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Abstract

Background: While surgeons tend to implant larger stems to improve torsional stability, numerous studies demonstrated
that increasing humeral stem diameter could exacerbate stress-shielding and lead to bone resorption. We aimed to
determine the influence of humeral stem proximal geometry on stress distributions and torsional stability following total
shoulder arthroplasty.

Methods: Preoperative computed tomography scans were acquired from 5 patients and processed to form 3-dimensional
models of the proximal humerus. Computer models of 3 generic implants were created based on three designs:
predominantly oval, semi-angular, and predominantly angular. All stems shared identical head geometry and
differed only in the proximal metaphyseal area. Finite element analyses were performed, with the humerus rigidly
constrained distally, and loaded to simulate the joint reaction force. Implant torsional stability and proximal bone
stress distributions were assessed for the three different stem designs with three sizes: oversized (stem making
contact with the cortical diaphysis), normosized (one increment smaller) and undersized (two increments smaller).

Results: Considering the normosized stems, the angular design increased the physiologic bone stresses at the
proximal section by 39–42%, while the oval and semi-angular designs reduced them by 5–9% and 8–13%, respectively.
The oval design exhibited a median rotation of 2.1°, while the semi-angular and angular designs exhibited median
rotations of 1.8°.

Conclusion: The semi-angular stem granted an adequate compromise between physiologic stress distributed by the
oval stem and torsional stability of the angular stem. Surgeons should be aware of the various benefits and drawbacks
of the different humeral stem designs to ensure adequate torsional stability and physiologic loading.
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Background
The success of total shoulder arthroplasty (TSA) de-
pends largely on sizing and positioning of the humeral
and glenoid components, which can be challenging to
optimize relying solely on intra-operative assessment.
While the most frequent cause of complications and re-
visions after TSA is failure of the glenoid component
(Pomwenger et al., 2014), loosening or periprosthetic

fractures are sometimes also observed around the hu-
meral stem (Quental et al., 2012; Verborgt et al., 2007).
Nagels et al. (2003) demonstrated that stem size dir-

ectly influences the extents and zones of stress-shielding
in the proximal humerus, which could therefore cause
peripheral bone resorption (Quental et al., 2012; Razfar
et al., 2016). Recent studies evaluated that signs of
stress-shielding in the proximal humerus can be found
in 40% to 60% of uncemented short stems at a follow-up
of 7–8 years (Raiss et al., 2014; Schnetzke et al., 2018).
Notably, unlike the weight-bearing hip joint, muscles
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surrounding the shoulder joint transmit loads more
proximally (Quental et al., 2012), rendering the humeral
metaphysis more sensitive to stimulus than the femoral
metaphysis. In the last decade, implant manufacturers
introduced stemless humeral heads as well as shortened
humeral stems to reduce these complications and facili-
tate revision if required (Quental et al., 2012; Razfar et
al., 2016). Recently, Razfar et al. (2016) evaluated, using
finite element analysis (FEA), the influence of stem
length on bone stresses and demonstrated that shorter
stems could reduce stress-shielding in the proximal hu-
merus (Razfar et al., 2016). It is therefore essential to
optimize humeral implant size and proximal geometry
to limit stress-shielding and ensure adequate implant
stability and osteointegration.
Several authors evaluated the mechanical behavior of

glenoid implants within the scapula (Buchler & Farron,
2004; Chevalier et al., 2016; Iannotti et al., 2005; Pom-
wenger et al., 2014; Stone et al., 1999), but very few
studied the stress distribution or bone remodeling
around the stem on the humeral side (Quental et al.,
2012; Razfar et al., 2016). The purpose of this study was
therefore to determine, using FEA, the influence of hu-
meral stem size and proximal geometry on stress distri-
butions and torsional stability within periprosthetic
bone.

Methods
The authors analyzed computed tomography (CT)
shoulder scans of patients scheduled to receive TSA, and
selected 5 shoulders that represent a wide spectrum of
size, sex and age, known to denote bone quality (Kirch-
hoff et al., 2012). The selection comprised 2 women
(aged 82 and 87; head diameters 55 and 47 mm) and 3
men (aged 56, 59, and 73; head diameter 63, 49, and 59
mm). The number of subjects included in this study was
comparable to those of other FEA studies investigating
stress distribution within the humerus (Chevalier et al.,
2016; Quental et al., 2012; Razfar et al., 2016). The
DICOM images were processed using 3D SolidWorks®
(Dassault Systèmes, Waltham, MA, USA) to form
3-dimensional (3D) solid models of the proximal hu-
merus. Separate 3D models of the cortical and trabecular
bones were created using combinations of automatic
threshold-based segmentation and visual distinctions.
Under the supervision of two orthopedic surgeons (JG,
AG), humeral head resections were simulated as would
be done during TSA. All patients had provided written
informed consent for the use of their images and data
for research and publishing purposes.
Computer models of 3 generic implants were created

based on three design concepts: (A) predominantly oval
(Ascend Flex, Wright-Tornier, Montbonnot, France), (B)
semi-angular (ISA Onlay, Move-Up, Alixan, France), and

(C) predominantly angular (Equinox, Exactech Inc.,
Gainesville, FL, USA) (Fig. 1). The stems were designed
with the same neck-shaft angle (132.5°), head offset (6.2
mm), and humeral head geometry, but differed in the
proximal metaphyseal area with different fillet radii of
the supero-lateral edge: 8.6 mm (predominantly oval),
3.1 mm (semi-angular) and 1.1 mm (predominantly an-
gular). The humeral heads were designed with a
radius-to-height ratio of 1.00:0.76. The coefficient of
friction assigned to the proximal grit-blasted metaphy-
seal region was 0.63, while that assigned to the cylin-
drical polished diaphyseal region was 0.4 (Grant et al.,
2007; Kuiper & Huiskes, 1996; Razfar et al., 2016). Each
humeral stem model was created in 9 sizes, increasing
by increments of 2 mm in the antero-posterior (AP) dir-
ection and increments of 1 mm in the medio-lateral
(ML) direction.
To re-create surgical placement in a repeatable man-

ner across all models, anatomic landmarks were used as
reference points, such that the native and prosthetic
head centers have the same 3D coordinates, and the
stem is aligned with the diaphyseal axis. Stem sizing was
established by selecting the component that makes con-
tact with the cortical diaphysis (oversized), one incre-
ment smaller (normosized), and two increments smaller
(undersized). After implant positioning and sizing, all
model components were transferred from SolidWorks to
ADAMS (Adams, MSC Software Corporation, Santa
Ana, CA) (Fig. 2). Bone was meshed using an average of
2 mm (maximum value) quadratic tetrahedral elements,
based on mesh convergence analysis. The reliability of
our model was confirmed using convergence testing.
Careful mesh planning ensured that identical mesh pa-
rameters could be used for different implant geometries
to allow comparisons of Von Mises stresses in different
regions.
In agreement with previous studies, cortical bone was

modeled as a homogeneous isotropic material with a
Young’s modulus of 20 GPa and Poisson’s ratio 0.3
(Bayraktar et al., 2004; Rho et al., 1993). For trabecular
bone, the Young’s modulus was applied on an
element-by-element basis and calculated using corre-
sponding CT densities, as described previously (Aust-
man et al., 2009; Carter & Hayes, 1977; Leung et al.,
2009; Morgan et al., 2003; Schileo et al., 2008; Taddei et
al., 2006). The density-modulus relationship chosen for
this study, which was reported by Morgan et al. (Morgan
et al., 2003), is specific to trabecular bone:

Equation 1 : E ¼ 8920ρ1:83

Where E is Young’s modulus and ρ is the apparent
bone density, calculated from Hounsfield Units.

Barth et al. Journal of Experimental Orthopaedics             (2019) 6:8 Page 2 of 7



All implant components were meshed using appropri-
ately sized quadratic tetrahedral elements, and assigned
properties of titanium (Ti6Al4V) (E = 115GPa, ν = 0.31).
To render our results comparable to the study of Razfar et
al. (Razfar et al., 2016), the same force magnitude was ap-
plied, assuming a median mass of 88.3 kg for all patients, at
a single abduction angle of 45°. The resultant force vector
was therefore: Fx 160N, Fy -440N, Fz -210N.
Finite element analyses (FEA) were performed with

the humerus rigidly constrained at its distal end. To
simulate the joint reaction force acting on the humerus,
a load was directed from the joint surface toward the

center of the humeral head, according to in vivo implant
data (Fig. 3). A total of 20 analyses were performed using
4 FEA models (1 intact humerus + 3 implanted humeri)
for each of the 5 subjects. To quantify changes in the
proximal humerus after TSA, mean bone stresses were
compared for the implanted versus intact humerus at 3
transverse sections: proximal (15 mm below head cen-
ter), middle (40 mm below head center), and distal (65
mm below head center). Torsional stability was assessed
by measuring the maximum angular displacement of the
stem, defined as the angle (degrees) through which the
stem moves around the diaphyseal axis.

Fig. 1 Three generic models of humeral stems presenting different proximal metaphyseal geometry: predominantly oval (a), semi-angular (b),
and predominantly angular (c)
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Results
Trabecular bone stresses
Bone stress changes within trabecular bone followed the
same pattern within all sections, and were mainly associ-
ated with implant design rather than implant size (Fig. 4).
Considering the normosized stems, the angular design in-
creased the physiologic stresses at the proximal section by
a median of 42%, while the oval and semi-angular designs
reduced them by a median of 5% and 8%, respectively.

Cortical bone stresses
Bone stress changes within cortical bone followed the
same pattern within all sections, and were also mainly
associated with implant design rather than implant size
(Fig. 4). Considering the normosized stems, the angular
design increased the physiologic stresses at the proximal
section by a median of 39%, while the oval and
semi-angular designs reduced them by a median of 9%
and 13%, respectively.

Torsional stability
Stem torsional stability was associated with both implant
design and size (Fig. 5). Considering the normosized
stems, the oval design exhibited a median rotation of
2.1°, while the semi-angular and angular designs exhib-
ited median rotations of 1.8°. The rotation of the over-
sized oval design (1.9°) was comparable to the rotations
of the semi-angular (1.8°) and angular designs (1.8°).

Discussion
The principal finding of this study was that the
semi-angular stem design granted an adequate com-
promise between physiologic stress distributed by the
oval stem design and torsional stability of the angular
stem design. Several authors evaluated the mechanical
behavior of glenoid implants within the scapula (Buchler
& Farron, 2004; Chevalier et al., 2016; Iannotti et al.,
2005; Pomwenger et al., 2014; Stone et al., 1999), but,
very few studied the stress distribution around humeral
(Quental et al., 2012; Razfar et al., 2016). This study is

Fig. 2 Implant positioning in the generated bone model

Fig. 3 Meshed model of an implanted humerus, rigidly fixed at the
distal part, indicating the direction of the proximal load towards the
center of the prosthetic head

Barth et al. Journal of Experimental Orthopaedics             (2019) 6:8 Page 4 of 7



the first to investigate the influence of humeral stem size
and proximal stem geometry on stress distributions and
torsional stability within periprosthetic bone.
Joint reconstruction aims to reproduce native patient

anatomy and physiologic stress distributions. Razfar et al.
(2016) demonstrated that short stems transfer loads more
proximally and thereby reduce stress-shielding observed
with long stems are implanted. It is worth noting, however,
that there is very little long-term clinical and radiographic
data reported for short stems (Denard et al., 2018) and it
may not be appropriate to consider the various available de-
signs as a single group (Yan et al., 2017). Several authors re-
ported satisfactory short-term outcomes for oval stems
(Morwood et al., 2017; Schnetzke et al., 2017; Szerlip et al.,
2018) and equally good outcomes for angular stems with
low incidences of radiolucent lines and radiographic loos-
ening (Gilot et al., 2015; King et al., 2015).

Our study demonstrated that the oval and
semi-angular stem designs reproduced native bone
stresses while the angular stem design exacerbated them
by 39%–42%. Such considerable stress changes could
lead to periprosthetic cracks or fatigue fractures which
can be difficult to manage (Keener et al., 2017; Quental
et al., 2012; Verborgt et al., 2007). Our study also re-
vealed that the angular and semi-angular stem designs
had better torsional stability compared to the oval stem
design. Therefore, the semi-angular stem has the bene-
fits of granting the physiologic stress distribution of the
oval stem design and the adequate torsional stability of
the angular stem design.
While surgeons tend to implant oversized stems to

improve primary fixation, numerous studies demon-
strated that increasing humeral stem diameter could
cause stress-shielding, and potentially lead to peripheral

Fig. 4 Average Von Mises stress in trabecular and cortical bone at proximal, middle and distal sections. Average stresses are presented as a percentage
of the intact bone stress in each section
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bone resorption (Nagels et al., 2003; Razfar et al., 2016).
Likewise, Denard et al. (2018) supported that implanting
a larger stem leads to more distal fixation and subse-
quent under-loading within the proximal humerus.
Furthermore, Inoue et al. (Inoue et al., 2017) found that
a high “occupation ratio” (canal fill ratio) increases risks
of bone resorption. For these reasons, some authors
recommend to implant the stem of smallest width that
achieves adequate stability (Denard et al., 2018), but care
should be taken to avoid excessive stem undersizing,
which could lead to loosening, subsidence or misalign-
ment (Goetzmann et al., 2017; Raiss et al., 2018). Our
study revealed that the torsional stability of the normo-
sized semi-angular stem is comparable to that of the
oversized oval stem. The semi-angular stem design could
therefore help surgeons achieve adequate stability and
physiologic proximal stresses, without oversizing their
stems.
The limitations of this study were (i) the

non-validation of the FEA models by in-vivo cadaver
tests to ensure that estimated bone stresses corres-
pond to true physiologic stresses, (ii) the choice of a
constant joint reaction force value which is supposed
to be patient specific, and (iii) the use of cortical
contact to define stem size rather than filling ratios
that were described in recent studies (Raiss et al.,
2018; Schnetzke et al., 2018). The main strengths of
this study are the number and anatomic variability of
humeri selected, as well as the use of CT scans of
patients who later underwent TSA which represents
our population of interest.

Conclusion
The present study revealed that the semi-angular stem
design granted an adequate compromise between
physiologic stress distributed by the oval stem design
and torsional stability of the angular stem design.
Surgeons should be aware of the various benefits and
drawbacks of the different humeral stem designs and
adjust their implant sizing and positioning accordingly,
to ensure adequate torsional stability and physiologic
stress transfer.
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