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Abstract 

Background  Exhaled volatile organic compounds (VOCs), particularly hydrocarbons from oxidative stress-induced 
lipid peroxidation, are associated with hyperoxia exposure. However, important heterogeneity amongst identified 
VOCs and concerns about their precise pathophysiological origins warrant translational studies assessing their validity 
as a marker of hyperoxia-induced oxidative stress. Therefore, this study sought to examine changes in VOCs previously 
associated with the oxidative stress response in hyperoxia-exposed lung epithelial cells.

Methods  A549 alveolar epithelial cells were exposed to hyperoxia for 24 h, or to room air as normoxia controls, 
or hydrogen peroxide as oxidative-stress positive controls. VOCs were sampled from the headspace, analysed by gas 
chromatography coupled with mass spectrometry and compared by targeted and untargeted analyses. A secondary 
analysis of breath samples from a large cohort of critically ill adult patients assessed the association of identified VOCs 
with clinical oxygen exposure.

Results  Following cellular hyperoxia exposure, none of the targeted VOCs, previously proposed as breath markers 
of oxidative stress, were increased, and decane was significantly decreased. Untargeted analysis did not reveal novel 
identifiable hyperoxia-associated VOCs. Within the clinical cohort, three previously proposed breath markers of oxida-
tive stress, hexane, octane, and decane had no real diagnostic value in discriminating patients exposed to hyperoxia.

Conclusions  Hyperoxia exposure of alveolar epithelial cells did not result in an increase in identifiable VOCs, whilst 
VOCs previously linked to oxidative stress were not associated with oxygen exposure in a cohort of critically ill 
patients. These findings suggest that the pathophysiological origin of previously proposed breath markers of oxida-
tive stress is more complex than just oxidative stress from hyperoxia at the lung epithelial cellular level.
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Background
Oxygen therapy constitutes a cornerstone treatment 
in the intensive care unit, but may inadvertently cause 
hyperoxia-induced oxidative stress via increased for-
mation of reactive oxygen species [1, 2]. The resulting 
enhanced oxidation of proteins, lipids and nucleotides 
leads to inflammation and ultimately cell death [1]. 
Overzealous use of oxygen has been linked to pulmo-
nary injury and detrimental outcomes in preclinical 
and clinical studies [3–5]. Yet, it remains difficult to 
monitor hyperoxia-induced oxidative stress in clinical 
practice. Biomarkers of hyperoxia-induced oxidative 
stress could enable the early detection of pulmonary 
injury and tailor oxygen therapy.

Volatile organic compounds (VOCs) are abundant in 
exhaled breath and can be analysed noninvasively for 
diagnostic purposes [6]. This technique has garnered 
much interest over the past two decades and the pro-
cess of biomarker identification in exhaled breath has 
been described in detail previously [7]. Various possible 
by-products of lipid peroxidation have been proposed 
as potential breath markers for oxidative stress, namely 
hydrocarbons, which have been reported to increase 
in healthy volunteers after hyperoxia exposure [8–13]. 
Whilst these VOCs are thought to arise from cellular 
lipids [9, 14], concerns persist about the heterogene-
ity of observed VOCs and their exact pathophysiolog-
ical origin [15, 16]. It is unclear whether these VOCs 
originate from alveolar epithelial cells alone or from a 
more complex interaction mechanism with other cells 
present in the alveolar environment, i.e. immune cells, 
and bacteria. Preclinical studies that investigated the 
relationship between VOCs and oxidative stress so 
far used extracellular exposure to hydrogen peroxide 
(H2O2) and had conflicting results regarding observed 
VOCs [10, 17]. However, such a model does not neces-
sarily reflect oxidative stress following hyperoxia expo-
sure, as H2O2 concentrations used generally exceed 
physiologically representative levels and result in a very 
short exposure since H2O2 is decomposed within min-
utes [18, 19]. A more clinically representative model 
with hyperoxia-induced oxidative stress would thus be 
useful to improve breath marker validation within this 
specific context.

This study aimed to assess VOCs associated with the 
oxidative stress response in lung epithelial cells after 
exposure to hyperoxia by combining an in vitro model 
and headspace gas chromatography-mass spectrometry 
(HS-GC–MS). As a secondary aim, the diagnostic value 
of these VOCs was evaluated by examining their cor-
relation with oxygen exposure in a cohort of critically 
ill patients.

Materials and methods
Cell culture
The current in  vitro model was established as previ-
ously described in detail [17]. In brief, immortalised 
human alveolar basal epithelial (A549) cells (CCL-
185) were cultured in Roswell Park Memorial Institute 
(RPMI) 1640 medium (Gibco, ThermoFisher Scientific, 
Waltham, MA, USA) supplemented with foetal bovine 
serum, penicillin–streptomycin, l-glutamine, gen-
tamicin and amphotericin. Cells were incubated at 
37  °C in 5% CO2 and passaged every 3–4  days until 
~ 90% confluent. Before every experiment, cells from 
the culture flask were passaged by seeding ~ 1.5 × 105 
cells in 1  mL of supplemented RPMI-1640 in separate 
glass headspace vials (Markes International, Cincin-
nati, OH, USA) to eliminate plastic VOC contaminates 
[17, 20] and then incubated at 37 °C in 5% CO2 for 24 h 
until experimental exposure.

Induction of oxidative stress
At the start of experimental exposure, the initially 
seeded medium was removed and replenished with 
200 µL fresh supplemented RPMI-1640 medium. Three 
groups were created: air-exposed cells as normoxia 
controls, hyperoxia-exposed (~ 100% O2) cells as inter-
vention, and 1  mM H2O2-exposed cells as oxidative 
stress-positive controls. Addition of H2O2 and airtight 
sealing of the vials was done as before [17]. The vials 
of hyperoxia-exposed cells were then purged with pure 
oxygen at a flow rate of 50 mL/min for 2 min using an 
air sampling pump (GSP-300FT-2; GASTEC) without 
disturbing the liquid interface, replacing the total vial 
volume (20 mL) five times. The vials remained airtight 
after purging and pilot experiments showed that the 
oxygen concentration was maintained after 24 h (~ 90% 
O2) by measuring the partial pressure of oxygen within 
the medium. The experimental setup to purge the vials 
is shown schematically in Additional file  1: Figure S1. 
All groups were incubated for 24  h in a purpose-built 
HiSorb™ agitator at 37 °C and 200 RPM (Markes Inter-
national). The experiment was repeated on 4 different 
days.

Cellular stress and cell death
Cytotoxicity was evaluated by markers of cellular 
inflammation (interleukin-8, IL8) and injury (lactate 
dehydrogenase, LDH), in the cell supernatant at the 
end of the 24-h exposure period. IL8 was measured 
using enzyme-linked immunosorbent assay per manu-
facturer’s instructions (R&D Systems Inc., Bio-Techne, 
Minneapolis, MN, USA) and LDH by a method devel-
oped by Zuurbier et al. [21]. Values of IL8 and LDH are 
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expressed as a relative change from the mean levels in 
the removed supernatant before the start of the 24-h 
exposure period to account for differences between 
experimental days.

Sampling of VOCs and sample processing
VOC sampling and processing was performed according 
to Fenn et al. [17]. After 22 h of exposure, high-capacity 
polydimethylsiloxane sorbent fibres (HiSorb™; Markes 
International, Cincinnati, OH, USA) were inserted 
through the vial caps and VOCs were captured from the 
headspace for 2  h. HiSorbs™ were removed after sam-
pling and cleaned before transfer into empty desorption 
tubes (Markes International). HS-GC–MS analysis of 
HiSorb™ samples was performed within 5  days of col-
lection. Further thermal desorption and HS-GC–MS 
processing methods are reported in Additional file  1: 
Methods S1.

Clinical cohort
This was a secondary analysis of the DARTS (‘Diagno-
sis of Acute Respiratory disTress Syndrome’) study [22], 
a prospective, multicentre observational cohort study of 
critically ill patients with an expected duration of inva-
sion ventilation > 24 h, in the Netherlands. Details on the 
clinical breath sampling, sample processing and patient 
characteristics of this cohort were reported before [22]. 
VOC data from breath samples collected on the first 2 
days of invasive ventilation were included in the analysis. 
The current research expands on a prior study that exam-
ined oxygen exposure by the fraction of inspired oxygen 
(FiO2) [17]. However, in a clinical setting, hyperoxia-
induced injury appears to be driven more by the partial 
arterial oxygen pressure (PaO2) rather than by FiO2 alone 
[23, 24]. Therefore, PaO2 was used to estimate oxygen 
exposure in patients in this repeat analysis and hyper-
oxia exposure was defined as a PaO2 > 16 kPa on the first 
measurement day [24].

Statistical analysis
Before statistical analysis, noise removal of raw HS-GC–
MS data, peak detection and peak alignment were per-
formed using the ‘XCMS’ R-package [25]. VOC data 
were scaled by log10 transformation. Presence of a batch 
effect between experimental days was assessed by prin-
cipal component analysis (PCA) and corrected using 
the ‘limma’ R-package [26]. Differences in IL8 and LDH 
between the three groups were evaluated by Dunn’s test 
for multiple comparisons with Holm’s adjustment.

For the primary analysis, both a targeted and non-
targeted approach were used to identify oxidative 
stress-related VOCs. This approach was adapted from 
Fenn et  al. [17]. Difference in VOC intensity between 

hyperoxia-exposed cells and controls was tested by Wil-
coxon rank-sum test with adjustment for false discovery 
rate. A relevant change was defined as a twofold increase 
in the batch effect-corrected, unscaled median compared 
to the control group and an adjusted P value < 0.05. For 
the targeted approach, a gas standard (Massachusetts 
APH Mix, Supelco®; Supelco Inc., Bellefonte, PA, USA) 
was used to target specific VOCs that have previously 
been associated with hyperoxia exposure in healthy vol-
unteers [8, 9, 12] amongst the sampled VOCs and eval-
uate their change (targets are reported in Additional 
file  1: Table  S1). For the non-targeted approach, VOCs 
with a relevant change were selected for identification 
amongst the remaining VOCs. Subsequently, peaks on 
each retention time of interest were grouped in a reten-
tion time cluster and then identified using the National 
Institute of Standards and Technology library (NIST-
library v.2.0a). Three criteria were used to define a valid 
identification to limit false discoveries: an NIST-match 
score ≥ 95, ≥ 3 peaks within a cluster [27], and a mod-
erate correlation of the selected VOC with the rest of 
the cluster’s VOCs (Spearman’s ρ > 0.40). Following the 
in vitro model, all targeted VOCs and any identified non-
targeted VOCs were searched within the VOC data of 
the clinical cohort and correlated with oxygen exposure. 
Quantile regression was used to visualise the median 
and quartile range of each VOC as a function of PaO2 on 
the first measurement day and correlation was tested by 
Spearman’s method. Intra-individual correlation of each 
VOC with PaO2 was assessed by repeated measures cor-
relation [28]. In addition, the association between VOCs 
and hyperoxia exposure was tested by univariable logistic 
regression and the predictive value of each VOC to dis-
criminate patients exposed to hyperoxia by area under 
the receiver operating characteristics curve (AUROCC) 
calculations. A sensitivity analysis defining hyperoxia by 
PaO2 > 20  kPa was included to evaluate the influence of 
the chosen threshold. All analyses were performed using 
R-4.3.2 (R Foundation for Statistical Computing, Vienna, 
Austria) with RStudio 2023.12.0 + 369 (RStudio, Boston, 
MA).

Results
Oxidative stress‑induced cytotoxicity
Hyperoxia-exposed A549 cells (N = 18 vials) and 
H2O2-exposed cells (N = 18 vials) both revealed a sig-
nificantly higher IL8 and LDH production after 24  h of 
exposure compared to controls (N = 18 vials), indicating 
a relevant degree of oxidative stress-induced cytotoxicity 
(Fig. 1). Hyperoxia-exposed cells showed a similar degree 
of cell injury as H2O2-exposed cells, but a significantly 
lesser degree of IL8 production.
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Targeted approach of VOCs linked to oxidative stress
After 24 h of exposure and data pre-processing, a total of 
446 VOCs sampled in the headspace were included in the 
analysis. Visualisation by PCA plot showed heterogeneity 
between the 4 experimental days, which was sufficiently 
resolved after batch effect correction (Additional file  1: 
Figure S2).

Seven target VOCs from the gas standard could be 
identified amongst the sampled VOCs and included: 
cyclohexane, hexane, heptane, octane, nonane, decane, 
and undecane. Despite signs of oxidative stress-induced 
cytotoxicity, none of these VOCs showed any significant 
increase after hyperoxia exposure compared with con-
trols (Fig. 2). The same was true for H2O2-exposed cells 
(Fig.  3). In contrast, decane was significantly lower in 
hyperoxia-exposed cells and H2O2-exposed cells com-
pared with controls (Fig. 3).

Untargeted analysis of VOCs
There were five VOCs which showed a relevant change 
after 24 h of exposure to hyperoxia (Fig. 4). Possible char-
acteristics of these VOCs were alkenes, fatty alcohols, 
aldehydes, siloxanes, complex branched alkanes and 

straight-chain alkanes, but none of the VOCs met all cri-
teria for valid identification (Additional file 1: Table S2). 
Post-hoc sensitivity omission of the twofold increase 
threshold criterion yielded no additional VOCs with 
a significant increase. Amongst the five unidentifiable 
VOCs, two were also significantly increased compared to 
H2O2-exposed cells. None of the selected VOCs showed 
any difference between H2O2-exposed cells and controls 
(Fig. 4).

Correlation with oxygen exposure in patients
Since the VOCs from the untargeted approach did not 
meet all identification criteria, they were not carried for-
ward as additional targets to evaluate their association 
with oxygen exposure in a clinical setting. Three target 
VOCs could be identified within the cohort of critically 
ill patients, hexane, octane and decane. A total of 486 
patients had available data on the target VOCs and oxy-
gen exposure on measurement day 1. Octane correlated 
very weakly to weakly with PaO2 on the first meas-
urement day, whereas hexane and decane showed no 
correlation (Fig. 5). Furthermore, none of the VOCs cor-
related with PaO2 within subjects (N = 289) over repeated 

Fig. 1  Hyperoxia-induced cytotoxicity of A549 cells. Relative fold change of interleukin-8 (A) and lactate dehydrogenase (B) supernatant 
concentrations of control, hyperoxia-exposed and H2O2-exposed cells in comparison to the levels before experimental exposure are shown. 
Differences were tested by Dunn’s test with Holm’s correction for multiple comparisons
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Fig. 2  Targeted analysis of volatile organic compounds (VOCs) associated with oxidative stress. Volcano plot with the relative change of the median 
intensity of VOCs from the headspace of hyperoxia-exposed cells compared to controls is shown on the x-axis and the false discovery rate-adjusted 
P value on the y-axis. VOCs previously associated with oxidative stress that could be identified by gas standard are labelled

Fig. 3  Target volatile organic compounds (VOCs) associated with oxidative stress. Intensities of identified target VOCs previously associated 
with oxidative stress per experimental condition, differences were tested by Wilcoxon rank-sum test with adjustment for false discovery rate
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Fig. 4  Untargeted analysis of volatile organic compounds (VOCs). Volcano plot (A) with the relative change of the median intensity of VOCs 
from the headspace of hyperoxia-exposed cells compared to controls is shown on the x-axis and the false discovery rate-adjusted P value 
on the y-axis. VOCs with at least a twofold increase of the median and an adjusted P value < 0.05 are labelled and their change per group is shown 
(B–F)
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measures (Fig. 5). There were 48 patients (9.9%) exposed 
to hyperoxia on the first measurement day. Octane was 
weakly associated with hyperoxia exposure and had a 
marginal discriminatory value with the AUROCC rang-
ing from 0.51 to 0.68 (Table  1; Additional file  1: Figure 

S3). Hexane and decane were not associated with hyper-
oxia exposure and had no predictive value for discrimi-
nating patients exposed to hyperoxia (Table 1; Additional 
file 1: Figure S3). Last, the marginal discriminatory value 
of octane was lost when the threshold for hyperoxia 
exposure was further increased to > 20 kPa as a sensitivity 
analysis (Additional file 1: Figure S3).

Discussion
This study failed to find evidence that VOCs previ-
ously linked to oxidative stress and hyperoxia exposure 
increase as a result of hyperoxia-induced oxidative stress 
in lung epithelial cells. Furthermore, VOCs potentially 
indicative of hyperoxia exposure could not be identi-
fied with sufficient certainty to rule out false discoveries. 
VOCs previously associated with oxidative stress also 
showed no clinically relevant association with oxygen 
exposure or the occurrence of hyperoxia within a cohort 
of critically ill patients.

Fig. 5  Correlation of volatile organic compounds (VOCs) and clinical oxygen exposure. Spearman’s correlation (ρ) of hexane (A), octane (B), 
and decane (C) with oxygen exposure in patients on the first measurement day is shown. Quantile regression was used to estimate the median 
(orange line) VOC intensity and interquartile range (grey lines) as a function of PaO2. Within subject correlation of VOCs and PaO2 over repeated 
measures is shown in D, 1 represents a strong positive correlation (red) and − 1 a strong negative correlation (blue). **, P < 0.01; ***, P < 0.001

Table 1  Association of VOCs linked to oxidative stress with 
hyperoxia exposure in patients

Hyperoxia exposure was defined as a partial arterial oxygen pressure > 16.0 kPa

VOC volatile organic compound, OR odds ratio, CI confidence interval, AUROCC 
area under the receiver operating characteristics curve
a Per log10 increment
b Predictive value with hyperoxia exposure as outcome
c Rounded up

VOC log10 
(intensity)

OR (95% CI)a P value AUROCC (95% CI)b

Hexane 1.15 (0.99 to 1.35) 0.07 0.56 (0.49 to 0.64)

Octane 1.57 (1.00 to 2.45) 0.05c 0.60 (0.51 to 0.68)

Decane 1.20 (0.82 to 1.76) 0.35 0.48 (0.39 to 0.57)
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The observed oxidative stress-induced cytotoxic-
ity and dynamics of targeted VOCs were consistent 
between hyperoxia and H2O2-exposed cells, including 
the decrease in decane compared to controls. It is unclear 
why decane was lower after oxidative stress exposure, but 
similar trends with oxidative stress have been observed 
for octane in two previous in vitro studies [17, 20]. There 
is a possibility that, instead of increased production from 
lipid peroxidation, oxidative stress resulted in autoxida-
tion of these alkanes. This remains a relatively improb-
able reaction at body temperature, however, and would 
require free radical chain initiators or other catalysts [29, 
30]. Interestingly, studies with healthy volunteers have 
consistently found an association of oxygen exposure 
with an increase in various alkanes, methyl alkanes and 
aldehydes, although they remain heterogeneous in terms 
of specific VOCs found [8, 11, 12]. These studies vary 
largely in exposure dose, ranging from hyperbaric hyper-
oxia, where the partial pressure of oxygen exceeds atmos-
pheric pressure, to a study exposing subjects for merely 
30 min to 28% oxygen via nasal prongs [8, 12]. It is highly 
unlikely that the latter exposure would have resulted in 
hyperoxia-induced injury [3, 4], but evidence from a 
swine model suggests that increases in breath mark-
ers of oxidative stress may precede relevant injury [31]. 
Therefore, it is particularly intriguing that in the current 
in  vitro model, prolonged exposure to a very high dose 
of oxygen did not result in an increase of alkanes, whilst 
cellular inflammation and injury were evident. The cur-
rent findings indicate that the biosynthetic origin of tar-
geted VOCs, which were previously proposed as breath 
markers of hyperoxia-induced oxidative stress in healthy 
volunteers [8, 11, 12], is not simply the occurrence of 
oxidative stress at the local lung epithelial cellular level. 
Hypothetically, a more complex mechanism, such as 
interaction between immune cells and the alveolar cells 
or altered bacterial metabolism, may be involved in the 
production of these VOCs [32].

The targeted analysis included only alkanes, but hyper-
oxia exposure of lung epithelial cells did not yield any 
other distinct breath markers that could be identified 
with sufficient certainty either. The fact that most untar-
geted VOCs were detected at retention times of more 
than 15  min made identification difficult. Co-elution 
becomes increasingly problematic at higher retention 
times and is difficult to distinguish with one-dimensional 
GC–MS [33]. Nonetheless, the absence of other VOCs 
after hyperoxia exposure suggests that, in addition to 
more complex mechanisms which may underlie VOC 
production, the possibility of false discoveries by chance 
or spurious correlations should not be overlooked [16, 
20]. The large number of VOCs present in headspace and 
breath samples usually far outnumber the study cases, 

which increases the risk of false positives from untar-
geted multiple testing. This was further highlighted by 
the recent DARTS-study, which found no benefit of 
octane as a predictor for the diagnosis of acute respira-
tory distress syndrome in a large-scale validation study, 
despite the promising results of the earlier discovery 
study [22, 34].

Whilst the relative simplicity of the in  vitro model 
might partly explain the observed negative findings, this 
is different for the complex in  vivo setting of the ana-
lysed clinical cohort. A previous study that analysed the 
same cohort did not find an association of the identified 
alkanes with oxygen exposure when defined by FiO2 [17]. 
In line with these findings, none of the alkanes that were 
previously associated with hyperoxia exposure or oxida-
tive stress correlated clearly with oxygen exposure or had 
relevant diagnostic value in distinguishing patients with 
or without hyperoxia exposure when defined by PaO2. 
This finding contrasts with the studies that used healthy 
volunteers and challenges the validity of the proposed 
breath markers [8, 11, 12]. However, critically ill patients 
differ greatly from healthy volunteers and, besides hyper-
oxia, there are a number of sources that may amplify 
oxidative stress, for example immune cell activity, con-
current pulmonary infection, and lung stretch from inva-
sive ventilation [35–37]. The association of VOCs with 
hyperoxia exposure could potentially be obscured by 
the contribution of other oxidative stress-inducing fac-
tors in such patients, which, if true, would have serious 
implications for the clinical application of these VOCs as 
biomarkers. If these VOCs could merely provide a gen-
eral estimate of the oxidative status, using them to tailor 
oxygen therapy becomes complicated. It then remains 
unclear whether any shifts in VOCs reflect changes in 
supportive care or that of other underlying factors.

This study was strengthened by its translational 
approach using one of the largest multicentre cohorts 
with VOC data currently available for the validation of 
volatile metabolites both in vitro and in vivo [22]. The 
use of glass airtight culture vials minimised the poten-
tial effect of contaminates on compound discovery. In 
addition, the implemented strict identification criteria 
and the use of an external gas standard limited the risk 
of false discoveries. The study also has limitations. The 
in  vitro model with a monolayer of A549 cells is not 
the best representation of the alveolar epithelial envi-
ronment. It could be worthwhile repeating this model 
with other cell types, such as endothelial cells or dif-
ferentiated alveolar cells, and to include immune cells 
or bacteria to strengthen the robustness of the current 
findings. Air–liquid interface culture models have pre-
viously been used to better mimic the alveolar com-
partment [38]. Unfortunately, these models often still 
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involve the use of plastics, increasing the risk of erro-
neous results through unwanted contaminates [16, 20]. 
Organoids may also be an interesting alternative to 
better mimic the in  vivo setting [39]. The use of one-
dimensional GC–MS analysis, despite being similar to 
previous studies with healthy volunteers [8], may have 
led to missed observations of potential VOCs. In addi-
tion, ethane and pentane, known by-products of lipid 
peroxidation [9, 11, 13], could not be captured due to 
the chromatographic method employed. Conclusions 
on the association of these specific compounds with 
oxygen exposure should therefore not be inferred from 
this study.

Conclusions
This translational study failed to find evidence that 
hyperoxia-induced oxidative stress in alveolar epithelial 
cells results in the increase of alkanes previously associ-
ated with hyperoxia exposure or any other identifiable 
volatile metabolite. Moreover, hyperoxia exposure in a 
large clinical critically ill patient cohort showed no rel-
evant association with volatile metabolites previously 
linked to hyperoxia exposure. These findings highlight 
the need for validation of the pathophysiological origin of 
VOCs previously associated with hyperoxia or oxidative 
stress before we interpret them as possible biomarkers.
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