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Impact of critical illness on cholesterol 
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Abstract 

Critical illness is characterized by a hypercatabolic response encompassing endocrine and metabolic alterations. Not 
only the uptake, synthesis and metabolism of glucose and amino acids is majorly affected, but also the homeosta-
sis of lipids and cholesterol is altered during acute and prolonged critical illness. Patients who suffer from critically 
ill conditions such as sepsis, major trauma, surgery or burn wounds display an immediate and sustained reduction 
in low plasma LDL-, HDL- and total cholesterol concentrations, together with a, less pronounced, increase in plasma 
free fatty acids. The severity of these alterations is associated with severity of illness, but the underlying pathophysi-
ological mechanisms are multifactorial and only partly clarified. This narrative review aims to provide an overview 
of the current knowledge of how lipid and cholesterol uptake, synthesis and metabolism is affected during critical 
illness. Reduced nutritional uptake, increased scavenging of lipoproteins as well as an increased conversion to cor-
tisol or other cholesterol-derived metabolites might all play a role in the decrease in plasma cholesterol. The acute 
stress response to critical illness creates a lipolytic cocktail, which might explain the increase in plasma free fatty acids, 
although reduced uptake and oxidation, but also increased lipogenesis, especially in prolonged critical illness, will 
also affect the circulating levels. Whether a disturbed lipid homeostasis warrants intervention or should primarily be 
interpreted as a signal of severity of illness requires further research.

Introduction
Critical illness is a complex disease state with severe 
endocrine and metabolic alterations [1]. Although many 
of these endocrine and metabolic changes may be part 
of a protective acute survival response, when sustained 
for a prolonged period of time, these affected pathways 
may have detrimental consequences [1, 2]. Indeed, the 
hypercatabolic response in the acute phase of critical 
illness, with high cortisol, glucagon and catecholamine 

levels, with insulin and GH resistance, and with low T3 
levels induces a catabolic and energy-sparing fight-or-
flight state which is presumed to be an adaptive response 
providing the essential fuel for energy production in 
vital organs [1, 3]. However, when hypercatabolism per-
sists, it results in muscle wasting and weakness, associ-
ated with impaired weaning from mechanical ventilation, 
delayed rehabilitation and late death [2]. In addition to 
ongoing hypoperfusion, hypoxia and excessive inflam-
mation, metabolic insults such as hyperglycaemia can 
also cause cell damage requiring adequate clearance 
through autophagy to allow recovery [4, 5]. Similarly, 
the observed dyslipidemia of critical illness encompasses 
acute alterations that can be interpreted as part of the 
acute and adaptive survival response, but also associate 
with worse outcome and delayed recovery in the inten-
sive care unit (ICU) [6–9].
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Sepsis and other critical illnesses are characterized by 
an immediate and sustained reduction in low plasma 
LDL-, HDL- and total cholesterol concentrations [10–
15], together with a, less pronounced, increase in plasma 
free fatty acids (FFA)  [7–9, 16, 17]. The severity of these 
alterations is associated with severity of illness, but the 
underlying pathophysiological mechanisms that might be 
involved are multifactorial and only partly clarified. This 
narrative review aims to provide an overview of the cur-
rent understanding of the impact of the observed changes 
in lipid and cholesterol metabolism during critical illness 
and the potential pathophysiological underlying mecha-
nisms. The current and emerging therapeutic strategies 
aimed at restoring lipid and cholesterol disturbances in 
critically ill patients are also discussed. These encompass 
pharmacological interventions, nutritional support, and 
metabolic targets for novel therapeutic interventions.

Cholesterol homeostasis during critical illness
Circulating cholesterol and lipoproteins during critical 
illness
Cholesterol is vital for normal systemic and cellular 
functioning. It is an essential constituent of cell mem-
branes, fulfills a role in signaling and transport, and can 
serve as a precursor for the synthesis of various bioactive 
molecules, including steroid hormones and bile acids. 
Emerging evidence indicates that critical illness induces 
significant perturbations in cholesterol homeostasis. 
Conditions such as major surgery and trauma, sepsis, 
burn wounds and liver dysfunction are characterized by 
low total-, LDL- and HDL-cholesterol plasma concen-
trations [10–13, 18]. A rapid fall in total and lipoprotein 
cholesterol has been observed from the onset of critical 
illness onwards [14]. This hypocholesterolemia is most 
pronounced in patients with sepsis as compared with sur-
gery or trauma ICU patients [10, 11, 15]. For both trauma 
and septic patients, lipoprotein concentrations further 
decrease during the first days of critical illness, followed 
by a steady but slow recovery [15, 19]. Low serum cho-
lesterol levels were associated with higher Acute Physiol-
ogy and Chronic Health Evaluation (APACHE) III score, 
increased Multiple Organ Dysfunction Score (MODS), 
longer length of stay and increased mortality [14]. Lower 
serum cholesterol levels have been recently documented 
in critically ill patients suffering from ICU-acquired 
weakness (ICUAW) as compared with non-weak patients 
[20]. Of note, altered cholesterol concentrations within 
lipid rafts can affect downstream signaling pathways such 
as the adrenergic receptor signaling pathway and might 
also contribute to myocardial dysfunction in septic shock 
patients [21, 22].

The decrease in circulating cholesterol is thought to 
be part of the acute phase response, as cholesterol and 

its lipoprotein carriers can have immunomodulatory 
properties [23, 24]. VLDL, LDL and HDL lipoproteins 
have the ability to bind and neutralize endotoxins such 
as bacterial lipopolysaccharide (LPS), as well as other 
bacterial and viral pathogenic products [23–26]. Bind-
ing of LPS to lipoproteins interferes with the interaction 
of LPS on Toll-like receptors (TLRs) present on mac-
rophages, impairs TLR signaling and modulates infec-
tion and inflammation [27]. This scavenging mechanism 
plays an important role in neutralizing toxins as part of 
the innate immune system preventing activation of TLR 
by pathogen-associated molecular patterns and thereby 
establishing a first line of defense against invading 
micro-organism, but how much this scavenging would 
affect circulating cholesterol levels has not been clari-
fied. In addition, one might expect an increased need of 
cholesterol for new cell synthesis as part of the immune 
response, tissue repair and wound healing [28–30]. At 
least in cancer, such increased need has been linked to 
hypocholesterolemia [28]. Additionally, cholesterol might 
also be required for the sustained conversion to cortisol 
in the adrenal cortex as part of the stress response to crit-
ical illness [31]. The sicker the patient, the higher plasma 
cortisol concentrations are and the lower plasma choles-
terol concentrations.

Cholesterol homeostasis is in normal physiology tightly 
regulated where the amount of cholesterol taken up 
through the diet determines the endogenous cholesterol 
production (Fig.  1). In the next section, we will discuss 
the different components involved in cholesterol home-
ostasis and how they are affected during critical illness 
and possibly explain the hypocholesterolemia of critical 
illness.

Pathophysiology
Uptake and transport of cholesterol during critical illness
In normal conditions, dietary cholesterol is taken up 
from the intestine and stored as cytosolic lipid droplets 
or packed into lipoproteins to enable transport in the 
circulation (Fig. 1). In critically ill patients however, cho-
lesterol intake is often reduced, as the lipid fraction of 
enteral and parenteral formulas often lacks cholesterol, as 
only fish oil, but not soy or olive oil is a source of choles-
terol [32, 33]. Furthermore, intestinal absorption of lipid 
is impaired during critical illness [34]. In addition, ATP-
binding cassette transporters, transforming lipid-poor 
apolipoprotein A1 into mature HDL, and lecithin-choles-
terol acyltransferase (LCAT), converting free cholesterol 
to cholesterol esters, are also affected during sepsis [35, 
36]. Cholesteryl ester transfer protein (CETP), responsi-
ble for the transfer of cholesterol between HDL and LDL 
(Fig. 1), has been shown in animal models to be reduced 
by sepsis or inflammation [37]. Increased CETP activity 
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Fig. 1  Schematic overview of normal cholesterol physiology and possible mechanisms involved cholesterol disturbances during critical illness. 
In normal physiology, dietary cholesterol is taken up from the intestine and stored as cytosolic lipid droplets or packed into lipoproteins to enable 
transport in the circulation. Cholesterol can be converted and excreted as bile acids as part of the enterohepatic circulation or converted to steroid 
hormones. The liver is the main organ for de novo synthesis of cholesterol from Acetyl CoA through the mevalonate pathway, for which HMGCR 
is the key-regulator. During critical illness, reduced dietary uptake and reduced bile acid excretion are involved in a disturbed enterohepatic 
circulation. Cholesterol synthesis appears reduced. Increased shuttling to tissue repair, LPS scavenging and conversion to steroid hormones might 
all play a role. LPS: lipopolysaccharide; TLR 4: toll-like receptor 4; CD14: cluster of differentiation 14; HMGCR: HMG-CoA reductase. SR-BI: scavenger 
receptor class B type I; LDL-R: LDL-receptor. Created with BioRender.com
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would deplete HDL particles of their cholesterol content, 
induce HDL catabolism, and reduce HDL plasma con-
centration, which suggests that the observed decrease 
with sepsis is a compensatory mechanism. No human 
data on CETP activity is available, but a CETP gain-of-
function genetic variant was associated with increased 
sepsis mortality [38].

De novo cholesterol production during critical illness
Cholesterol synthesis can occur in every nucleated cell, 
but the majority is synthesized in the liver in a multi-
enzyme reaction which is high energy and oxygen 
demanding (Fig.  1). Cholesterol is synthesized in the 
mevalonate pathway starting from acetyl co-enzyme A 
(acetyl CoA), and with HMG-CoA reductase (HMGCR) 
and squalene mono-oxygenase being the rate-limiting 
enzymes. Cholesterol synthesis is tightly regulated, 
encompassing both transcriptional and post-transcrip-
tional regulators and feedback mechanisms [39]. If criti-
cal illness would reduce cholesterol synthesis, this would, 
in a context of reduced intake, potentially lead to lower 
circulating cholesterol levels. Patients with liver failure 
are often presented with decreased serum cholesterol 
levels related to a reduced HDL-cholesterol and apolipo-
protein synthesis [13]. In addition, a decrease in the cho-
lesterol precursors squalene and lathosterol was observed 
in trauma ICU patients, indeed suggesting reduced cho-
lesterol synthesis [11, 15]. However, a study performed in 
septic rats reported an elevated rather than suppressed 
hepatic cholesterol synthesis [40].

Cholesterol metabolism and conversion during critical illness
Other factors such as loss of lipoproteins, hemodilution 
or an accelerated metabolism might also contribute to an 
altered cholesterol availability in critically ill patients [41, 
42]. The liver is the main cholesterol metabolizing organ 
in the body (Fig. 1). After peripheral uptake of cholesterol 
in cells, excess cholesterol is removed from peripheral 
tissues to the liver in the process of reverse cholesterol 
transport for further metabolism or excretion from the 
body via the bile [39]. Where only a small fraction of bile 
acids is excreted in the feces, the majority returns to the 
liver via the enterohepatic cycle. The enterohepatic cycle 
is however often disturbed during critical illness, due to 
a reduced enteral intake, gut impairment, diarrhea and 
cholestasis [43, 44]. Indeed, critically ill patients in the 
protracted phase of illness often display elevated bile 
acid concentrations [45]. These cholestatic features have 
been attributed to ongoing bile acid synthesis with loss 
of feedback inhibition and alterations in transport and 
conjugation [45], suggesting an increased conversion 
from cholesterol to bile acids. Interestingly, the decrease 
in plasma cholesterol observed after surgery, trauma or 

sepsis is somewhat attenuated by the presence of choles-
tasis [11, 13]. Furthermore, pro-inflammatory cytokines 
can increase the activity of cholesterol 25-hydroxylase 
and the acute phase protein phospholipase A2, thereby 
also affecting metabolism of apolipoproteins and choles-
terol esters [46].

An increased conversion of cholesterol to steroid hor-
mones might theoretically also be involved as cholesterol 
is required for the sustained conversion to cortisol in 
the adrenal cortex as part of the stress response to criti-
cal illness [31]. The sicker the patient, the higher plasma 
cortisol concentrations are and the lower plasma choles-
terol concentrations. Other cholesterol-derived metabo-
lites, such as aldosterone, sex hormones and vitamin D 
might also be involved but circulating sex hormones and 
vitamin D are decreased, and not elevated during criti-
cal illness [47]. Tracer data on the distribution and con-
version of cholesterol to cholesterol-derived metabolites 
during critical illness is required to further clarify the 
involvement of cholesterol metabolism and conversion to 
the hypocholesterolemia of critical illness. Importantly, 
the adrenal cortisol response to ACTH correlated with 
HDL-cholesterol concentrations in critically ill patients 
[48] and patients suffering from prolonged critical illness 
demonstrated cholesterol-depleted adrenal glands [49]. 
Whether the sustained hypocholesterolemia is involved 
in failing adrenal function in protracted critical illness 
[31] needs to be further investigated.

Therapeutic implications
Statins
Patients at risk of atherosclerotic cardiovascular disease 
can benefit from lipid-lowering drugs such as statins. 
Statins are most commonly used to lower cholesterol 
concentrations by their direct action on HMGCR (Fig. 1) 
but also have anti-inflammatory and immunomodula-
tory properties, which theoretically may help mitigate 
the inflammatory response and improve outcome during 
critical illness [50]. Meta-analyses of randomized con-
trolled trials (RCTs) and observational studies on sta-
tin use in ICU patients had limited power to study hard 
clinical endpoints, did not improve mortality in patients 
with sepsis and argue against their use during critical ill-
ness (reviewed in [51]). Furthermore, statin treatment 
is associated with muscle toxicity and myopathy [52]. 
Lower serum cholesterol levels have been recently docu-
mented in critically ill patients suffering from ICUAW as 
compared with non-weak patients [20]. Whether a ben-
eficial effect of statins on inflammation, immunity or on 
endothelial function was outweighed by a suppressive 
effect on cholesterol availability cannot be concluded 
from these studies. In conclusion, current evidence 
argues against the use of statins in the management of 
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critical illness. A close monitoring of high-risk patients 
already taking lipid-lowering drugs might be necessary 
to adapt the dose regimen, as an abrupt withdrawal in 
may cause negative inflammatory rebound effects, as was 
demonstrated in a myocardial infarction population [51, 
53].

Substitution therapy?
Although there is a clear invert association between 
plasma cholesterol and mortality in septic and other 
critically ill patients, intervention studies to investigate 
causality are not (yet) available. Therapies mimicking the 
endotoxin scavenging mechanisms of cholesterol, such as 
treatment with a phospholipid emulsion or polymyxin B 
hemoperfusion were unsuccessful in improving outcome 
[54].

A novel antitoxin liposomal agent, CAL02, which is a 
cholesterol-containing liposomal preparation, has been 
tested in severe pneumococcal pneumonia for safety 
but not yet for efficacy [55]. A phase I/II feasibility trial 
is ongoing to test whether a lipid emulsion can stabilize 
cholesterol levels in septic patients, but no clinical end-
points will be investigated [56]. In preclinical studies, 
infusion with reconstituted HDL or apolipoprotein A1 
improved organ function and survival in rodent mod-
els of sepsis and endotoxemia [57–59]. Pharmacological 
inhibition of CETP with anacetrapib preserved HDL-
cholesterol and apolipoprotein A1 levels and increased 
survival in septic mice [38]. Its therapeutic potential is 
also strengthened by the observation that a CETP gain-
of-function genetic variant is associated with increased 
sepsis mortality [38].

In conclusion, large RCTs on cholesterol and/or lipo-
protein supplementation demonstrating safety, tolerabil-
ity, and efficacy are currently lacking, also prevailing any 
conclusion on whether hypocholesterolemia should be 
rather interpreted as a good clinical marker of severity of 
illness or warrants treatment.

Fatty acid and triglyceride homeostasis 
during critical illness
The role of fatty acids and triglycerides during critical 
illness
During the acute and subacute phase of critical illness, 
FFA and, less frequently observed, triglycerides appear 
increased [16, 17]. The acute increase of FFA is more pro-
nounced with sepsis or septic shock [16] and is higher in 
non-survivors compared to survivors [7]. Elevated serum 
triglyceride concentrations show a linear positive associa-
tion with increased mortality [8] and have been described 
to reflect the severity of critical illness [9]. In contrast to 
the observed association of infection or sepsis with low 
plasma cholesterol [10, 11, 15] and high FFA [16], plasma 

triglyceride levels are not found different between infec-
tious or non-infectious patients [60].

Increased circulating lipids may have broad metabolic 
and inflammatory implications (Fig. 2). They do not only 
comprise energy-dense compounds, but may also yield a 
multitude of inflammatory mediators [61]. These media-
tors may promote inflammation (e.g., eicosanoids, pros-
taglandins and leukotrienes), indispensable during the 
acute phase of critical illness, or attenuate the immune 
response (e.g., specialized pro-resolving mediators 
(SPMs)), by restoring homeostasis and enhancing recov-
ery processes [61]. As such, a dysregulated lipid balance 
may affect both survival during the acute phase of criti-
cal illness, and may contribute to the unabated and det-
rimental inflammation observed in chronic critically ill 
patients.

Pathophysiology
Altered transport and uptake of fatty acids
The delivery and uptake of FFA and triglycerides was 
originally conceptualized as a process of passive diffu-
sion, but recent evidence indicates that cellular and mito-
chondrial uptake of long-chain FA (LCFA) is a tightly 
regulated process (Fig. 2) [62]. FFAs are first dissociated 
from albumin or liberated from lipoproteins by lipopro-
tein lipase, and afterwards taken up by a complex array of 
proteins, among which the receptor cluster of differentia-
tion 36 (CD36) is one of the most extensively researched 
[63]. The observed hypertriglyceridemia during critical 
illness may indirectly indicate decreased cellular uptake, 
but post-mortem biopsies from adipose tissue indicated 
increased uptake of FFAs [16, 17, 64]. Additionally, the 
rate-limiting enzyme of intramitochondrial LCFA trans-
port, carnitine palmitoyl transferase I (CPT1), was sup-
pressed in critically ill animal models in liver and heart 
tissues [65].

Carnitine may bind LCFA to facilitate intramitochon-
drial transport, but may also maintain mitochondrial 
coenzyme A pools by scavenging fatty acyl intermediates 
[66]. A deficiency in carnitine and its acyl-derivates may 
as such reflect impaired lipid oxidation and mitochon-
drial dysfunction [66]. Metabolomic studies in septic 
patients and patients with respiratory failure have shown 
great disparity in acylcarnitine plasma profile between 
survivors and non-survivors [67, 68]. Whether circulat-
ing acylcarnitine metabolites may be useful as biomark-
ers of disturbed cellular mitochondrial integrity and 
metabolic capacity, needs further investigation.

Changes in lipolysis, lipogenesis and lipid oxidation
Sepsis and other critical illnesses evoke an acute stress 
response with increased catecholamines, glucagon, 
growth hormone and cortisol plasma levels and induce 



Page 6 of 11Lauwers et al. Intensive Care Medicine Experimental           (2023) 11:84 

relative insulin resistance, provoking a lipolytic response 
by stimulating lipase activity [47, 69]. The increase of 
FFA might as such simply reflect the severity of illness 
and its evoked acute stress response. Indeed, increased 
lipolysis is one of the common metabolic signals of acute 
critical illness and may be more pronounced in patients 
with shock [16, 17]. Nevertheless, the improved outcome 

observed in obese patients in the ICU (obesity paradox, 
vide infra) appears to be mediated among others by more 
efficient lipolytic processes [70].

The role of lipogenesis in critically ill patients remains 
uncertain. Lipogenesis may provide a protective cellular 
response to alleviate lipotoxicity by sequestering circu-
lating lipids and glucose especially in the context of the 

Fig. 2  Schematic overview of normal lipid physiology and possible mechanisms involved in lipid disturbances during critical illness. In normal 
physiology, circulating fatty acid concentration depends on the balance of lipolysis and lipogenesis. Fatty acid uptake is mediated by transporters 
and passive diffusion and will either enter oxidative pathways to provide ATP or converted to ketone bodies, or stored as triglycerides. The nuclear 
receptor PPARα is the key transcriptional regulator of these processes. Fatty acids can be converted to immunomodulatory mediators such 
as ceramides, prostaglandins and specialized pro-resolving mediators. During critical illness, circulating fatty acids and triglycerides are increased 
and lipid mediators are imbalanced to a pro-inflammatory shift. Elevated lipolysis, impaired oxidative processes and hampered ketogenesis 
are observed in a context of suppressed PPARα expression. TG: triglyceride; FA; fatty acid; 3HB: beta-hydroxybutyrate; AcAc: acetoacetate; SPMs: 
specialized pro-resolving mediators; PPARα: peroxisome-proliferator-activated receptor α; ER: endoplasmic reticulum; β-ox: beta-oxidation; 
TCA cycle: tricarboxylic acid cycle; ATP: adenosine triphosphate; CPT: carnitine palmitoyltransferase; OXPHOS: oxidative phosphorylation; PGs: 
prostaglandins; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; STATs: signal transducer of activation (STAT) proteins; AP-1: 
Activator protein 1; CD36: cluster of differentiation 36. Created with Biorender.com
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stress-induced hyperglycemia, which is associated with 
increased mortality [4, 5]. Indeed, post-mortem biopsies 
from adipose tissues of critically ill patients revealed that 
lipid synthesis and glucose uptake appeared increased 
[64]. Contrary, cellular dysfunction may impair the oxi-
dation of metabolic substrates which may result in citrate 
accumulating by an overflowing tricarboxylic acid (TCA) 
cycle, especially in the presence of (high doses of ) nutri-
ents [66]. Excess citrate may increase malonyl-CoA (the 
rate-limiting metabolite of lipogenesis) and thus activate 
inappropriate lipogenesis [66]. Inappropriate lipogenesis 
may waste both precious energy molecules as an energy 
consuming process and promote harmful lipid accumu-
lation in tissues. As such the precise relation between 
lipolysis and lipogenesis in different stage of the disease 
process remains unclear and may be beneficial or harm-
ful depending on the origin or context (Fig. 2).

As beta-oxidation and mitochondrial function 
become impaired during critical illness, metabolic path-
ways shift towards glycolysis [71]. This shift has mostly 
been described in immune cells, and may reflect adap-
tive mechanisms to stimulate defensive processes (e.g., 
immune response) [71]. Concurrent cellular processes 
may be diminished to spare and reprioritize energy 
towards vital functions (metabolic tolerance) [71]. Resto-
ration of lipid and mitochondrial oxidative pathways is, 
however, essential in order for recovery to occur. Prot-
eomics and metabolomics studies in critically ill patients 
illustrated that non-surviving patients had defective lipid 
oxidative pathways and impaired intramitochondrial lipid 
transport [68]. On a cellular level, transcription of lipid 
transport and oxidation is regulated by nuclear receptor 
peroxisome-proliferator receptor alpha (PPARα). PPARα 
mediates the switch from glucose to lipid oxidation, acti-
vates ketogenesis but also mediates anti-inflammatory 
actions (Fig. 2). PPARα expression was decreased in post-
mortem biopsies of critically ill patients and this down-
regulation was shown to correlate with sepsis severity 
[72, 73]. Moreover, PPARα activation has been proposed 
to have beneficial effects after (major) trauma, traumatic 
brain injury and spinal injury [74].

Obese patients comprise a unique population within 
the ICU due to their preexisting dyslipidemia and altered 
lipid and cholesterol metabolism. Remarkably, several 
large cohort studies and meta-analyses have described a 
lower mortality risk for critically ill patients with excess 
body fat [75, 76]. Human obese patients displayed lower 
plasma levels of inflammatory cytokines when compared 
with lean patients and had a lower incidence of ICUAW 
[70, 77]. Furthermore, obese patients also displayed 
reduced protein catabolism compared with lean patients 
[78]. In septic mice, the improved muscle function was 
found to be related to an increased mobilization of fat 

from adipose tissue, and subsequent increased hepatic 
FA oxidation and ketone formation [79]. This suggests 
that obese ICU patients might have a primed metabolic 
profile which favors the release and the use of stored 
energy from adipose tissue. Together, these may coun-
teract the use of ectopic lipids and proteins from vital 
organs and muscle, hence averting lean tissue wasting. 
Whether the increased rate of lipolysis and ketogenesis 
contributes to the improved survival in critical illness, or 
whether it also has maladaptive consequences needs fur-
ther investigation.

Regulation of bioactive lipid mediators
The immune response to critical illness appears to 
involve a complex dysregulation of bioactive lipid media-
tors. Sepsis non-survivors were characterized by a dis-
tinct profile of lipid mediators with derangements in 
both pro-resolving mediators and pro-inflammatory 
metabolites [80]. Polyunsaturated fatty acids (PUFAs) 
are the primary precursors of inflammatory lipid media-
tors. Among these, arachidonic acid-derived metabo-
lites of omega-6 PUFAs promote inflammation, whereas 
eicosapentaenoic and docosahexaenoic acid (EPA/DHA) 
omega-3 PUFAs are considered more anti-inflammatory. 
These anti-inflammatory actions may arise by SPMs 
(resolvins, protectin, maresins and lipoxins) that are 
primarily derived from omega-3 FAs [81]. SPMs facili-
tate resolution of inflammation, tissue regeneration 
and pathogen clearance and may play a crucial role in 
preventing the inappropriate escalation of the immune 
response both in the acute and chronic phase of critical 
illness. Supplementation of SPMs in animal models of 
sepsis improved mortality, decreased oxidative stress and 
attenuated inflammation [82, 83] and trauma patients 
with uncomplicated recovery had a higher expression of 
resolvins than patients with a complicated recovery [84]. 
In addition to SPMs, ceramides may affect immune dys-
regulation during critical illness. Ceramides are a type of 
sphingolipids with primary signaling functions that play 
a central role during intracellular stress and regulation 
of apoptosis [85]. Observational research in critically ill 
patients has shown an association between increased cer-
amide concentrations and poor survival in septic patients 
[86]. Although specific lipid mediators might pose inter-
esting new strategies to predict outcomes and adapt ther-
apy, this topic is beyond the scope of this article and has 
been extensively reviewed elsewhere [61, 81].

Therapeutic targets
Parenteral nutrition strategies
Lipids in enteral and parenteral nutrition function as 
a source of energy-dense calories, sparing carbohy-
drate requirements, and provide essential FAs that are 
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indispensable for cell membrane structure and function. 
Modern lipid mixtures may, however, also modulate 
the inflammatory response and metabolic functioning 
according to FA chain length and triglyceride structure. 
The immunomodulatory properties of PUFAs have 
received considerable attention in the field of immunon-
utrition. As such, traditional soy bean oils have become 
scrutinized as a result of their pro-inflammatory and 
immunosuppressive effects in comparison to other lipid 
emulsions [33]. These side-effects have mostly been 
attributed to the high ratio of omega-6 PUFAs present in 
soybean oil, while lipid emulsions rich in omega-3 PUFAs 
(fish oil) and omega-9 PUFAs (olive oil) are consid-
ered anti-inflammatory or neutral, respectively [33, 61]. 
Although few smaller RCTs in critically ill patients sug-
gest a decrease in the hospital length of stay and rate of 
infections after infusion of omega-3 FA rich lipid emul-
sion, meta-analyses have generated inconclusive results 
[87, 88].

Besides immunomodulation, lipid emulsions may also 
alleviate metabolic dysfunction during critical illness. 
Mixtures rich in medium-chain triglycerides (MCTs) 
elicit a stronger ketogenic response than emulsions wit 
long-chain triglycerides [89]. Ketone bodies may serve as 
alternative energy substrates to carbohydrates and may 
activate beneficial signaling cascades that enhance resil-
ience to oxidative stress and promote recovery [90, 91]. 
High-quality RCTs should assess whether the protective 
effects on mitochondrial function and muscle integrity 
now only observed in small RCTs, might result in robust 
clinical benefit [92–94]. Alternatively, (relative) macro-
nutrient restriction may also promote favorable ketone 
body and lipid oxidative processes. A secondary analysis 
of a pediatric nutritional RCT revealed that plasma keto-
sis statistically mediated the benefits of withholding par-
enteral nutrition in the first week of critical illness [91].

Targeting metabolic pathways
Pharmacological PPARα activation might overcome its 
downregulation and subsequent compromised down-
stream pathways during critical illness. Although fibrates, 
PPARα agonists, improve dyslipidemia but not mortality 
in patients with cardiovascular risk factors, clinical tri-
als in critically ill patients are sparse [95]. A few smaller 
studies in children with burn wounds showed that phar-
macological activation of PPARα improved mitochon-
drial lipid oxidation [96, 97].

Critically ill patients may be prone to develop (rela-
tive) carnitine deficiency as renal losses are increased, 
endogenous production may be hampered, and nutri-
tional intake is diminished [66]. Carnitine deficiency 
may impair intramitochondrial transport of LCFA and 
disturb coenzyme A homeostasis [66]. A small RCT 

found a slightly lower mortality after carnitine infusion 
in septic shock patients [98]. Carnitine supplementation 
improved inflammatory markers in critically ill patients 
and had a small effect in patients with septic shock, but 
these findings were not reproduced in a phase 2 study 
[98–100]. These trials were, however, conducted irre-
spective of carnitine status by including a population not 
requiring exogenous supplementation. As such, carnitine 
supplementation in (relative) carnitine deficient patients 
might still potentially optimize metabolic pathways and 
enforce clinical effects, but more research on this topic is 
required.

Hypertriglyceridemia induced by critical care‑related 
therapies
Hypertriglyceridemia by (over)feeding or defective 
oxidative pathways may induce lipotoxicity [72, 101]. 
Especially in patients with concomitant hyperglycemia, 
intensive insulin therapy may attenuate circulating tri-
glycerides levels, which statistically mediates part of the 
outcome benefit of tight glycemic control [8]. In contrast, 
propofol, a sedative-hypnotic medication, is dissolved in 
a lipid emulsion and may even provoke hypertriglyceri-
demia, especially after prolonged administration [102]. In 
extreme cases, propofol and its lipid carrier may over-
whelm mitochondrial oxidation, designated the propofol 
infusion syndrome. Although interruption of this anes-
thetic drug may be sufficient in an early phase, death may 
be inevitable once metabolic disruption and mitochon-
drial uncoupling has set fort [103].

Conclusion
Critical illness induces significant perturbations in lipid 
and cholesterol homeostasis and is characterized by 
low total-, LDL- and HDL-cholesterol plasma concen-
trations, together with a, less pronounced, increase in 
plasma FFA. Hypocholesterolemia of critical illness is 
strongly associated with severity of illness, and is con-
sidered to be part of the acute phase response. Reduced 
nutritional uptake, increased scavenging of lipoproteins 
as well as an increased conversion to cortisol or other 
cholesterol-derived metabolites might all play a role in 
the decrease in plasma cholesterol. One could specu-
late that sustained low cholesterol concentrations might 
become disadvantageous in the prolonged phase of 
critical illness, because of a diminished responsiveness 
to tissue stress and a reduced delivery to liver and ster-
oidogenic tissues. Remarkably, a reduced mortality risk 
was observed in critically ill obese patients who typically 
display a metabolic profile with dyslipidemia [75, 76]. The 
acute stress response to critical illness creates a lipolytic 
cocktail, which might explain the increase in plasma FFA, 
although reduced uptake and oxidation of FFA, but also 
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increased lipogenesis, especially in prolonged critical ill-
ness, will also affect the circulating levels. Whether the 
increase in lipids can be considered adaptive, as neces-
sary energy substrate or essential components for cellular 
function, or might also have detrimental lipotoxic conse-
quences should be further investigated.
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