductase together with bovine side chain 
cleavage cytochrome P450 (P450scc), adrenodoxin 
reductase (Adrp), and adrenodoxin (Adxp), and the yield 
was 60  mg/L (Duport et  al. 1998). The P450-catalyzed 

Table 2  De novo synthesis of typical steroids in yeast

matADR mature form ADR; matADX mature form ADR; 3β-HSD encoding 3β-hydroxy steroid dehydrogenase/isomerase; GCY1/YPR1 encoding aldo-keto reductases; 
ARH1 encoding ADR-related homolog; NCP1 encoding NADPH P450 reductase; CYP21A1 encoding 21-steroid hydroxylase; CYP17A1 encoding 17α-steroid 
hydroxylase; CYP11B1 encoding 11β-steroid hydroxylase; VvCPR CPR from Vitis vinifera

Products Strain Approach Cultivation 
mode

Yield/titer/content References

Genes deleted Genes 
introduced

Genes 
overexpressed

Pregnenolone S. cerevisiae ERG5 ADR, ADX, 
P450scc, ∆7RED

– High-density 
culture

60 mg/L (Duport et al. 
1998)

Pregnenolone S. cerevisiae ERG5 Δ7RED, matADR, 
matADX, 
CYP11A1

– High-density 
culture

2.9 ± 0.5 mg L−1A600 units (Duport et al. 
2003)

Pregnenolone Y. lipolytica ERG5 CYP11A1, ADR, 
ADX, DHCR7

– 5 L bioreactor 78.0 mg/L (Zhang et al. 
2019)

Progesterone S. cerevisiae ERG5 ADR, ADX, 
P450scc, ∆7RED, 
3β-HSD

– High-density 
culture

60 mg/L (Duport et al. 
1998)

Hydrocortisone S. cerevisiae ATF2, GCY1, YPR1 ∆7RED, ARH1, 
CYP11A1, NCP1, 
CYP21A1, 
matADR, mat-
ADX, CYP17A1, 
CYP11B1, 3β-HSD

ARH1, CYP21A1 High-density 
culture

11.5 mg/L (Szczebara et al. 
2003)

Diosgenin S. cerevisiae ERG6, ATF2 DrDHCR7, 
DrDHCR7, Dzin-
CYP90G6, VvCPR, 
VcCYP94N1

ERG20, ERG9, 
ERG1

Flask fermenta-
tion

10 mg/L (Cheng et al. 
2021)

Diosgenin S. cerevisiae ERG5, ERG6 PpCYP90G4, 
PpCYP94D108 
or TfCYP90B50, 
TfCYP82J17, CPR

– – – (Christ et al. 2019)
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reaction was found as the first and limiting step in the 
synthesis of steroids (Auchus and Miller 2015). By com-
binatorial screening of P450scc components pairing 
sources and regulation of the expression level by pro-
moter optimization of mCYP11A1, 78.0 mg/L of pregne-
nolone was produced in engineered Y. lipolytica (Zhang 
et al. 2019).

Diosgenin
Thanks to the construction of the stable cholesterol-
producing S. cerevisiae strain RH6829 (Souza et  al. 
2011), the de novo synthesis of steroids using cho-
lesterol as the direct precursor has made great pro-
gresses. Diosgenin, which is an important intermediate 
for the production of steroidal hormones, is one of 
the typical steroids that were de novo synthesized in 
RH6829 (Cheng et al. 2021; Fernandes et al. 2003). The 
biosynthesis pathway of diosgenin was extended from 
cholesterol by introducing CYP pairs, PpCYP90G4 
(cholesterol 16,22-dihydroxylase)-PpCYP94D108 (cho-
lesterol 22-monohydroxylase) or TfCYP90B50 (choles-
terol 16,22-dihydroxylase)- TfCYP82J17 (cholesterol 
22-monohydroxylase) from Nicotiana benthamiana, 
together with an Arabidopsis CYP reductase (CPR) 
(Christ et al. 2019). In 2021, an engineered yeast strain 
producing diosgenin was constructed according to 
the newly revealed diosgenin biosynthetic pathway 
in Dioscorea zingiberensis whose rhizomes can accu-
mulate around 2–16% diosgenin (Cheng et  al. 2021; 
Huang et  al. 2008). The highest ever reported dios-
genin production of 10 mg/L in yeast was achieved by 
co-expression of DzinCYP90G6 (steroid C-16,22-dihy-
droxylase) from D. zingiberensis and VcCYP94N1 (ster-
oid C-26 hydroxylase) from Veratrum californicum in 
the cholesterol-producing S. cerevisiae strain DG-Cho 
constructed by deleting ATF2 and ERG6, introduc-
ing the DHCR7 and DHCR24 genes from D. rerio, and 
overexpressing ERG1, ERG20 and ERG9 (Cheng et  al. 
2021).

Challenges and future perspectives
Although the de novo synthesis of many sterols and 
steroids has been achieved in yeast, there are still lots of 
highly valuable steroids whose biosynthesis from simple 
carbon sources remains to be explored, such as andros-
tenedione (AD), testosterone (TS), spirostane-type sapo-
nins, brassinosteroids, prednisone and dexamethasone 
(Fig. 1). The construction of diosgenin biosynthesis path-
way in S. cerevisiae as mentioned in this review indicates 
that scrutinizing the genome of eukaryotes possessing 
the native targeted sterols or steroids pathway and inte-
grating these genes into engineered yeast is a promising 

strategy for achieving de novo synthesis of the yet-to-
explore sterols or steroids (Huang et al. 2008).

For the sterols and steroids that have been success-
fully produced in yeast, their yields need to be further 
improved by addressing the remaining challenges, 
such as the rate-limiting steps in the post-squalene 
pathway leading to the large accumulation of squalene 
(Jandrositz et al. 1991), the poor adaptation of heter-
ogenous enzymes especially CYP P450 enzymes for 
the biosynthesis of steroids causing limited efficiency 
of the hydroxylation and side chain cleavage reactions 
(Duport et al. 1998; Zhang et al. 2019), the damage to 
sterol homeostasis because of the excess free sterols 
(Ploier et al. 2015) and the limitation of storage room 
in yeast (Wei et  al. 2018). For relieving the meta-
bolic bottleneck caused by rate-limiting enzymes, 
typical strategies include gene overexpression (Veen 
et  al. 2003) and screening the enzymes from vari-
ous sources (Guo et  al. 2018), but these strategies 
did not fully address this issue. Protein engineering 
may be a good solution. However, it encounters dif-
ficulties due to the lack of proper high-throughput 
screening methods and understanding on the protein 
structure–function relationship. Recent advances in 
protein structure prediction tools, like RoseTTAFold 
and Alphafold, provide insight into protein function 
independent of experimentally determined structures 
(Baek et al. 2021; Jumper et al. 2021), and are expected 
to facilitate protein redesign for improved catalytic 
performance. For the P450-catalyzed reactions, the 
efficiency may be enhanced by regulation of the P450 
expression level by promoter engineering, improving 
its catalytic activity by protein engineering, and pro-
moting electron transfer by fusion expression of P450 
and CPR (Jiang et  al. 2021). For reconstruction of 
sterol homeostasis, strategies including relieving the 
toxicity of excess sterols by overexpressing Are2p (He 
et al. 2007) and enlargement of LDs by deleting FLD1 
or NEM1 (Guo et al. 2018) were employed to regulate 
lipid metabolism and efficiently enhanced the de novo 
synthesis of sterols or steroids. Many other genes that 
are involved in LDs biogenesis from specialized ER 
subdomains such as LRO1 (triacylglycerol synthase), 
DGA1, PEX30 and YFT2 (Choudhary and Schneiter 
2020), could also be included as regulation targets in 
the future.

The competition between heterologous and endogenous 
sterol metabolism is another limiting factor to be taken into 
account as revealed in the de novo synthesis of β-sitosterol 
in S. cerevisiae (Xu et al. 2020). Systems biology coupling 
with synthetic biology and evolutionary engineering may 
be a prospective approach to optimize the performance of 
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the engineered sterols/steroids-producing yeast by driv-
ing the cycle of design–build–test–learn (Campbell et  al. 
2017). Considering the complex metabolic network for 
sterols and steroids biosynthesis, machine learning is a 
promising approach for optimizing the metabolic flux (Kim 
et  al. 2020). In addition, computation-guided design of 
artificial synthetic pathways with lower complexity that is 
orthologous to the native sterol metabolism represents an 
attractive future direction.

In conclusion, biosynthesis of sterols and steroids using 
yeast cell factories would be a prospective production route 
of these increasingly sought-after drug intermediates after 
addressing the remaining challenges.
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