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Introduction
During infection, invading microorganisms activate the host response where the com-
plement system is part of the “first line of defense”. Complement activation occurs via 
the classical, alternative or lectin pathways. A deficiency in one of the three pathways 
is associated with increased mortality, impaired bacterial clearance and high cytokine 
levels [1]. Several of such conditions are known: (1) genetic deficiencies of the classi-
cal pathway are associated with autoimmune diseases. Such diseases are accompanied 
with impaired humoral response as well as ineffective elimination of immune complexes, 
apoptotic materials, and necrotic debris [2]. (2) Deficiencies of components of the 
alternative (complement factor D, properdin) and of the lectin (MBL) pathways impair 
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Background:  The complement factor D (CFD) exerts a regulatory role during infec-
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were associated with organ failure (SOFA score: r = 0.33; p = 0.003) and mortality (75% 
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pathogen removal and increase the susceptibility to infections [2]. A high susceptibility 
to bacterial infections with Neisseria spp. has been observed in complement factor D 
(CFD) deficient humans [3, 4].

During systemic infections, the complement and coagulation system are tightly net-
working proteolytic cascades [5]. (1) Platelets and platelet-microparticles (PMP) are able 
to activate classical and terminal complement activation pathways [6, 7]. (2) Thrombin 
cleaves C5 through terminal complement activation [8]. (3) FXa, FXIa, and plasmin 
function as C3 and C5 convertase [9]. In addition, platelet adhesion to injured endothe-
lial cells is promoted by the activated coagulation and complement system [10], i.e., the 
anaphylatoxin C5a induces tissue factor (TF) activity in human endothelial cells [11]. In 
turn, activated platelets mediate complement activation via P-selectin (CD62P) expres-
sion [12, 13]. Such interactions may also contribute to thrombosis and thrombocytope-
nia [14].

One serine protease of the alternative complement activation pathway is the comple-
ment factor D (CFD). CFD is stored in human platelets and is released after stimulation 
with ADP, collagen or thrombin [15]. The blockade of CFD with an anti-factor D anti-
body inhibits platelet activation by reduced CD62P expression on the platelet surface 
[16]. Otherwise, the physiological function of CFD in platelets and its role in coagulation 
during infection remains unclear. Based on the literature above, we designed a transla-
tional study in both mice and men to address the impact of CFD on coagulation in sep-
sis. We hypothesize (1) that CFD impacts coagulopathy in mice with systemic infection; 
(2) that CFD interaction with coagulation is associated with outcome in sepsis patients, 
and (3) that antiplatelet drugs affect the CFD level in patients with sepsis.

Materials and methods
Study design and interventions of mice experiments

All animal studies were reviewed and approved by the licensing committee of the state 
of Lower Saxony (Landesamt für Verbraucherschutz und Lebensmittelsicherheit, Old-
enburg, Germany, NRW 550-8594-21-006-089-02), and were in accordance with the 
German and European guidelines on protection of animals. Our study was designed 
before the MQTiPSS guidelines for improving animal modeling in sepsis were published 
[17]. However, we were complying with most of the recommendations regarding study 
design, human modeling, infection types and organ failure/dysfunction.

Male complement factor D knockout mice (fD−/−) were generated as described 
by Xu et al. [18], on the background of C57BL/6J. For control studies, male C57BL/6J 
mice (wild-type) were used. Animals were bred and housed at the animal facility of the 
Jena University Hospital. For the studies mice were 22 g (± 3 g) and 12–14 weeks old. 
Throughout all experiments, animals were kept under standardized conditions with 
access to food and water ad libitum.

Cecal ligation and puncture (CLP) was performed as described in detail previ-
ously [19]. Mice were anesthetized by i.p. injection of ketamine (Ketamin, DeltaSelect, 
Dreieich, Germany) and xylazine (Rompun, Bayer, Leverkusen, Germany) at a dose of 
1 µl/g body weight (BW) (mixture of 10 (ketamine) to 1 (xylazine)). To shortly sum the 
procedure, after disinfection of the abdominal area the mice were laparotomized by 
midline incision. Then, 2/3 of the exposed cecum was ligated and punctured through 
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and through with a 21-gauge needle [1]. Finally, wound closure was performed by apply-
ing simple running sutures to the abdominal musculature and the skin. For the current 
study, CFD-deficient mice and wild-type mice as comparable control group were under-
going CLP procedure and scored every 3 h, applying the clinical severity score described 
before [20]. At indicated time points (control, 3, 6 and 24  h = 4 groups/genotype) the 
animals were euthanized and whole blood was drawn. Therefore, anesthetized sham 
control mice or septic mice were laparotomized and blood was taken by heart puncture.

Blood cell count and sample preparation in mice experiments
Whole blood was taken from septic (six and 24 h after CLP) and control mice of both 

genotypes (fD−/−, wild-type) for full-automatic analysis of leukocytes and platelets 
counts (PocH-100iV Diff; Sysmex, Leipzig, Germany). The samples for the ROTEM and 
FACS analyses were used directly after blood drawing. Platelet-rich-plasma (PRP) was 
prepared by centrifugation at 180 g for 12 min at room temperature. Afterwards the PRP 
was obtain carefully for further analyses. During sample preparation the PRP were kept 
on 4  °C to avoid platelets activation. For plasma preparation whole blood was centri-
fuged at 2000×g for 10 min. Afterwards, samples were snap-frozen and stored at − 80 °C 
for further analysis. For the ELISA tests, plasma samples were thawed on ice before sam-
ple preparation.

Rotational thromboelastometry (ROTEM®, TEM) in mice experiments

For thromboelastometry (TEM) citrate anticoagulated whole blood from control and 
septic animals of both genotypes was used (blood volume adapted mixture (10:1) of 9 
part of whole blood and 1 part of 3.2% tri-natrium-citrate solution). Rapidly after sam-
pling whole blood EXTEM (extrinsic coagulation pathway), INTEM (intrinsic coagu-
lation pathway) and FIBTEM (fibrinogen function) test analyses of each group were 
performed with the ROTEM®delta system (Tem Innovations GmbH, ROTEM®delta 
system [000200100-DE], EXTEM assay reagents [503-13-20], INTEM assay reagents 
[503-12-20] and FIBTEM assay reagents [503-16-20] Munich, Germany) according to 
the manufacturer’s instructions.

ELISA of D‑dimer and TAT complexes in mice experiments

D-dimer concentration (Mouse D-dimer ELISA kit [CEA506Mu], Uscn Life Science 
Inc., Wuhan, China), TAT complexes (Mouse Thrombin–Antithrombin complex ELISA 
kit [SEA831Mu], Uscn Life Science Inc., Wuhan, China) were measured in septic and 
control mice plasma of each genotype (wild-type and fD−/−). The minimum of detecta-
ble dose of mouse D-dimer was 0.54 ng/ml and for mouse TAT complexes was 0.004 ng/
ml. The ELISAs were performed according to the manufacturer’s instructions.

Flow cytometry of GPIIb/IIIa and P‑selectin surface expression and cytokine levels (CBA 

assay) in mice experiments

GPIIb/IIIa and P-selectin surface expression were detected by flow cytometry. Therefore 
platelet-rich plasma (PRP) was prepared by centrifugation (see above) and stained with 
antibody for activated form of GPIIb/IIIa (PE Integrin alphaIIbbeta3 [M025-2], 5 µl anti-
body solution to stain ~ 106 platelets in a recommended volume of 25 µl, recalcification 
using Tyrode–Hepes buffer containing 1  mM CaCl2 before flow cytometric analysis, 
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Emfret Analytics, Eibelstadt, Germany) and P-selectin (FITC Rat Anti-mouse CD62P 
[553744], concentration 0.5 mg/ml, Becton Dickinson (BD), East Rutherford, USA) fol-
lowed by flow cytometric analysis. Plasma cytokine levels were measured using CBA 
assay (Cytometric Bead Array (CBA) Mouse Inflammation [552364], Becton Dickinson 
(BD), East Rutherford, USA) by FACS. The plasma samples were collected and analyzed 
according to the manufacturer’s instructions.

Study design and human study population

The study was conducted in accordance with Helsinki Declaration and approved by the 
local ethical committee of Jena University Hospital (474403/16). Plasma samples were 
collected from ICU patients between 2001 and 2005.

Plasma samples were stored at − 80 °C in the Integrated BioBank Jena (Jena Univer-
sity Hospital, Germany). Informed consent was obtained from all patients or their legal 
representatives. Inclusion criteria for this analysis were either new onset of sepsis (for 
the trial patients were evaluated based on the definition of sepsis-1) [21] or presence of 
systemic inflammation after cardiopulmonary bypass for cardiac surgery. Plasma sam-
ples had to be available between 24 and 48 h after diagnosis of sepsis or SIRS. Patients, 
who had received fresh frozen plasma or thrombocyte transfusion during their ICU 
stay, were excluded from this analysis. In total N = 79 patients were included in the 
study, whereas the study cohort was divided into two groups: group (1) N = 45 infected 
patients (= diagnosis: sepsis) and group; (2) N = 35 non-infected patients (= diagnosis: 
SIRS). Several parameters were provided from the study group (demographical data, 
fibrinogen level, C-reactive protein, SOFA [Sepsis-related Organ Failure Assessment] 
score [22]). The medication history of the study population was evaluated with respect 
of the use of antiplatelet drugs, especially acetylsalicylic acid (ASA) or clopidogrel. Fur-
ther, we defined cut-off values of measured complement factor D plasma levels: < 25% 
percentiles (CFD levels ≤ 2.4 µg/ml), > 25% and < 75% percentiles (CFD levels > 2.4 µg/ml 
and < 5.0 µg/ml), > 75% percentiles (CFD level ≥ 5.0 µg/ml).

ELISA of D‑dimer, TAT complexes and complement factor D (CFD) in the human study 

population

D-dimer (D-Dimer Human Simple Step ELISA® Kit [ab260076], abcam®, Cambridge 
UK), TAT complexes (Human Thrombin–Antithrombin Complex ELISA Kit (TAT) 
[ab108907], abcam®, Cambridge UK) and complement factor D (Quantikine® Human 
Complement Factor D Immunoassay [DFD00], R&D Systems®, Minneapolis USA) 
levels were measured in human plasma. The minimum of detectable dose of human 
D-dimer was 0.07 ng/ml, for human TAT complexes was 1.5 ng/ml, and for human CFD 
was 0.013  ng/ml. Therefore, ELISAs were performed according to the manufacturer’s 
instructions.

Statistical analyses

For the animal study, after descriptive statistical analyses, non-parametric tests using 
Wilcoxon–Mann–Whitney test, or the Kruskal–Wallis test (Dunn’s test correction) 
were performed. For the human study, after descriptive statistical analyses, the obtain 
data were assessed for normal distribution. For data following normal distribution, we 
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applied parametric tests (Student’s t-test). Otherwise, non-parametric tests (Wilcoxon–
Mann–Whitney test or the Kruskal–Wallis test with Dunn’s test correction) were used. 
We report bivariate Pearson correlation coefficients for several variables (CFD, TAT 
complexes, D-dimer, platelets, SOFA score, modified DIC score). We investigated the 
association of CFD levels measured after ICU admission and diagnosis sepsis or SIRS 
for time to in-hospital mortality. The estimated percentiles (25, 50 and 75 percentiles) 
of the calculated mean CFD plasma level (with confidence interval, CI) of all patients 
were defined as cut-off limits. Three groups were conducted and the CFD value of each 
patient of both groups (SIRS and Sepsis) assigned to the groups. Results were displayed 
in a Kaplan–Meier curve with the classification for CFD levels based on the calculated 
percentiles (25%, 50% and 75%). Using univariate and multivariable Cox regression mod-
els, we extended the investigation of CFD level (linear) with time to in-hospital mor-
tality including demographic (sex, age) and clinical variables (TAT complexes, D-dimer, 
platelets) as well as ICU scores (SOFA, modified DIC score) and state of infection (sub-
group sepsis). In multivariate analysis, we adjusted for age and SOFA score which are 
known confounders when assessing effects on hospital mortality. From these models, 
we derive hazard ratios (HR) and confidence intervals (CI) with a coverage of 95%. We 
applied an explorative two-sided significance level of α = 0.05 and did not correct for 
multiple testing. Results are depicted as bar plots (mean + SEM) or boxplots (interquar-
tile range [IQR], 0.25, 0.75; whiskers: min, max). Individual data points (n) are plotted 
over the boxes, or the n was specified otherwise in the bars or figure legend. The results 
for patient characteristics are stated as mean with range or min to max. All analyses 
were done using GraphPad Prism 6 or IBM SPSS 24.

Results
Coagulation and platelets function in septic fD−/− and wild‑type mice

Leukocyte depletion was found in CFD-deficient (fD−/−) and wild-type (wt) mice 24-h 
after CLP (wt: p = 0.0003; fD−/−: p = 0.0004) (Fig. 1A). Cytokine levels increased in both 
groups after sepsis onset (wt: IL-6, p = 0.004; TNF-α, p = 0.008; IL-10, p = 0.008; fD−/−: 
IL-6, p = 0.001; TNF- α, p = 0.002; IL-10, p = 0.001), whereas IL-6 levels were higher in 
fD−/− mice compared to wild-type at 3-h (p = 0.012) after CLP (Fig. 1B and Additional 
file  1: Figure S1D). Platelets counts dropped in wild-type mice (p = 0.003) but not in 
fD−/− mice 24-h after sepsis induction (Fig. 1A). D-dimer concentrations increased con-
tinuously in both groups reaching highest values 24-h after sepsis onset (wt: p < 0.0001; 
fD−/−: p = 0.0006; Additional file  1: Figure S1C). We observed higher values of TAT 
complexes in control and septic fD−/− mice (p = 0.02; Fig. 1D).

All three test settings of rotational thromboelastometry, i.e., EXTEM, INTEM and 
FIBTEM resulted in enhanced clotting times (ct) in sham control and septic fD−/− mice. 
Only the EXTEM ct of sham control fD−/− mice, which assesses the extrinsic path-
way, differed from the wild-type sham control (Fig. 1C, Additional file 1: Figure S1A). 
CLP was associated with a reduction in maximal clot firmness (mcf) in all three test 
settings (EXTEM, INTEM and FIBTEM test) in both groups (wt: EXTEM, p = 0.002; 
INTEM, p = 0.03; FIBTEM, p = 0.002; fD−/−: EXTEM, p = 0.03; INTEM, p = 0.004; 
FIBTEM, p = 0.009). Further, INTEM and FIBTEM test revealed a lower mcf in septic 
fD−/− mice compared to septic wild-type mice (for FIBTEM, Additional file  1: Figure 
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S1B). P-selectin expression on isolated platelets increased in both groups after CLP 
over time but was more pronounced in wild type 24 h after sepsis induction compared 
to fD−/− mice at that time point (wt: p = 0.008; fD−/−: p = 0.02; Additional file  1: Fig-
ure S1E). GPIIb/IIIa expression on isolated platelets of septic fD−/− mice did not change 
relevantly during the experiment, while receptor expression of activated GPIIb/IIIa was 
enhanced on platelets of wild-type mice 24-h after CLP (p = 0.03; Fig. 1E) compared to 
septic fD−/− mice at that time point and the wild-type control group.

Clinical characteristics in the human study population

Patient characteristics are summarized in Tables 1, and 2. In short, the sample included 
a similar number of males and females with a mean age of 66 years (range 29–92 years). 
Their overall in-hospital mortality was 41%. The most frequent foci were pulmonal (22%) 
and abdominal (17%) infections.

Complement factor D (CFD) levels and their association with antiplatelet drugs 

in the human study population

The mean level of complement factor D (CFD) was 4.2  µg/ml (range 0.2–15.0  µg/ml, 
Table 2) at ICU admission. In septic patients the mean CFD value (4.5 µg/ml, Table 2) 
was higher compared to SIRS patients (3.8 µg/ml, Table 2).

Fig. 1  Complement factor affects immune response and platelets function. A, B Whole blood leukocytes 
dropped in septic mice (both groups) after CLP. No platelet drop was found in septic fD−/− mice (fD−/−) 
24 h after CLP, whereas platelet counts were reduced in septic wild-type (wt) at same time point. C Plasma 
cytokine levels of IL-6 were significant higher in septic fD−/− mice compared to wild-type three hours after 
CLP. D EXTEM test were performed and clotting time (ct) in fD−/− mice (fD-/-) was prolonged in both sham 
control (crtl) and after CLP. E TAT complexes were found to be higher in control (crtl) and septic fD−/− mice. 
F Platelet surface expression of GPIIb/IIIa was reduced in septic fD−/− mice compared to wild-type 24 h after 
CLP. Statistics: *significant to fD−/− sham control (crtl) or wild-type (wt) sham control (crtl) with p < 0.05, (A, 
B, E and F) Kruskal–Wallis test (Dunn’s test correction) or (C and D) Wilcoxon–Mann–Whitney test. #Statistical 
significance (p < 0.05) between fD−/− and wild-type (wt) by means of (A to F) Wilcoxon–Mann–Whitney test. 
Three to 12 mice/group
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The plasma CFD concentration was increased in non-survivors compared to survi-
vors (5.0  µg/ml in non-survivors to 3.6  µg/ml in survivors, p = 0.015; Fig.  2B) at ICU 
admission. The plasma CFD value of non-survivors and survivors were also compared in 
both subgroups. Septic non-survivors displayed on average 1.8 µg/ml higher CFD value 
compared to septic survivors (p = 0.042; Additional file 1: Figure S2A). In SIRS patients, 
CFD value on average differed between survivors and non-survivors by 0.7 µg/ml. The 
CFD concentration of non-survivors without antiplatelet drugs were higher compared to 
non-survivors with antiplatelet drugs (acetylsalicylic acid [ASA] or clopidogrel; 5.3 µg/
ml in patients with no antiplatelet drugs to 4.5 µg/ml in patients with antiplatelet drugs). 
Non-survivor without antiplatelet drugs displayed significantly higher CFD concentra-
tion compared to the survivor with no antiplatelet drugs (5.3 µg/ml in non-survivors to 
3.3 µg/ml in survivors, p = 0.044; Fig. 2C).

Complement factor D (CFD) compared to coagulation parameters and scores of organ 

dysfunction in the human study population

D-dimer level and SOFA score were higher in non-survivor compared to survivors in 
SIRS patients without reaching statistical significance. In sepsis patients, D-dimer level 
and SOFA score were elevated without being different between non-survivors and 

Table 1  Patient characteristics and pathologies in the investigated study population

Characteristics N Infection N

Overall Sepsis SIRS

Sex Sepsis (%) 44 (56)

 Female 40 22 18 Endocarditis 4 (5)

 Male 39 22 17 Pneumonia 17 (22)

Age y Intra-abdominal 13 (16)

 Mean 66 66 65 Pneumonia/intra-abdominal 4 (5)

 Range 29–92 31–92 29–88 Other 6 (8)

Outcome SIRS (%) 35 (44)

 Dead 32 23 9

 Survived 47 21 26 Total 79 (100)

Table 2  Patient characteristics and scores after diagnosis of sepsis or SIRS in the investigated study 
population

Variables Overall Sepsis SIRS

N Mean (min to max) N Mean (min to max) N Mean (min to max)

In-hospital stay (days) 78 27.2 (3–127) 43 34.0 (6–127) 35 18.7 (3–70)

CFD (µg/ml) 79 4.2 (0.2–15.0) 44 4.5 (0.8–15.0) 35 3.8 (0.2–11.2)

TAT complexes (ng/ml) 79 18.3 (4.7–56.8) 44 20.1 (5.6–56.8) 35 16.0 (4.7–43.7)

D-dimer (µg/ml) 79 3.4 (0.4–29.8) 44 4.8 (0.6–29.8) 35 1.7 (0.3–6.3)

Platelets (Gpt/l) 79 190.7 (25–851) 44 199.7 (25–851) 35 179.3 (69–515)

Fibrinogen (g/l) 73 4.5 (1.3–10.0) 39 5.4 (2.1–10) 34 3.4 (1.3–8.6)

CRP (mg/l) 76 133.7 (4.9–500.0) 44 191.1 (15–500) 32 54.8 (4.9–229)

SOFA score 78 8 (1–15) 44 9 (5–15) 35 7 (1–14)

DIC score (modified) 79 3 (2–7) 44 3 (2–7) 35 3 (2–4)
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survivors (Additional file  1: Figure S2B, S2C). For TAT complexes and modified DIC 
score, we observed no evidence for differences between the subgroups (Additional file 1: 
Figure S2B, S2C). During the first 5 days after ICU admission, platelet counts showed 
minor differences depending on low (≤ 2.4  µg/ml), mid (> 2.4  µg/ml and < 5.0  µg/ml) 
or high (≥ 5.0  µg/ml) CFD plasma concentration (Additional file  1: Figure S2D). Fac-
tor D concentration were positively correlated with the SOFA-score (r = 0.33, p = 0.003). 
Platelet counts concentrations were positively correlated with TAT complexes (r = 0.32, 
p = 0.004) and negatively correlated with both SOFA-score and modified DIC score 
(r = − 0.23, p = 0.04; r = − 0.23, p = 0.04; Additional file 1: Table S1, Figure S3).

Complement factor D (CFD) to predict in‑hospital mortality in the human study population

We found higher CFD levels to be associated with an increased in-hospital mortality 
(p = 0.03, Table 3 and Fig. 2A).

In the Cox regression analysis, depicted in Table 4, complement factor D (CFD) con-
centration was independently associated with overall survival when adjusting for age 
and SOFA score (Table 4).

Fig. 2  Height of complement factor D level predicts disease severity. A Kaplan–Meier curve: cut-off values 
were estimated from 25th, 50th and 75th percentile. Complement factor D (CFD) levels above 75th percentile 
were associated with earlier and higher in-hospital mortality. B Complement factor D: highest mortality 
was associated with significant higher complement factor D level in non-survivors compared to survivor 
group. C Non-survivors with no antiplatelet drugs showed significantly higher CFD plasma level compared 
to patient who survived. Statistics: *statistical difference between indicated groups with p < 0.05. A Log-rank 
test. #Statistical significance (p < 0.05) between non-survivor and survivors by means of B Student’s t-test or C 
Wilcoxon–Mann–Whitney. In total 79 patients
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Discussion
This translational study supports an important role for the serine protease comple-
ment factor D (CFD) in sepsis, both in the mouse as well as in humans: in mice, CFD 
is associated with a significant impact on coagulation by enhanced platelet function 
in septic wild-type mice. In humans, high CFD plasma concentration was associated 
with an increased mortality in sepsis and antiplatelet drugs might favorably outcome 
affect the CFD plasma level.

While the crosslink between coagulation and complement system is well established 
[3–5, 7, 10–13, 23], the impact of CFD on the coagulation cascade is still unclear. It is 
known that CFD is localized in human platelets [15]. Our data add important insights 
regarding the functional role: an enhanced thrombin generation reflected by higher 
TAT complex concentration in CFD-deficient mice is not only linked to compensatory 
C5a formation during sepsis, but also contributes to abnormal coagulation activity. 
Thrombin is known as a potent platelet activator and initiates GPIIb/IIIa expression 
on thrombocytes [24]. Interestingly, the surface receptor expression of GPIIb/IIIa was 
significantly reduced in CFD-deficient mice, while we observed an increase in throm-
bocyte surface markers in wild-type mice. Other markers of coagulation such as the 
results of ROTEM (clotting time, maximal clot firmness) or D-dimer were affected 

Table 3  Association of complement factor D levels to in-hospital mortality

CFD level N (non-survivor) Percentile Median 
survival

95% CI

Group 1:
 ≤ 2.4 µg/ml

19 (5) 25th 62 (26.949–97.051)

Group 2:
 > 2.4 and < 5.0 µg/ml

39 (14) 50th 44 (31.494–56.506)

Group 3:
 ≥ 5.0 µg/ml

20 (12) 75th 31 (20.994–41.006)

Total 42 (32.291–51.709)

Table 4  Regression model results for in-hospital mortality in 78 patients with diagnosis sepsis or 
SIRS

Statistics: univariate and multivariable Cox regression models (linear) and derived hazard ratios (HR) and confidence 
intervals (CI) with a coverage of 95% of demographic and clinical variables (p < 0.05)

Variables Cox regressions model for in-hospital mortality

Univariate models Multivariable models

Hazard ratio 95% CI p value Hazard ratio 95% CI p value

CFD 1.13 (1.03–1.25) 0.013 1.13 (1.00–1.28) 0.043

Age 1.03 (1.00–1.06) 0.049 1.02 (0.99–1.06) 0.092

Sex 1.62 (0.78–3.36) 0.193

TAT complexes 0.99 (0.96–1.03) 0.679

D-dimer 1.02 (0.93–1.13) 0.636

Platelets 1.00 (0.99–1.00) 0.512

SOFA score 1.05 (0.91–1.21) 0.548 0.99 (0.84–1.16) 0.869

DIC score (modified) 1.22 (0.80–1.87) 0.360

Sepsis 0.89 (0.40–2.00) 0.784
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in CFD-deficient as well as in wild-type mice. So, during infection CFD significantly 
impacts the inflammation-triggered activation of the coagulation cascade in mice, 
which was found in wild-type mice by pronounced surface expression of GPIIb/IIIa, 
P-selectin and the decrease of platelets and hint to the hypercoagulable state during 
sepsis.

The classical and alternative complement pathways play an essential role to clear endo-
toxin and to act as critical defense against bacterial infection [25]. Especially in humans, 
deficiency in factors of the alternative complement pathway such as CFD or properdin 
is reported to be associated with meningococcal infection and fulminant septic shock 
[3, 4, 26, 27]. In mice, CFD deficiency is associated with the loss of the regulatory role 
of the alternative pathway. Factor D-deficient mice showed reduced bacterial clearance, 
increased cytokine levels and fatal outcome [1].

In humans, we found high CFD levels in non-survivors of the whole study population 
and selectively in sepsis patients. These high CFD levels represent a strong activation 
of the alternative pathway. Alternative complement activation acts as an amplification 
loop triggering the hyperactive inflammatory response and thereby contributing nega-
tively to the progression of the disease [18, 28–30]. Furthermore, CFD is a modulator of 
complement activation during infection affecting the innate immune response [1]. This 
might be the reason why a high CFD generation as observed in our study was associated 
with a high in-hospital mortality. Further, the positive correlation between SOFA score 
and CFD would suggest a negative effect regarding (multi-)organ dysfunction in patients 
with strongly elevated CFD plasma level. An important aspect to monitor disease sever-
ity is to identify the individual patient risk based on diagnosis, co-morbidity and previ-
ous surgical procedures in the light of activation of coagulation and immune responses. 
An increased C3 and C4 consumption in sepsis, found by inversely lower C3 and C4 
levels in patient plasma, is more often associated with unfavorable outcome [31]. Com-
plement activation as an indicator of hospital acquired infection has a strong impact on 
mortality and hospital stay. Also, the depletion of complement C3 was found to be con-
nected to poor prognosis in severe abdominal sepsis [32].

Our data indicate that the alternative complement pathway interacts with immune 
processes and coagulation during infection and inflammation. Factor D seems to play a 
crucial role in this interaction during sepsis. Other authors focused on terminal comple-
ment activation and the lectin pathway. High C3, MAC, and MBL serum concentrations 
are predictive for sepsis-induced disseminated intravascular coagulation [33].

In sepsis, thrombomodulin is a strong predictor of (multi-)organ dysfunction [34]. 
Hemostasis-related parameters like aPTT, PT and D-dimer are associated with sever-
ity of the sepsis [35]. Further, endogenous thrombin can distinguish between beneficial 
and hazardous hemostatic alterations [36]. Based on the knowledge of dissimilarities in 
coagulation abnormalities in mice and human, we could not confirm the results of other 
authors, which found higher D-dimer and TAT complexes associated with disease sever-
ity in non-survivors [37].

Based on our findings in the animal experiments regarding dysregulated platelet func-
tion, we evaluated the effects of a medication with antiplatelets drugs in our study pop-
ulation. Our data showed reduced CFD plasma level in patients on antiplatelet drugs 
compared to patients without this medication. So, these could be responsible to improve 
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the septic hypercoagulable state in the patient cohort. These results are in line with the 
observation in CFD-deficient mice, which shows reduced surface receptor expression 
on thrombocytes and no relevant platelet drops after sepsis induction over time. Previ-
ous studies reported the prevention of organ dysfunction by antiplatelet drugs [38, 39] 
and low-dose aspirin as a therapeutic option to prevent organ failure [40]. It is hypothe-
sized, that antiplatelet drugs (ASA, clopidogrel) attenuates the expression and release of 
immune markers (complement factors such as C4b), inflammatory cytokines (including 
pro- and anti-inflammatory effectors, e.g., TNF-α, IL-1, -6, -10, -13), and induces tran-
scription factor NFκB during inflammation and cellular stress response [41].

Limitations

The following limitations have to be acknowledged for the present study. (1) The clinical 
study was designed as retrospective data analysis in a small and selective study group 
with all its advantages and disadvantages. (2) Patients were recruited from a surgical 
ICU. Surgical procedures on its own may affect the predictive role of CFD and its impact 
to in-hospital mortality. More studies are necessary to validate the clinical impact of 
CFD as potential biomarker and potential discriminator of in-hospital outcome.

Conclusions
The crosslink between complement and coagulation cascades seems to be permanently 
present in the course of systemic inflammation. In mice, CFD is linked to pronounced 
platelet activation, depicted by higher surface expression on thrombocytes in sepsis. In 
humans, CFD revealed significant impact on in-hospital mortality and predicts disease 
severity and poor outcome shown by high factor D level in the non-survivor group. The 
impact of antiplatelet drugs to improve sepsis might be beneficial and affect CFD plasma 
level and patient outcome.
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