
RESEARCH Open Access

Bioenergetic bypass using cell-permeable
succinate, but not methylene blue,
attenuates metformin-induced lactate
production
Sarah Piel1,2* , Johannes K. Ehinger1,2,3, Imen Chamkha1,2, Eleonor Åsander Frostner1,2, Fredrik Sjövall1,4,
Eskil Elmér1,2,5 and Magnus J. Hansson1,2

* Correspondence:
sarah.piel@med.lu.se
1Department of Clinical Sciences
Lund, Mitochondrial Medicine, Lund
University, BMC A13, 22184 Lund,
Sweden
2NeuroVive Pharmaceutical AB,
Medicon Village, 22381 Lund,
Sweden
Full list of author information is
available at the end of the article

Abstract

Background: Metformin is the most common pharmacological treatment for type 2
diabetes. It is considered safe but has been associated with the development of
lactic acidosis under circumstances where plasma concentrations exceed therapeutic
levels. Metformin-induced lactic acidosis has been linked to the drug’s toxic effect on
mitochondrial function. Current treatment strategies aim to remove the drug and
correct for the acidosis. With a mortality of 20%, complementary treatment strategies
are needed. In this study, it was investigated whether targeting mitochondria with
pharmacological agents that bypass metformin-induced mitochondrial dysfunction
can counteract the energetic deficit linked to toxic doses of metformin.

Methods: The redox agent methylene blue and the cell-permeable succinate prodrug
NV118 were evaluated by measuring mitochondrial respiration and lactate production
of human platelets exposed to metformin and co-treated with either of the two
pharmacological bypass agents.

Results: The cell-permeable succinate prodrug NV118 increased mitochondrial
respiration which was linked to phosphorylation by the ATP-synthase and alleviated
the increase in lactate production induced by toxic doses of metformin. The redox
agent methylene blue, in contrast, failed to mitigate the metformin-induced changes in
mitochondrial respiration and lactate generation.

Conclusions: The cell-permeable succinate prodrug NV118 bypassed the mitochondrial
dysfunction and counteracted the energy deficit associated with toxic doses of
metformin. If similar effects of NV118 prove translatable to an in vivo effect, this
pharmacological strategy presents as a promising complementary treatment for
patients with metformin-induced lactic acidosis.
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Background
Metformin is the most common pharmacological treatment for type 2 diabetes [1]. Down-

regulation of hepatic gluconeogenesis and decreased glucose uptake through the gut, par-

tially due to drug-induced decreased mitochondrial function, are key aspects of metformin’s

antidiabetic effect. However, the exact mechanisms are not fully elucidated yet [2]. Metfor-

min is considered safe but has been associated with cases of lactic acidosis. Lactic acidosis is

defined as arterial lactate levels above 5 mM and a pH below 7.35 [1, 2]. Metformin-induced

lactic acidosis (MILA) appears primarily in patients with renal failure, circumstances under

which the drug’s blood concentration can exceed therapeutic levels. Pathological conditions

affecting cardiovascular, respiratory, and liver function can further exacerbate the lactic acid-

osis as they can impair lactate metabolism and/or the acid-base balance [1, 3, 4]. Not sur-

prisingly, the inhibitory action of metformin on mitochondrial function is also implicated in

the development of MILA. Metformin inhibits the mitochondrial glycerophosphate de-

hydrogenase (mGPD) and complex I (CI) of the oxidative phosphorylation (OXPHOS) path-

way [2, 5]. As a result, the cell increases glycolysis to compensate for the loss of

mitochondrial ATP production, which is associated with increased lactate production and

acidification. Current treatment strategies consist of supportive measures, forced clearance

to remove the drug and correction of the acidosis [3]. With a mortality of around 20% [6,

7], there is a need for complementary treatment strategies for patients with MILA.

In this study, we hypothesized that restoration of the OXPHOS pathway by targeting

mitochondria with pharmacological agents that bypass metformin-induced mitochondrial

dysfunction can alleviate the changes in mitochondrial energy production associated with

metformin intoxication. We investigated the redox agent methylene blue (MB), which has

been described to facilitate electron transfer from NAD(P)H-dependent dehydrogenases to

cytochrome C [8–12], and the cell-permeable succinate prodrug NV118, which readily

passes through the cell membrane independent of active transporters, releases succinate,

and, through oxidation at complex II (CII), donates electrons to the OXPHOS pathway

[13]. Our hypothesis was tested by measuring mitochondrial respiration and lactate produc-

tion of human platelets exposed to metformin and co-treated with either of the two

pharmacological bypass agents.

Methods
Materials

All chemicals were obtained from Sigma-Aldrich Chemie GmbH (Schnelldorf,

Germany). The cell-permeable succinate prodrugs were supplied by NeuroVive

Pharmaceutical AB (Lund, Sweden) [13], and MB was purchased from Sigma-Aldrich

Chemie GmbH (Schnelldorf, Germany).

Human platelet isolation

Venous blood from healthy volunteers was drawn in K2EDTA tubes (Vacutainer®, BD,

Franklin Lakes, USA), and human platelets were isolated as previously described [14].

High-resolution respirometry

High-resolution respirometry of human platelets was performed as previously described

[5]. The corresponding doses of MB and NV118 used for further evaluation were
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determined based on dose-response experiments performed in rotenone-intoxicated hu-

man platelets. Both bypass strategies were then evaluated in a model of (a) CI inhibition

caused by rotenone (2 μM) and (b) specific metformin-related mitochondrial dysfunction

induced by exposure to either 10 mM metformin or 50 mM metformin for 60 min [5]. In

the model of rotenone intoxication, MB was evaluated at 20 μM. In the model of

metformin-induced mitochondrial dysfunction, the dose of MB was adjusted to 10 μM

based on an additional dose-response performed with the lactate production assay. NV118

was evaluated in both models at 250 μM. Mitochondrial respiration coupled to phosphoryl-

ation, here referred to as coupled respiration, was evaluated by addition of the

ATP-synthase inhibitor oligomycin (1 μg/ml) to block the phosphorylation pathway, and

calculated as the difference in respiration before and after the inhibition of the

ATP-synthase. Control experiments were performed without the addition of oligomycin to

account for background drift of oxygen consumption. Complex III (CIII) was blocked with

antimycin A (1 μg/ml), and complex IV (CIV) was inhibited with sodium azide (10 mM).

Remaining respiration after addition of sodium azide was defined as non-mitochondrial

respiration.

To exclude effects on mitochondrial respiration induced by the vehicles of the bypass

strategies (NV118, DMSO; MB, double-deionized water), the effects of the correspond-

ing vehicles were evaluated simultaneously (Fig. 1) or in a separately performed experi-

ment (Fig. 2, vehicle controls of both bypass agents were pooled). In the model of

specific metformin-related mitochondrial dysfunction, a vehicle control (double-deio-

nized water) to the metformin treatment was included.

Lactate production

Platelets were incubated with metformin (10 mM) or its vehicle (double-deionized water)

in glucose-containing PBS (10 mM) for 60 min before co-treatment with either MB or the

cell-permeable succinate prodrug was initiated. MB was administered either as a single

dose (10 μM) or as one dose every 30 min (1 μM). The cell-permeable succinate prodrugs

NV118, NV189, and NV241, or succinate, were given every 30 min (250 μM). Lactate

levels in the medium were measured every 30 min over 4 h, and the lactate production was

calculated from onset of intervention (60–240 min) as previously described [13]. Vehicle

control and metformin alone were run on each occasion.

Data analysis

Dose-response evaluation of MB and NV118 on respiration in rotenone-intoxicated human

platelets was performed with a group size of four replicates (n = 4). As the magnitude of the

change in the evaluated parameter was not pre-specified, power calculation for sample size

was not applied here. Unless indicated otherwise, all other evaluations were performed with

a sample size of seven replicates (n = 7). This sample size was calculated from previously

published data showing increased lactate production by human platelets exposed to metfor-

min (10 mM) [5] and determined to be required to detect a targeted 25% reduction in lac-

tate production in human platelets exposed to metformin (10 mM) for 4 h and co-treated

with either pharmacological treatment, an alpha level of 5% and power of 80%. Data are

expressed as scatter plot or mean ± SD. Lactate production was calculated using standard

non-linear curve fitting. Statistical analysis was performed using GraphPad Prism version 7
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(GraphPad Software, Inc., La Jolla, California, USA). Data from blood cell respirometry have

been reported to be normally distributed [14], and parametric tests were used for analyses

of differences. For multiple comparisons of two groups (Fig. 1), two-way ANOVA with Bon-

ferroni post hoc test was performed. One-way ANOVA with Dunnet post hoc test was ap-

plied for one-factor comparison of three or more groups. A p value of 0.05 or less was

considered to indicate significant difference. No blinding or randomization was performed.

Results
Dose-response of methylene blue and NV118 on respiration in rotenone-intoxicated

human platelets

MB and NV118 dose dependently increased respiration in human platelets with

rotenone-induced CI inhibition (Fig. 1). MB started to increase respiration at 5 μM

(p < 0.01) and reached the maximum with a 33-fold increase at 80 μM (p < 0.001) as

a

b

Fig. 1 Dose-response of methylene blue and NV118 on oxygen consumption in rotenone-intoxicated human
platelets. Respiration was measured in human platelets with complex I inhibition induced by rotenone (2 μM).
The potential of the pharmacological bypass strategies methylene blue (a black square) and the cell-permeable
succinate prodrug NV118 (b black triangle) to increase rotenone-inhibited respiration was evaluated by titrating
increasing doses of drug or vehicle (a white square, double-deionized water; b white triangle, DMSO). After
maximal respiration was reached, the contribution of non-mitochondrial respiration to total respiration was
evaluated by addition of the complex III inhibitor antimycin A (1 μg/ml) followed by the complex IV inhibitor
sodium azide (10 mM). The residual respiration shows the non-mitochondrial respiration at the highest dose of
each drug. Data are expressed as mean ± SD. Non-linear curve fitting was applied for generation of the dose-
response curves. n= 4. Two-way ANOVA with Bonferroni post hoc test was performed for analysis of differences.
**p < 0.01, ***p< 0.001, compared to vehicle control
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compared to control. MB also induced non-mitochondrial respiration which, at the

highest concentration investigated here, was higher than control (p < 0.01), and re-

sponsible for 69% of total respiration (Fig. 1a). NV118 started to increase respiration

at 10 μM (p < 0.001) with a maximum and fourfold increase at 250 μM (p < 0.001)

and displayed no effect on non-mitochondrial respiration (Fig. 1b). Based on the

dose-response and effect on non-mitochondrial respiration, 20 μM MB (15-fold

a

b c

Fig. 2 Effect of methylene blue and NV118 on coupled respiration in rotenone-intoxicated human platelets.
a Representative traces of mitochondrial respiration in human platelets with complex I inhibition induced
by rotenone (2 μM). Mitochondrial respiration due to coupled phosphorylation of rotenone-intoxicated
platelets treated with vehicle (rotenone, dark gray trace), methylene blue (20 μM, dark blue trace) or the
cell-permeable succinate prodrug NV118 (250 μM, dark green trace), here referred to as coupled
respiration, was evaluated by subsequent addition of the ATP-synthase inhibitor oligomycin (1 μg/ml) to
block the phosphorylation pathway, and calculated as the difference in respiration before and after the
inhibition of the ATP-synthase. The protocol was continued by adding the complex III inhibitor antimycin
A (1 μg/ml) followed by the complex IV inhibitor sodium azide (10 mM). Control experiments were
performed without the addition of oligomycin to account for background drift of oxygen consumption
in the presence of the bypass agents (light blue trace, light green trace). b Quantification of coupled
respiration of rotenone-intoxicated platelets treated with vehicle (rotenone, black circle), methylene blue
(20 μM, dark blue square), or the cell-permeable succinate prodrug NV118 (250 μM, dark green triangle)
was calculated as the difference in respiration before and after inhibition of the ATP-synthase. c The
coupled respiration, non-coupled respiration, and non-mitochondrial respiration was evaluated in
rotenone-intoxicated platelets treated with vehicle, methylene blue, or NV118. Non-mitochondrial
respiration was defined as respiration remaining after addition of sodium azide, which all other
respiratory values were corrected for. Data are expressed as individual scatter plot and mean ± SD (b) or
mean (c). Rotenone: n = 21, NV118 and methylene blue: n = 7. One-way ANOVA with Dunnet post hoc
test was used for comparison of the drug’s effect on coupled respiration. ***p < 0.001. CII–V: complex II
to V, CII–IV: complex II to IV, CIV: complex IV
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increase compared to control) and 250 μM NV118 were selected for further evalu-

ation in the model of rotenone intoxication. Neither of the vehicles of the pharmaco-

logical bypass strategies increased mitochondrial respiration (Fig. 1).

Effect of methylene blue and NV118 on coupled respiration in rotenone-intoxicated

human platelets

Both MB and NV118 increased respiration in rotenone-intoxicated human platelets as

compared to vehicle-treated controls (Fig. 2a). The increase in respiration with MB was

not caused by increased coupled respiration (rotenone = 0.05 pmol O2 × s−1 × 108

platelets−1; MB = − 0.02 pmol O2 × s−1 × 108 platelets−1; p = 0.95) (Fig. 2b) but elevated

non-coupled and non-mitochondrial respiration, accounting for 43.5 and 56.5% of total,

drug-induced respiration respectively (Fig. 2a, c). NV118, in contrast, increased coupled

respiration significantly as compare to vehicle-treated, rotenone-intoxicated human

platelets (NV118 = 2.46 pmol O2 × s−1 × 108 platelets−1; p < 0.001) (Fig. 2b), accounting

for 32.9% of total, drug-induced respiration and with no effect on non-mitochondrial

respiration (Fig. 2a, c).

Effect of methylene blue and NV118 on coupled respiration and lactate metabolism in

metformin-induced mitochondrial dysfunction in human platelets

Both 10 mM metformin (− 28%, p < 0.05) (Additional file 1) and 50 mM metformin

(− 69%, p < 0.001) (Fig. 3a) reduced coupled respiration in human platelets signifi-

cantly compared to control. Samples treated with MB showed a tendency towards

decreased coupled respiration compared to metformin alone (10 mM metformin:

− 13%, p = 0.49; 50 mM metformin: − 32%, p = 0.41) (Additional file 1, Fig. 3a).

NV118, to the contrary, increased coupled respiration by 20% after exposure to

10 mM metformin (p = 0.37) (Additional file 1) and by 46% after exposure to

50 mM metformin (p < 0.001) (Fig. 3a) as compared to metformin alone.

Metformin significantly increased lactate production compared to vehicle control

(p < 0.001) (Fig. 3b). Co-treatment with a single dose of MB (10 μM) did not re-

duce lactate production significantly (− 20%, p = 0.30) (Fig. 3b) and neither did sup-

plementation with a low dose of MB (1 μM) every 30 min (− 11%, p = 0.69)

(Additional file 2). In contrast, co-treatment with NV118 (250 μM) every 30 min

alleviated the metformin-induced increase in lactate production significantly (− 50%,

p < 0.001) (Fig. 3b). Qualitatively, similar results were obtained for NV189 and NV241,

two compounds of the same drug class as NV118, whereas succinate did not mitigate the

metformin-induced increase in lactate production (Additional file 2).

Bypass mechanism of methylene blue and NV118 in human platelets with rotenone

intoxication and metformin-induced mitochondrial dysfunction

In MB-treated cells, respiration decreased primarily when CIV was inhibited but only

marginally when CIII was blocked (Fig. 2a). In cells treated with NV118, mitochondrial

respiration decreased when CIII was inhibited but no further decline was seen when

CIV was blocked (Fig. 2a). This was the case for cells with rotenone intoxication and

also for cells with metformin-induced mitochondrial dysfunction.
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Discussion
In the present study, we demonstrated that in human platelets, the cell-permeable suc-

cinate prodrug NV118 increased mitochondrial respiration in a model of rotenone in-

toxication which was linked to increased coupled respiration. NV118 further improved

coupled respiration significantly in a model of specific metformin-induced mitochon-

drial dysfunction and counteracted the phenotype that metformin had caused on lac-

tate metabolism, as it alleviated the metformin-induced increase in lactate production

in human platelets. With NV118, mitochondrial respiration increased downstream of

CI and upstream of CIII, indicating CII as entry point to the OXPHOS pathway. Al-

though the redox agent MB enhanced mitochondrial respiration downstream of CIII, it

a

b

Fig. 3 Effect of methylene blue and NV118 on coupled respiration and lactate production in metformin-
intoxicated human platelets. a Mitochondrial respiration was measured in human platelets with mitochondrial
dysfunction induced by 60 min exposure to metformin (black circle; 50 mM). After subsequent addition of
methylene blue (10 μM, black square) or the cell-permeable succinate prodrug NV118 (250 μM, black triangle),
mitochondrial respiration due to coupled phosphorylation, here referred to as coupled respiration, was evaluated
by addition of the ATP-synthase inhibitor oligomycin (1 μg/ml) to block the phosphorylation pathway, and
calculated as the difference in respiration before and after the inhibition of the ATP-synthase. Subsequently, the
complex III inhibitor antimycin A (1 μg/ml) followed by the complex IV inhibitor sodium azide (10 mM) were
added. Control experiments were performed without the addition of oligomycin to account for background drift
of oxygen consumption. A vehicle control to metformin was run with each experiment (white circle). b Lactate
production of human platelets incubated with metformin (10 mM, black circle) was measured every 30 min over
4 h with or without co-treatment of methylene blue (10 μM, single dose, black square) or NV118 (250 μM, every
30 min, black triangle) starting at 60 min. A vehicle control was run with each experiment (white circle). Data are
expressed as individual scatter plot and mean ± SD (a) or mean ± SD (b). All experiments were performed with
n = 7, with exception of the control and metformin group of the lactate production assay run with methylene
blue (n= 9) (b). One-way ANOVA with Dunnet post hoc test was used. ***p< 0.001, compared to metformin
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did not improve coupled respiration in human platelets in either model of

drug-induced mitochondrial toxicity, nor did it mitigate the metformin-induced in-

crease in lactate generation. In this study, human platelets were used as a substitute for

more metabolically active tissues, both in regard to metformin’s mitochondrial toxicity

and the treatment effect of the bypass strategies. If the counteracting effect of NV118

proves translatable to an in vivo effect, this strategy could potentially contribute to re-

solving the systemic energy failure associated with toxic doses of metformin and thus,

correct the lactic acidosis.

Succinate is oxidized by CII of the OXPHOS pathway (Fig. 4) [13, 15]. Succinate oxi-

dation and subsequent electron transfer along the respiratory chain enables proton

translocation across the inner mitochondrial membrane at CIII and CIV, build-up of

the proton motive force, and an increase in mitochondrial ATP production. CII serves

as an alternative entry point to CI for electrons to the OXPHOS pathway. Thus, the

cell-permeable succinate prodrugs can bypass the CI inhibition induced by metformin

(Fig. 4b). This has been demonstrated in the present study and in a study by Hinke et

al. [16] in which succinate improved mitochondrial activity and rescued pancreatic

β-cells from metformin-induced toxicity [16]. The improvement of OXPHOS relieved

pressure from the metformin-induced increase in glycolytic ATP production with the

results that less lactate was produced (Fig. 4a, b). Because NV118 lacks sufficient

plasma stability, we were not able to investigate its effect in vivo. Large animal models

of rotenone-induced CI-dysfunction and metformin-induced mitochondrial dysfunction

like those by Karlsson et al. [17] and Protti et al. [18] would be suitable models for in

vivo proof of concept of this drug class. This pharmacological bypass strategy could po-

tentially find additional applications in intensive care. Conditions such as sepsis, trau-

matic brain injury, primary mitochondrial disease or drug-induced lactic acidosis are

indications with a high need for further treatment development, where impaired,

CI-related mitochondrial dysfunction has been described and succinate has shown suc-

cess as potential treatment in vitro and in vivo [15, 19–26].

Repurposing drugs is attractive because pharmacodynamics and pharmacokinetics,

safety profiles and contraindications are known. MB has been used clinically as

treatment for methemoglobinemia and as an anti-malaria agent [27, 28]. Because

of its potential beneficial effects on mitochondrial function, MB has recently

attracted attention as treatment for neurodegenerative disorders and drug-induced

side-effects [8, 11, 29, 30]. MB has been described to shuttle electrons from

NAD(P)H-dependent dehydrogenase to cytochrome C (Fig. 4c) [8, 10–12, 31]. In

the present study, we evaluated both bypass strategies based on immediate effects

on coupled respiration and related changes in lactate metabolism. Due to the se-

verity of MILA, there is a need for treatments acting instantly. Under these condi-

tions, MB was unable to improve coupled respiration and alleviate the increased

lactate generation associated with metformin (Fig. 4a, c). Others have previously described

beneficial effects of MB on electron shuttling to the OXPHOS pathway [8, 10, 12, 32].

However, in these studies, either the oxidation of NADH at CI was evaluated in isolated,

sonicated mitochondria or sub-mitochondrial particles where coupling of the electron

transfer to phosphorylation pathways cannot be assessed [8, 12, 32] or it was not evalu-

ated whether the increase in mitochondrial respiration of the fully integrated respiratory

chain was linked to increased coupled respiration [10, 12]. As demonstrated in these
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studies, we also detected an increase in mitochondrial respiration. However, we have

shown that the increased electron transport and mitochondrial respiration was not used

to or is not sufficient to increase the phosphorylation pathway (Fig. 4c). By increasing

CIV-linked mitochondrial respiration, MB would support proton translocation across the

inner mitochondrial membrane and contribute to the proton motive force at CIV. CIV

pumps less protons than complex I and III alone and thus contributes to a lesser degree

to the build-up of the proton motive force which drives the phosphorylation pathway

[33]. This could potentially explain the lack of beneficial effect of MB observed in the

present study. On the basis of our experiments, we cannot exclude that MB potentially

supports mitochondrial function through reduction of oxidative stress or stimulation of

mitochondrial biogenesis and degradation of impaired mitochondria, effects that would

not be immediate and might be more relevant at later stage of intervention [11, 29, 30].

MB has also been described to stabilize hemodynamic parameters through inhibition of

the guanylate cyclase and has been used successfully in a small number of case reports of

drug-induced shock with this objective [34].

Conclusions
In the present study, using human platelets as model, we demonstrated that treatment

with the cell-permeable succinate prodrug NV118 can ameliorate the metformin-induced

impairment of the OXPHOS pathway and alleviate the associated increase in production

of lactate. The redox agent MB did neither correct the inhibition of coupled mitochondrial

respiration nor attenuate the increased lactate generation induced by metformin. Thus,

the pharmacological bypass of metformin-induced mitochondrial dysfunction with

cell-permeable succinate prodrugs presents as a promising complementary treatment

strategy for patients with MILA.

Additional files

Additional file 1: Effect of methylene blue (10 μM) and the cell-permeable succinate prodrug NV118 (250 μM) on
coupled respiration after exposure to 10 mM metformin for 60 min. (PDF 42 kb)

(See figure on previous page.)
Fig. 4 Schematic illustration of the bypass mechanism of NV118 and methylene blue in metformin-induced
mitochondrial dysfunction. a At high concentrations, metformin induces inhibition of complex I (CI) and
the mitochondrial glycerophosphate dehydrogenase (mGPD). As a result, ATP generation at complex V
(CV/ATP-synthase) is decreased causing increased glycolysis to compensate for the reduced mitochondrial ATP
production. Pyruvate metabolism is shifted towards lactate generation to meet the increased NAD+ demand,
which is accompanied by intracellular and extracellular acidification. b Cell-permeable succinate prodrugs, such
as NV118, can permeate the cell membrane independent of active transporters. Through intracellular
metabolism, the succinate core is released and made available for oxidation by complex II (CII). Oxidation
of succinate at CII restores downstream electron flow and mitochondrial respiration which is linked to
phosphorylation (ATP generation). c The redox agent methylene blue (MB) is reduced by NAD(P)H-dependent
dehydrogenases. The reduced form of methylene blue (MBH2, leucomethylene blue) then donates the
electrons to cytochrome C (labeled C), recycling MB. Electron donation by MBH2 to cytochrome C restores
downstream electron flow and mitochondrial respiration which is not coupled to phosphorylation. ADP:
adenosine diphosphate, ATP: adenosine triphosphate, CIII: complex III, CIV: complex IV, cGPD: cytosolic
glycerophosphate dehydrogenase, DHAP: dihydroxyacetone phosphate, G3P: glycerol-3-phosphate, NAD+/
NADH: nicotinamide adenine dinucleotide, NADP+/NADPH: nicotinamide adenine dinucleotide phosphate, Q:
Quinone, TCA: tricarboxylic acid
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Additional file 2: Effect of methylene blue (1 μM), the cell-permeable succinate prodrugs NV189 and NV241
(250 μM), and succinate (250 μM) on lactate production in metformin-induced mitochondrial dysfunction in human
platelets. (PDF 238 kb)

Abbreviations
C: Cytochrome C; cGPD: Cytosolic glycerophosphate dehydrogenase; CI: Complex I; CII: Complex II; CIII: Complex III;
CIV: Complex IV; CV: Complex V; DHAP: Dihydroxyacetone phosphate; G3P: Glycerol-3-phosphate; MB: Methylene blue;
MBH2: Leucomethylene blue; mGPD: Mitochondrial glycerophosphate dehydrogenase; MILA: Metformin-induced lactic
acidosis; NAD+/NADH: Nicotinamide adenine dinucleotide; NADP+/NADPH: Nicotinamide adenine dinucleotide
phosphate; OXPHOS: Oxidative phosphorylation; Q: Quinone
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