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The Riemann mapping theorem is one of the most remarkable results of nineteenth-cen-
tury mathematics. Even today, more than a hundred fifty years later, the fact that every 
proper simply connected open subset of the complex plane is biholomorphically equiva-
lent to every other seems deep and profound. This is not a result that has become in 
any sense obvious with the passage of time and the general expansion of mathematics. 
And at the time, the theorem must have been truly startling. Even Gauss, never easily 
impressed, viewed the result favorably, though he had reservations about the summary 
nature of Riemann’s writings. At the time, Riemann’s method appeared hard to carry out 
in detail. And indeed there have been those since who believed it could not be carried 
out in detail at all.

Thus, when a different proof arose later on using Montel’s idea of normal families, this 
proof established itself as standard [2]. Indeed, it is rare to find any other proof than 
the normal families one in contemporary texts on complex analysis. Only if the student 
of complex analysis goes on to study uniformization of open Riemann surfaces is Rie-
mann’s original idea likely to be encountered. At best, the original proof idea is relegated 
to exercises or brief summaries in texts on basic complex analysis (cf., e.g., Exercise 73, 
p. 251 in [4], or Section 5.2, p. 249–251 in [1]).

And yet, in the historical view, Riemann’s proposed method of proof was as interest-
ing as and perhaps even more important than the result itself. It would have been almost 
impossible for anyone listening to Riemann’s presentation in 1851 to have imagined 
that what they were hearing was the first instance of a mathematical method that would 
become a massive part of geometric mathematics in the decades to come and that con-
tinues to be a vitally active subject today. But so it was, for Riemann’s proof method for 
his mapping theorem marked the introduction of the use of elliptic equations and the 
solution of elliptic variational problems to treat geometric questions. The analytic theory 
of Riemann surfaces via harmonic forms and Hodge’s generalization to algebraic varie-
ties in higher dimensions; the circle of results known by the name the Bochner tech-
nique; the theory of minimal submanifolds and its applications to topology of manifolds; 
the use of elliptic methods in 4-manifold theory; and, most recently, the proof of the 
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Poincaré Conjecture and the geometrization conjecture that extends it—all these and 
much more could not have been anticipated in any detail on that historic day at the time 
Riemann presented his mapping theorem. But in retrospect, when Riemann suggested 
constructing the biholomorphic map to the unit disc that his result called for by solv-
ing an elliptic variational problem, the whole development began. The fact that Riemann 
could not in fact actually prove what he called Dirichlet’s Principle is almost beside the 
point. He had found the way into the thicket. Chopping the path onward could be and 
would be done by others.

Thus, it seemed to the authors unfortunate that finding a precise and complete discus-
sion of how actually to carry out Riemann’s argument is not easy. Osgood’s proof [6] 
(See also [16]) of the Riemann Mapping theorem—usually regarded as the first reason-
ably complete proof, correct except for certain topological details being brushed over—
does indeed use Riemann’s general idea. But it is made more difficult than need be today 
because he was not in possession of the Perron method of solving the Dirichlet problem. 
Thus, he had to work with piecewise linear approximations from the interior and take 
limits of the piecewise linear (even piecewise real analytic) case of the Dirichlet problem 
that had been solved by Schwarz already at that time [12].

Our goal in this article is to present a clear proof of the Riemann Mapping theorem via 
Riemann’s method, uncompromised by any appeals to topological intuition. Such intui-
tions are notoriously unreliable and, even if correct, can be surprisingly hard to substan-
tiate. Moreover, one of the most intriguing features of the Riemann Mapping theorem 
is that it provides a proof of the strictly topological fact that any simply connected open 
subset of the plane is homeomorphic to any other. Since one wishes to deduce this topo-
logical conclusion, it is particularly desirable not to appeal to any unproven topological 
facts in the proof of the Riemann Mapping theorem itself. (That simple connectivity of 
a domain in the plane implies homeomorphism to the plane [or the disc] can be shown 
directly, cf. Theorem 6.4, p. 149 in [5]—but it is a delicate and intricate matter).

The basic method is Riemann’s, but in the intervening years the Perron solution of the 
Dirichlet problem for any bounded domain with barriers at each boundary point has 
simplified the basic construction. That there are barriers at each point of the bound-
ary of a simply connected bounded open set in C does hold. This was in effect pointed 
out by Osgood, though the barrier terminology was not in use at that time. Putting this 
together with some arguments about winding numbers and counting preimages will 
complete the proof.

1  The theorem’s exact statement and the first steps in the proof
The theorem as we shall prove it is about simply connected open subsets of the plane C . 
People usually interpret “simply connected” in this context to mean topologically sim-
ply connected, i.e., that the open set is connected and also that every continuous closed 
curve in the open set can be continuously deformed inside the open set to a constant 
curve. As it happens, we shall end up proving a slightly different result which, on the 
face of it, is stronger. Namely, we shall assume about the open set only that it is con-
nected and has the property that every holomorphic function on it has a (holomorphic) 
antiderivative. That is, if f is a holomorphic function on the open set, then there is a 
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holomorphic function F on the set with F ′ = f . We shall say then that U is holomorphi-
cally simply connected.

It is easy to show that topological simple connectivity as defined implies the holomor-
phic antiderivative property just described. The theorem itself in the following form will 
show among other things the converse, namely, that the holomorphic simple connectiv-
ity implies topological simple connectivity.

Theorem 1.1 (Riemann) Suppose that U is a connected open subset of C with U �= C. If 
U is holomorphically simply connected, then U is biholomorphic to the unit disc, i.e., there 
is a one-to-one holomorphic function from U onto the unit disc D = {z ∈ C : |z| < 1}.

In the proof of this result, it will be useful to be able to assume that U is bounded. For 
this, we recall the familiar fact that such a U as in the theorem is always biholomor-
phic to a bounded open set. The proof of this in summary form goes like this. Since 
U �= C , we can replace U by a translate to suppose that 0 /∈ U . The function 1 / z is then 
holomorphic on U and hence has an antiderivative L(z), say. Changing L by an additive 
constant will arrange that exp(L(z)) = z (this is the usual process for finding complex 
logarithms). Then exp(L(z)/2) is one-to-one on U. Choose an open disc in the image of 
exp(L(z)/2). The negative of this disc is disjoint from the image of exp(L(z)/2). So the 
image of exp(L(z)/2), which is biholomorphic to U, is itself biholomorphic to a bounded 
open subset of C, via a linear fractional transformation.

Note that it is not clear by definition that the holomorphic simple connectivity is pre-
served by a biholomorphic mapping since the meaning of taking the derivative is dif-
ferent when the coordinates change; but by the complex chain rule this is a matter of a 
holomorphic factor which can be assimilated into the original function. Checking the 
details of this is left to the reader as an exercise.

So now we can assume without loss of generality that the open set U is bounded. And 
by translation we can now assume 0 ∈ U . We shall look for a biholomorphic mapping 
from U to the unit disc D which takes 0 to 0. Of course, if there is a biholomorphic map 
from U to the unit disc at all, there is one that takes 0 to 0 since a linear fractional trans-
formation taking the unit disc D to itself will take any given point to the origin, and in 
particular the image of 0 to begin with can be moved to the origin.

Now if H :U → D is biholomorphic and has H(0) = 0, then H(z) / z has a removable 
singularity at 0. Hence, H can be written as zh(z), where h is holomorphic on U and 
h(0) �= 0. That h(0) �= 0 follows because H is supposed to be one-to-one and hence must 
have derivative vanishing nowhere. Of course, h(z) is also nonzero for every other z ∈ U 
because 0 is the only point of U with H(z) = 0.

Now there is an antiderivative L of h′/h on U. The product h(z) exp(−L(z)) is constant 
since it has derivative identically equal to 0 and U is connected. Changing L by an addi-
tive constant, we can assume h(z) exp(−L(z)) = 1 for all z ∈ U . (This familiar argument 
will occur several times here).

The essential point of Riemann’s method was to consider the harmonic function 
Re L(z). This is of course equal to ln |h(z)|. Since the “boundary values” of |H(z)| have 
to be 1, it must be that the boundary value of |h| at a boundary point z0 of U has to be 
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1/|z0|. In particular, the harmonic function ln |h| has to have boundary value at z0 equal 
to − ln |z0|.

At this point, Riemann appealed to what he referred to as the Dirichlet Principle. The 
Euler–Lagrange equation for the variational problem of minimizing the so-called Dir-
ichlet (energy) integral for a real-valued function f(x, y), namely minimizing this integral

under the condition that f = g on the boundary ∂U  of U, is easily computed to satisfy 
�f = 0 (§18 of [10, 11]).

So Riemann proposed that the harmonic function with the boundary values − ln |z0| 
at each boundary point z0 could be found by minimization of the Dirichlet integral. And 
Riemann was well aware of how to construct h and hence H from knowing ln |h(z)|. Rie-
mann actually expressed this all in terms of ln |H | and the idea of Green’s function, a 
function with boundary value 0 and a specified singularity at (in our case) the point 0, 
namely the function had to be of the form ln |z| + u(z) with u harmonic near the point 
0. This is equivalent for open sets in C to our discussion, though the Green’s function 
notion is useful when one tries to extend the Riemann Mapping Theorem to the uni-
formization problem where there is no a priori global z-coordinate.

The main difficulty is that there is no particular reason to suppose that there is in fact 
any minimum for the Dirichlet integral in this situation. There is also a less serious dif-
ficulty of explaining why the resulting function is one-to-one and onto—intuitively this 
is just a matter of winding numbers if one can approximate U from inside by domains 
with smooth or piecewise-smooth closed curve boundaries. One supposes that Rie-
mann may have taken this part for obvious, though it is actually quite subtle if one does 
not appeal to any pre-existing topological intuitions. We shall give a precise argument 
later on. Riemann apparently considers only domains, the boundary of which is smooth 
in some sense. Osgood made the major forward step treating simply connected open 
sets in general, thus proving what we call today the Riemann Mapping Theorem. The 
Osgood proof is acknowledged directly by Carathéodory [2] where the ideas involved in 
the usual proof of today, via normal families, are presented. See the footnote (**) of page 
108 of [2]. But, for some reason, Osgood’s proof fell from favor or even recognition for 
the history of the Theorem in [9]; there is a reference to Osgood’s paper but no comment 
on it, no acknowledgment that this is in fact the reasonably complete first proof of the 
general result.

2  The application of the Perron method
Even simply connected bounded open sets in C can have complicated boundaries. The 
boundary of the Koch snowflake, for example, has Hausdorff dimension greater than 1 
[15]. And Osgood [6] already gave an example with boundary having positive (2-dimen-
sional) measure. Thus, it is appropriate to introduce carefully what is to be meant by 
finding functions with specified boundary values. For this purpose, let U be a bounded 
open set in C and ∂U  be its boundary, that is the complement of U within the closure 
cl(U) of U in C, or equivalently the intersection of cl(U) with C− U . Suppose that 
b:∂U → R is a continuous function. Then we say that a harmonic function h:U → R is 

∫

U

[

(∂f

∂x

)2
+

(∂f

∂y

)2
]

dxdy
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a solution of the Dirichlet problem on U with boundary values b if the function “h ∪ b” 
is continuous on cl(U). Here h ∪ b is the function which equals h on U and equals b on 
cl(U)−U .

The Maximum Principle shows immediately that if a given Dirichlet problem has a 
solution, the solution is unique. But it is a fact that given U and a function b on ∂U , there 
may be no solution of the associated Dirichlet problem. This is familiar but disconcert-
ing in the present context since solving a Dirichlet problem is the basic step in Riemann’s 
approach to the Riemann Mapping theorem, as already indicated. The easiest example of 
a Dirichlet problem with no solution is {z ∈ C : 0 < |z| < 1} with b(0) = 0 and b(z) = 1 
if |z| = 1. The reason for the failure is simple. Uniqueness shows that any solution h(z) 
would have to depend on |z| alone: the problem is rotationally symmetric so the solu-
tion would have to be. But the only such harmonic functions have the form A ln |z| + B , 
where A and B are constants. This follows easily by looking at the Laplacian in polar 
coordinates. But clearly no such function solves the Dirichlet problem mentioned.

The open set {z ∈ C : 0 < |z| < 1} is not simply connected. And it turns out that on 
a bounded simply connected open set U, the Dirichlet problem is solvable for every 
boundary function b. This is the crucial piece of information needed in Riemann’s proof. 
This fact fits into a very general context. It turns out that the Dirichlet problem with 
arbitrary boundary function b will be solvable provided that no connected component 
of the complement of U consists of a single point. Since a simply connected open set (in 
the topological sense) has a connected but unbounded complement, the complement’s 
one and only component cannot consist of a single point! However, these points—the 
condition on the complement that guarantees the solution of the Dirichlet problem and 
the fact that the complement of a simply connected open set is connected—are hard to 
establish. Fortunately, a much simpler argument can be used to show that the Dirichlet 
problem is always solvable on a bounded simply connected open set. This involves only 
the Perron method, which has become a standard part of basic complex analysis courses. 
We can stay on familiar ground here.

In the more than seventy years from Riemann’s formulation of his Mapping Theorem 
to Perron’s paper [7] on the solution of the Dirichlet problem under the most general 
possible circumstances, results had been obtained on the solution of the Dirichlet prob-
lem for open sets with various conditions of boundary regularity. In particular, Schwarz 
[12] had shown that the problem was solvable if the boundary was piecewise analytic. 
Every bounded open set U can be approximated by open subsets V with piecewise linear 
boundaries. For instance, as we shall discuss in detail momentarily, such V can be taken 
to be a union of squares contained in U. In effect, one lays a finely divided piece of graph 
paper (a fine grid of squares) over U and takes V to be the union of all the squares whose 
closure lies in U. This method was used by Osgood [6] to construct a Green function for 
U relative to some fixed but arbitrary point of U by taking a limit of Green’s functions of 
the sets V of the sort just described, as one chose finer and finer grids on the plane. In 
this process, simple connectivity was used (as indeed it had to be) in order to guarantee 
the convergence, and the form in which it was used was closely related to the barrier 
idea that occurs in Perron’s method.

In Perron’s method, one begins with a bounded open set U and a function b on ∂U  
as before. Then one offers as a candidate for the solution of the associated Dirichlet 
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problem the function P on U defined by P(z) = sup S(z), where the sup is taken over all 
(continuous) subharmonic functions S : U → R satisfying lim supU∋pj→q S(pj) ≤ b(q) 
for each q ∈ ∂U .

This function P is always harmonic. But of course it need not have the function b as 
boundary values, i.e., it need not happen that P ∪ b is continuous on cl(U). This has to 
fail in some instances, since the Dirichlet problem is not always solvable.

Perron undertook to find a general condition under which P did have b as bound-
ary values. This condition involves the existence of what have come to be called barrier 
functions.

Definition 2.1 Suppose that U is a bounded open set in C and ζ0 is a boundary point of 
U. A strong barrier, or sometimes just barrier, at ζ0 is a continuous function u defined on 
{z ∈ C : |z − ζ0| < ǫ} ∩U for some ǫ > 0 such that

(i)  u is subharmonic;
(ii)  u < 0;
(iii) lim z→ζ0u(z) = 0 with limit taken over all z in the domain of u;
(iv) lim sup z→ζu(z) < 0 for every ζ ∈ ∂U ∩ {z ∈ C : 0 < |z − ζ0| < ǫ}.

A weak barrier is a function u satisfying the same conditions except that the property 
(iv) is omitted.

Perron’s solution of the Dirichlet problem is usually presented in complex analysis text-
books under the assumption that the bounded domain U has the property that there is a 
strong barrier at each boundary point. However, G. Bouligand showed soon after Perron’s 
original work that in fact it was enough to have a weak barrier at each boundary point.

Theorem 2.2 (Perron–Bouligand) If U is a bounded connected open set in C with the 
property that for each boundary point ζ0 of U, there is a weak barrier defined on an open 
disc around ζ0, then, for any continuous function b on the boundary ∂U  of U, the Perron 
upper envelope function P associated to b solves the Dirichlet problem on U with bound-
ary values b, i.e., P is harmonic on U and P ∪ b is continuous on U ∪ ∂U .

The details of this result can be found in [14] and other standard texts on potential 
theory, e.g., [8, 13].

Now we turn to the fact that weak barriers necessarily exist at boundary points of 
bounded open sets which are holomorphically simply connected. This is perhaps at first 
sight surprising since this condition of holomorphic simple connectivity seems to have 
nothing much to do with the existence of barriers. The argument goes as follows. (This is 
essentially due to Osgood in [6]):

Let q be a point of ∂U . Then the function Dq(z) = z − q has no zeros in U and hence 
there is a function L(z) such that exp(L(z)) = Dq(z) = z − q by an argument already dis-
cussed. This requires only the holomorphic simple connectivity of U.

Then the function L is one-to-one on U since L(z1) = L(z2) implies 
exp L(z1) = exp(L(z2)) so that z1 − q = z2 − q and so z1 = z2. Hence, L is a biholomor-
phic map of U onto L(U). The open set L(U) is unbounded because Re L(z) = ln |z − q| 
goes to −∞ as z approaches q. (Note here that, by choice, q is in ∂U  so there are 
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sequences of points in U that approach q). On the other hand, there is a positive real 
number A such that Re L(z) < A for all z ∈ U . This is just because U is bounded so 
|z − q| is bounded on U and Re L(z) = ln |z − q|. It follows that U can be mapped biholo-
morphically onto a bounded open set V which is contained in a disc bounded by a circle 
C through 0 with 0 being in the boundary of the image of U and with 0 corresponding to 
the boundary point q. The precise meaning of this last is that for every sequence zj in U 
converging to q, the image sequence converges to 0 (Fig. 1).

This biholomorphic mapping is obtained by composing L with a linear fractional 
transformation, say α, that maps the line Re z = A to a circle in C in such a way that the 
image L(U) lies in the bounded component of the complement of the circle. (L(U) lies in 
the complement in the Riemann sphere of {z : Re z = A} ∪ {∞}). The image of L(q) via 
the linear fractional mapping α will then be the point 0, and the point 0 lies on the unit 
circle C.

The weak barrier for U at the boundary point q is now obtained by choosing an har-
monic function which is 0 at 0 and negative on the circle C and its interior. This could be 
chosen as a real linear function, for example. Then one pulls this function back to U by 
the composition of L followed by the linear fractional transformation.

This barrier construction combined with the Perron–Bouligand result quoted guar-
antees that there is a harmonic function on any bounded holomorphically simply con-
nected open set with h having the boundary value − ln |z0| for each z0 ∈ ∂U , with U 
as in the first section. We turn now to how to construct from this the biholomorphic 
map from U to the unit disc D and to the proof that the map constructed actually is 
biholomorphic.

3  The construction of H and the proof that H is biholomorphic
We continue the notations and conventions of the first section now. Let g(z) be the har-
monic function on U which has the boundary values − ln |z0| at each boundary point z0 
of U. From this, we want to construct the function h(z), which was presumed in the first 
section to exist as a matter of motivation. Now we want to show that there is actually an 
h(z) like that, with H(z) = zh(z) being a biholomorphic map to the unit disc.

For this purpose, let ĝ(z) be a harmonic conjugate of g, i.e., a function such that 
g + iĝ is holomorphic. The holomorphic simple connectivity of U implies the existence 
of ĝ as follows: The function ∂g

∂x − i
∂g
∂y is holomorphic on U by the Cauchy–Riemann 

equations. If G is a holomorphic antiderivative of this function, and G = u+ iv, then 
∂u
∂x = Re ∂G

∂x = Re ∂G
∂z =

∂g
∂x, and ∂u

∂y = − ∂v
∂x = −Im ∂G

∂z = −
(

−
∂g
∂y

)

=
∂g
∂y. Thus, u and g 

have the same partial derivatives. Hence, g + iv is holomorphic so we can take ĝ to be v.

LU

−∞

0
α(z)

= z−A+1
z−A−1 − 1

L(U)

q

Rez < A

α ◦ L(U)

C

Fig. 1 A weak barrier at q ∈ ∂U
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Now set h(z) = exp(g(z)+ iĝ(z)) and H(z) = zh(z). Then the function H attains the 
value 0 exactly once, at z = 0, and with multiplicity 1 there. Also, |H(z)| has bound-
ary value 1 on U in the sense that |H | ∪ (the constant function 1 on ∂U) is continuous. 
This function H is our candidate for being a biholomorphic map of U onto the unit disc 
D = {z : |z| < 1}. It remains to see that this H really is such a biholomorphic map.

If U were the interior of a smooth simple closed curve, then one could envision a sim-
ple proof by considering the winding number around a given w in the unit disc of a slight 
push-in of the boundary of U. If the boundary were pushed in a small enough amount, 
then the image of the pushed-in boundary would be close to the edge of the unit disc. 
In particular, the line from 0 to w would fail to intersect this image. Thus, the number of 
times that this image curve wound around w would be the same as the number of times 
that the image curve wound around 0, namely once, since the value 0 is attained exactly 
once inside the pushed-in curve in U (we assume that the push-in is small enough that 0 
is inside the pushed-in curve).

This is a valid intuition. One rather suspects that Riemann envisioned the situation 
in this way. Unfortunately, this intuitive picture, while it can be made precise easily in 
the smooth boundary case, does not really apply to the general case. Moreover, the idea 
that a simply connected region has a single boundary curve is not an easy one to check 
in detail. It is precisely such topological leaps of faith that we want to avoid. So we have 
to maneuver a bit to make a formal version of this intuition that makes no appeals to 
unverified and perhaps unverifiable topological intuitions.

We shall provide a somewhat lengthy but not fundamentally difficult argument. We 
shall replace the push-in boundary curve by a boundary curve made up of the sides of 
squares. But we shall not need anything about the analogue of the push-in being the 
boundary of anything with specified properties. It might, for example, have several com-
ponents or have self-intersections. We now proceed with the detailed construction.

First, for each positive integer N, consider all the closed squares in the plane of the 
form:

Here n1 and n2 are integers but not necessarily positive integers. These squares cover the 
plane and any two distinct ones intersect at most at a vertex or an edge of each. We set 
TN = the collection of triples (N , n1, n2) such that the associated square Sn1,n2N  is com-
pletely contained in U and SN = the union of these associated squares.

Note that each square has a natural orientation so that it makes sense, for example, to 
integrate a complex-valued function continuous in a neighborhood of the union of the 
edges of the square around the four edges taken together as a closed curve. Now sup-
pose that f is a complex-valued function which is continuous in a neighborhood of all 
the edges of squares labeled by elements in TN . Then the sum of the integrals over the 
edges of each of the squares Sn1,n2N , (N , n1, n2) ∈ TN , is defined. If an edge is shared by 
two squares in this collection, it occurs in one square with opposite orientation from the 
orientation it has from the other square. Thus, we arrive at the result that the sum of the 
integrals of the four-edge boundary curves of the squares associated to TN equals the 
integral of the function around the boundary edges of SN , where a boundary edge is by 

S
n1,n2
N =

{

x + iy ∈ C :
n1

2N
≤ x ≤

n1 + 1

2N
,

n2

2N
≤ y ≤

n2 + 1

2N

}

.
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definition one which occurs in one of the Sn1,n2N  squares with (N , n1, n2) ∈ TN but is not 
shared with any other TN square (Fig. 2).

If K is any compact subset in U, then there is an NK > 0 so large that, if N ≥ NK , 
then K is contained in SN . This follows from the fact that the interiors of the SN form an 
increasing sequence of open sets with union equal to U. With these ideas in mind, we 
formulate as a lemma the basic result we shall use. The lemma refers back to the func-
tion H defined in the previous section.

Lemma 3.1 Suppose that r is a real number with 0 < r < 1. Then there is an Nr > 0 
such that, if N ≥ Nr > 0, then the interior of SN contains H−1({z : |z| ≤ r}). Moreo-
ver, for any such fixed N > Nr, the number of times that H attains a value w ∈ SN with 
|w| < r (and hence the number of times it attains the value w in U) is exactly the integral 
1

2π i

∫

H ′(z)
H(z)−wdz around the boundary edges of SN .

Proof. The first statement follows easily from the fact that ln |H | has boundary value 0 
on U. This implies immediately that there is a δ such that |H(z)| > r at every point z ∈ U 
with dist(z, ∂U) < δ (this comes from uniform continuity of the function |H | ∪ 1 on 
U ∪ ∂U). If Nr is so large that the diameter of the squares of side length 2−N is less than 
δ, then the first conclusion holds since being outside of SN would imply distance to the 
boundary of U less than δ so that no point outside SN could have H image with absolute 
value less than r.

The second conclusion is more or less immediate if no point on the sides of the square 
labeled by TN contains a point in the inverse image of w: for each TN labeled square, the 
integral 1

2π i

∫

H ′(z)
H(z)−wdz around the edges of the square counts the number of preimages 

(counting multiplicity) of w inside the square. The total number of preimages of w is 
obtained by adding up the numbers in each of the TN labeled squares and this gives the 
integral 1

2π i

∫

H ′(z)
H(z)−wdz around the boundary edges.

This argument does not apply if a preimage of w is actually on the edge of a square 
labeled in TN . However, since the set of preimages of w must be finite in number (since 
they all lie in a compact set), we can deal with this problem as follows: Redo the whole 
construction with the squares with the center of the square grid at (�, �), where � is a 
positive number very close to 0 so that the squares are of the form:

U

SN

SN

SN

SN

Fig. 2 The squares Sn1,n2N  and the set SN
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If � is close enough to 0, it will still be true that the union SN (�) of the squares Sn1,n2N (�) , 
(N , n1, n2) ∈ TN , is contained in U. It will also be the case that the interior of the union 
SN (�) contains H−1({w : |w| ≤ r}), again for all � > 0 small enough. And for a fixed w 
with |w| ≤ r, one can arrange that the edges of these TN labeled squares do not contain 
any preimage of w so that the previous case applies. However, the integral 1

2π i

∫

H ′(z)
H(z)−wdz 

around the boundary edges of SN (�) is a continuous function of � so that, as � is made to 
approach 0, one obtains the desired conclusion as a limit.  �

The point here is that preimages of w might lie on interior edges of the TN labeled 
squares but they cannot lie on the boundary edges so that the integral over the union of 
the boundary edges is a continuous function of w.

Now we can complete the argument that H attains each value w in the unit disc exactly 
once. Given w with |w| < 1, choose an r with |w| < r < 1. The lemma shows that the 
number of H−1(z) of a point z in the set {z : |z| < r} is integer valued, and, moreover, 
since it is given by the integral 1

2π i

∫

H ′(z)
H(z)−wdz over the boundary edges of SN for all 

suitably large N, it must be continuous as a function of w. Hence, it is everywhere 1 on 
{w : |w| < r} because the point 0 has exactly one preimage counting multiplicity, namely 
the point 0. Thus, H attains the value w exactly once counting multiplicity. Hence, H is 
one-to-one and onto the unit disc. �

4  Final remarks
The argument in this last section is specific to the situation at hand, but the result is in 
fact a special case of a general consideration, namely that a proper map of one (con-
nected) Riemann surface to another is a branched covering with all points in the image 
space having the same number of preimages counting multiplicity. This can be proved 
by techniques along the same lines as the ones used here for the concrete instance of the 
Riemann Mapping theorem.

The technique of using harmonic function theory to find biholomorphic mappings 
of multiply connected (i.e., not simply connected) open sets in the plane onto model 
domains has a long and extensive history. The reader might wish to consult [3] for a dis-
cussion of the general theory. The thing that is different about simple connectivity is that 
there is only one model needed (for proper subsets of C). For higher finite connectivity, 
the family of models necessarily has a positive number of parameters. These considera-
tions require topological information that is beyond the scope of a short article.
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S
n1,n2
N (�) =

{

x + iy ∈ C :
n1

2N
+ � ≤ x ≤

n1 + 1

2N
+ �,

n2

2N
+ � ≤ y ≤

n2 + 1

2N
+ �

}

.
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