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Abstract:   Many modern applications, such as precise point positioning, autonomous driving or precision 
agriculture would benefit significantly if a high-precision and high-resolution model of electron density in the 
ionosphere and the plasmasphere would be globally available. Since the development of such a model still relies 
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duction of equality and inequality constraints on Chapman key parameters are essential. In this work, we develop 
a multi-layer Chapman model based on B-spline expansions of selected key parameters of the electron density. 
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through ionosonde measurements.
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Introduction
The Sun’s radiation has important impact on different 
components of the Earth system, for instance on the sub-
components plasmasphere and ionosphere. The ioniza-
tion of neutral gas molecules results in ionized plasma 
and free electrons. The four-dimensional (4D) space and 
time-dependent electron density need to be accurately 
known for satellite navigation and telecommunication, 
since electromagnetic waves are strongly affected on 
their path through the charged part of the atmosphere1. 
The 4D electron density is a highly variable function: 
amongst others it reflects plasma fluctuations with peri-
ods less than a few minutes, diurnal and seasonal varia-
tions, long-period changes following the solar cycle of 11 
years as well as the impact of space weather events, such 
as solar flares and coronal mass ejections (CME).

If the 4D electron density would be known every-
where within the plasmasphere and the ionosphere at 
any moment in time, we would be able to correct every 
measurement of space-geodetic observation techniques, 
such as the Global Navigation Satellite Systems (GNSS), 
Satellite Altimetry, the French satellite tracking system 
Doppler Orbitography and Radiopositioning Integrated 
by Satellite (DORIS) or Very Long Baseline Interferome-
try (VLBI) for the plasmaspheric and ionospheric impact 
independently if we use single or multi-frequency meas-
urements. Vice versa, all these observation techniques 
including, e.g. the space-based GNSS technique of meas-
uring Ionospheric Radio Occultations (IRO) as well as 
the Langmuir probe measurements on-board CHAMP 
and Swarm provide valuable information on the state of 
the plasmasphere and the ionosphere, and thus for mod-
elling the electron density. To be more specific, in this 
paper we aim on modelling the electron density function

(1)Ne = Ne(ϕ, �, h, t)

Graphical Abstract

1  Availability of ionospheric corrections also improve convergence time in 
precise point positioning (PPP) solutions.
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depending on latitude ϕ and longitude �—both defined 
with respect to a geocentric Earth-bounded coordinate 
system �E—on the height h = r − RE above the sur-
face of a spherical Earth with a constant radius RE and 
r being the radial distance and on the time t with high 
accuracy and high resolution. Since modelling a 4D func-
tion is rather challenging, the electron density is usually 
transferred to the 3D Vertical Total Electron Content 
(VTEC) depending on latitude and longitude as well as 
the time. Integrating the electron density (1) along the 
ray-path, e.g. between a transmitting GNSS satellite PS 
and a ground-based receiver PR the Slant Total Electron 
Content (STEC)

is obtained. Due to the dispersive property of the plasma-
sphere and the ionosphere the geometry of the ray-path 
with the differential line element ds depends on the car-
rier frequency f of the electromagnetic wave, and thus 
deviates from the straight line between PS and PR . To 
simplify the notation and bring vector notation into play, 
we introduce the 3D position vector

defined in �E and rewrite Eq. (2) as

Multiplying the right-hand side of Eq. (4) with the 
factor ±40.3/f 2 , we obtain the ionospheric delay 
dion = (±40.3/f 2) · STEC . This relation is an approxi-
mation, valid for standard conditions of the geomag-
netic field and signal frequencies f larger than 1 GHz. It 
neglects the higher-order effects which may reach up to 
0.2 cm in zenith direction for GPS signals. Note, the sign 
of dion changes with reference to carrier phase observa-
tions (”−”) or for pseudorange measurements (”+”). The 
conversion of STEC into VTEC is achieved by introduc-
ing an isotropic mapping function M(z) depending on the 
zenith angle z. It performs the projection

under the assumption that all electrons are concentrated 
in a spherical shell �H of an infinitesimal thickness with 
fixed height H = r − RE above the spherical Earth. This 
procedure is denoted as the single layer model (SLM) 
approach; the spatial reference for the VTEC observation 
is given by the ionospheric piercing point PIPP with posi-
tion vector xIPP . It is defined as the intersection point of 
the straight line between PS and PR and the sphere �H ; 

(2)STEC(PS ,PR, t) =

∫ PR

PS
Ne(ϕ, �, h, t) ds

(3)x = r · [cosϕ cos �, cosϕ sin �, sin ϕ]T

(4)STEC(xS , xR, t) =

∫ PR

PS
Ne(x, t) ds .

(5)VTEC(xIPP , t) = M(z) · STEC(xS , xR, t)

see e.g., Schaer (1999). From Eq. (4), we obtain from the 
integration of the electron density along the height h the 
result

Note, that if the electron density is precisely known the 
result (6) usually outperforms the corresponding VTEC 
value from Eq. (5) because applying the mapping func-
tion M(z) can introduce a significant error.

Several approaches exist for representing VTEC glob-
ally by using input data from GNSS. The Ionospheric 
Associated Analysis Centers (IAAC) of the International 
GNSS Service (IGS) routinely provide Global Ionosphere 
Maps (GIM) representing VTEC based on different 
mathematical approaches, e.g. the series expansion or 
the discretization technique. Whereas in the latter case, 
usually the voxel-based tomography approach is cho-
sen (see e.g. Hernández-Pajares et al. (1999)), in the case 
of a 2D series expansion spherical harmonics (SH) are 
often used (see e.g. Schaer (1999)). However, since SHs 
are oscillating over the sphere and, thus, are character-
ized by a global behaviour, they cannot represent data of 
heterogeneous density and quality in a proper way; see 
e.g. Schmidt et al. (2011). Consequently, at DGFI-TUM, 
we rely for more than two decades on 2D B-spline basis 
functions for modelling VTEC, see e.g. Zeilhofer (2008), 
Schmidt (2007), Schmidt et al. (2015), Limberger (2015) 
and Erdogan et al. (2017a) for two main reasons, namely 
(1) they are characterized by their localizing feature and 
(2) they can be used to generate a multi-scale represen-
tation (MSR) based on wavelet theory; see e.g. Schmidt 
et al. (2015) and Goss et al. (2019). In the case of global 
modelling, the 2D B-spline basis functions are defined as 
tensor products of 1D endpoint-interpolating B-spline 
functions depending on the latitude ϕ and 1D trigono-
metric B-spline functions depending on the longitude 
� ; see Schmidt et  al. (2011), Schmidt et  al. (2015), and 
Goss et al. (2019); general introductions to both kinds of 
B-spline basis functions can be found in Schumaker and 
Traas (1991) as well as Lyche and Schumaker (2000).

Multiplying a 2D series expansion, e.g. in terms of SHs 
or 2D tensor product B-spline functions dependent on 
latitude ϕ and longitude � with a vertical profile func-
tion dependent on the height h, a mathematical model is 
obtained for describing a 3D function, such as the spa-
tial part of the electron density Ne , i.e. Ne(ϕ, �, h) . Howe 
et  al. (1998) and Gao and Liu (2002) realized this con-
cept—also known as the separability approach  Hernán-
dez-Pajares et al. (2000)—by combining a SH expansion 
with empirical orthogonal functions (EOF); Schmidt 
et al. (2008) transferred this global approach to a regional 

(6)VTEC(xIPP , t) =

∫

height
Ne(ϕIPP , �IPP , h, t) dh .
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application by multiplying the 2D tensor product end-
point-interpolating B-splines with the first five EOFs 
obtained from a principal component analysis (PCA) 
of a reference model, namely the International Refer-
ence Ionosphere (IRI). As an alternative to the afore-
mentioned empirical approach, in ionosphere research 
often so-called “physics-motivated” functions, e.g. the 
Chapman function and the Epstein function are used; 
see Feltens (2007) and Rawer (1988). As will be shown by 
Eq. (8), we rely in this work on the Chapman function. 
A further approach is defining the vertical profile func-
tion as another 1D series expansion in terms of endpoint-
interpolating B-spline functions along the height. This 
way the electron density Ne(ϕ, �, h) is spatially modelled 
by a series expansion in terms of 3D tensor product 
B-spline functions; This approach increases the number 
of B-spline coefficients to be estimated significantly, but 
remains free from any assumptions about the physical 
distribution of the electrons along the vertical. A syn-
ergy between this 3D B-spline representation and the 
voxel-based approach mentioned before was shown by 
Olivares-Pulido et al. (2019). An extensive discussion of 
the aforementioned and further approaches to model the 
electron density (1) only spatially or even spatio-tempo-
rally, i.e. in three or four dimensions, can be found in the 
PhD thesis of Limberger (2015).

Each Chapman function (8) is defined by three key 
parameters, two of them are included in a strongly 
non-linear manner and are also highly correlated with 
each other. Since such strong correlations also occur 
between key parameters of different ionospheric layers, 
the application of the classical least squares estimation 
often leads—if at all—to physically unrealistic estimation 
results for the unknown key parameters, e.g. a negative 
value for the maximum of the electron density within a 
specified layer; see Liang (2017). Such problems are often 
handled by introducing “inequality constraints” for the 
unknown parameters and solved by using optimization 
algorithms, such as the ones described in Koch (1985), 
Roese-Koerner (2015), Nocedal and Wright (2006), Boyd 
and Vandenberghe (2004). Inequality-constrained opti-
mization problems are relatively difficult to solve com-
pared to either unconstrained or equality constrained 
optimization problems; see Chapter  16 of Nocedal and 
Wright (2006).

Although there are optimization procedures available 
(see e.g. Lötstedt (1984), Gill et al. (1984), Coleman and 
Li (1996) and Mead and Renaut (2010)), the detail of 
their applied algorithms, the applied assumptions and the 
implementation along with the possibility to obtain accu-
racy information, i.e. to estimate standard deviations are 
either not described or not always explicitly transparent 

to the user or not available at all. In many cases these 
algorithms are made for smaller dimensional problems—
within 100 to 500 unknown parameters—and are not eas-
ily “scalable” for relatively higher-dimensional problems, 
e.g. a global 4D electron density modelling.

In this paper, due to the consideration of inequality 
constraints, the estimators of the selected Chapman key 
parameters are lying within physically realistic limits, for 
example, non-negative values for the maximum value of 
the electron density within a specified ionosphere layer. 
We will develop in the following a general concept where 
both equality and inequality constraints can be included.

This paper is organized as follows: in the second Sec-
tion titled “Electron density modelling”, we derive the 
multi-layer Chapman model of the global electron den-
sity. In the following third Section, we set up the series 
expansions in 2D B-spline basis functions for the selected 
key parameters and define the inequality and equality 
constraints related to given bound functions in matrix 
and vector form. In the next section titled “optimiza-
tion approach”, we describe the optimization algorithm 
in detail and present a recipe for applying our developed 
ICOA. In the next section, we then apply the ICOA to a 
combination of real and semi-simulated input data and 
describe the validation of the estimated key parameters 
using the IRI model as well as ionosonde observations. 
Finally, we provide a summary and outlook for follow-up 
work.

Electron density modelling
As can be seen in Fig. 1 the ionosphere defined between 
the height values hmin and hmax is stratified into the D-, 
the E-, the F1 - and the F2-layer with a smooth transi-
tion into the plasmasphere. Following Limberger (2015), 
we may set hmin = 50  km and hmax = 1000  km. Each 
layer has its physical significance, due to the dominating 
atmospheric processes, such as ionization, recombina-
tion and the overall energy balance of the ionosphere; see 
e.g. Chapman (1931).

In this work, we approximate according to Feltens 
(2007) the vertical electron density profile by the so-
called multi-layer approach

where the summation index Q ∈ {1 = D, 2 = E, 3 = F1, 4 = F2} 
refers to the four layers of the ionosphere and P means 
the plasmasphere. We use the Chapman function

(7)

Ne(h) = ND
e (h)+ NE

e (h)+ NF1
e (h)+ NF2

e (h)+ NP
e (h)

=

4∑

Q=1

NQ
m pQ(h)+ NP

0 p
P(h) ,



Page 5 of 23Lalgudi Gopalakrishnan and Schmidt ﻿Earth, Planets and Space          (2022) 74:143 	

to describe the vertical electron density distribution of 
the Q-layer. Herein, the three quantities NQ

m (= peak den-
sity), hQm(= peak height) and HQ(= scale height) are the 
key parameters of the Q-layer. The peak density NQ

m cor-
responds to the maximum value of the electron density 
within the Q-layer and the peak height hQm means the alti-
tude corresponding to the peak density. The scale height 
HQ refers to the thickness of the profile around the peak 
height. Whereas NQ

m means a scale factor in Eqs. (7) and 
(8), the key parameters hQm and HQ define the shape of the 
profile function pQ(h) introduced in Eq. (7). Note, each 
profile function pQ(h) is defined within the full height 
range of the ionosphere, i.e. between hmin and hmax , and 
not restricted to the sub-range of the Q-layer. This way 
no jumps or discontinuities occur at the transition points 
of two adjacent layers along the vertical.

(8)

NQ
e (h) = NQ

m exp

(
1

2

(
1−

h− h
Q
m

HQ
− exp

(
−
h− h

Q
m

HQ

)))

The exponential decay of the electron density within the 
plasmasphere P above the height value hF2m will be described 
by the function

where the quantities NP
0 (= basis density) and HP(= scale 

height) are the two key parameters of the plasmasphere. 
Whereas NP

0  means a scale factor in Eqs. (7) and (9) 
the parameters hF2m and HP define the shape of the pro-
file function pP(h) introduced in Eq. (7). From Eqs. (7), 
(8) and (9), we conclude that our multi-layer Chapman 
model (MLCM) is based on the set

of altogether 14 key parameters κr with r = 1, 2, . . . , 14 . 
This set can be further extended, e.g. by choosing differ-
ent scale heights for the top and the bottom side of each 
layer. In the following we will stay with the set as defined 
in Eq. (10).

Both the D-layer and the E-layer are thin compared to 
the F1-layer and to the F2-layer; see Berkner and Wells 
(1934) and Bremer (1998). Whereas the peak densities 
ND
m and NE

m > ND
m of the D- and the E-layer, respectively, 

are at least two orders of magnitude lower compared to 
the peak density NF2

m  of the F2-layer under nominal con-
ditions, i.e. ND

m < NE
m ≪ N

F2
m  , for the F1-layer the defini-

tion NF1
m = 0 holds during nighttime; see Liang (2017). 

The 14 key parameters κr ∈ K defined in Eq. (10) vary on 
spatio-temporal scales and our aim is their global mod-
elling using an appropriate mathematical approach. The 
unknown model parameters of this approach should 
then be estimated by a sufficient number of observa-
tions which are assumed to be functionals of the 4D elec-
tron density Ne(ϕ, �, h, t) as defined in Eq. (1), e.g. STEC 
measurements as introduced in Eq. (4).

Earlier studies, e.g., by Limberger (2015) and Liang 
(2017) highlighted the two main challenges for the selec-
tion of an appropriate estimation procedure, namely (1) 
an inhomogeneous and insufficient global coverage of 
observations and (2) significant correlations between 
most of the key parameters. The first item refers to large 
spatial gaps of observations, from ground-based GNSS 
receivers, in particular over oceans and deserts as well as 
dense clusters of observations, for example, over Europe, 
the United States and Japan; see Erdogan et  al. (2017b) 
and Goss et al. (2020). The different measurement tech-
niques we use in this study and the spatial distribution 
of their observations will be discussed briefly in Section   
“Application to real-data”.

(9)NP
e (h) = NP

0 exp

(
−
|h− h

F2
m |

HP

)
,

(10)
K ={N

D
m , h

D
m,H

D
,N

E
m, h

E
m,H

E
,N

F1
m , h

F1
m ,H

F1 ,

N
F2
m , h

F2
m ,H

F2 ,N
P
0 ,H

P
}

Fig. 1  An approximate representation of vertical electron density 
profile between hmin and hmax ; the quantities NQ

m(= maximum value 
of the electron density, peak density), hQm(= peak height) and HQ(= 
scale height) are the key parameters of the ionosphere layer Q with 
Q ∈ {D, E , F1, F2} . Figure is adapted from Limberger (2015) and is not 
to accurate scale, but is merely meant for illustration purpose. For 
a more detailed description of ionospheric profile shape, see e.g. 
Davies (1990)
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The second item states that most of the key param-
eters κr ∈ K are physically correlated to each other, 
e.g. due to the electron–ion recombination and dif-
ferent coupling processes in the thermosphere–iono-
sphere system; see e.g., Stankov et  al. (2003), Stankov 
and Jakowski (2006) as well as Belehaki et  al. (2006). 
Statistical correlations between the key parameters 
arise due to their observability and sensitivity to 
electron density. This was shown in Limberger et  al. 
(2014a) with regard to regional ionosphere modelling 
considering only the F2-layer in the South American 
region by using a combination of real and simulated 
observations. The incorporation of inequality con-
straints partially decorrelates the unknown parameters 
by localizing them to be within specific magnitude 
bounds. Accordingly, Limberger (2015), Liang (2017) 
highlighted the need for stochastic modelling and 
the consideration of inequality constraints on the key 
parameters. We address this issue in detail in Section 
“Optimization approach”.

Keeping in view the aforementioned challenges, in 
this paper we use (1) electron density modelling con-
sidering the D-, the E-, the F1 -, and the F2-layer as 
well as the plasmasphere; (2) the multi-layer Chap-
man approach for modelling the altitude dependency 
of the electron density; (3) 2D B-spline tensor product 
basis functions for the representation of the selected 
key parameters along latitude and longitude, and (4) 
the combination of Formosat-3/COSMIC and GRACE 
radio occultation measurements as well as so-called 
semi-simulated observations based on the separabil-
ity approach developed by Hernández-Pajares et  al. 
(2000). Furthermore, the two most important novelties 

of this paper are (1) the consideration of inequality 
constraints on selected key parameters of the multi-
layer Chapman model (MLCM) and (2) the application 
of a constraint optimization algorithm for param-
eter estimation. To the knowledge of the authors, 
this approach has not yet been applied to ionosphere 
modelling.

Parameterization of the multi‑layer Chapman 
model (MLCM)
Each key parameter κr ∈ K of the set K introduced in Eq. 
(10) of the MLCM as defined by Eqs. (7), (8) and (9) can 
be represented globally by the 2D B-spline expansion:

in terms of the KJ1 · KJ2 = u 2D tensor products 
N

dN
J1,k1

(ϕ) T
dT
J2,k2

(�) of the endpoint-interpolating poly-
nomial B-spline functions NdN

J1,k1
(ϕ) of degree dN and 

the trigonometric B-spline functions TdT
J2,k2

(�) of degree 
dT . The shift parameters k1 ∈ {0, 1, . . . ,KJ1 − 1} and 
k2 ∈ {0, 1, . . . ,KJ2 − 1} for the endpoint-interpolating 
and the trigonometric B-spline functions define the posi-
tion of the 2D tensor product B-spline on the sphere �H . 
The total numbers KJ1 = 2J1 + 2 and KJ2 = 3 · 2J2 of the 
B-spline functions depend on the B-spine levels J1 and 
J2 with respect to latitude ϕ and longitude � . Whereas 
the function vκr (ϕ, �, t) denotes the truncation error, the 

(11)

κr(ϕ, �, t) =

KJ1
−1∑

k1=0

KJ2
−1∑

k2=0

d
J1,J2
k1,k2;κr

(t)

N
dN

J1,k1
(ϕ) T

dT

J2,k2
(�)

+ vκr (ϕ, �, t)

Fig. 2  2D tensor product B-spline representation of a key parameter κr , as introduced in Eq. (11). The endpoint-interpolating B-splines (top left 
panel) and the trigonometric B-splines (bottom left panel) are shown for the selected level values J1 = 4 and J2 = 3 , respectively. Accordingly, there 
are KJ1 = 2J1 + 2 = 18 B-splines N2

4,k1
(ϕ) with k1 = 0, 1, . . . , 17 defined along the latitude and KJ2 = 3 · 2J2 = 24 trigonometric B-splines T 2

3,k2
(�) 

with k2 = 0, 1, . . . , 23 defined along longitude between −180◦ and 180◦ . As one of altogether 432 = 18 · 24 2D tensor product B-splines functions 
the right panel shows exemplarily the function N2

4,11(ϕ) · T
2
3,2(�) ; the non-zero region is referred to as its influence zone. Both the polynomial and 

trigonometric B-splines basis functions are unitless and hence their product also remains unitless in this figure
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u time-dependent series coefficients dJ1,J2k1,k2;κr
(t) are the 

unknown parameters of the expansion (11) and have to 
be determined. In the sequel we select dN = dT = 2 for 
the degree values dN and dT . Consequently, Fig. 2 shows 
in the right panel exemplarily the 2D quadratic B-spline 
basis function N 2

4,11(ϕ) · T
2
3,2(�) . Due to its strong locali-

zation feature only observations available within the so-
called influence zone, i.e. the non-zero area of this 2D 
B-spline function, contribute to the estimation of the 
related series coefficient d4,311,2;κr

(ti) at the time moment 
t = ti for the selected key parameter κr ∈ K.

Although different B-spline level values can be consid-
ered for each key parameter κr ∈ K , we choose for all of 
them the same level values, resulting in the same num-
ber of coefficients for each key parameter. This is due to 
the fact that according to Goss et al. (2019) the numerical 
values for the levels J1 and J2 are depending on the sam-
pling intervals �ϕ and �� of the input data and on the 
spectral content of the individual key parameters.

Since the key parameters of the set K describe the 
electron density of the ionosphere and the plasmas-
phere according to the MLCM, significant correlations 
ρr,s = ρs,r exist between the estimated sets of B-spline 
coefficients dJ1,J2k1,k2;κr

(ti) and dJ1,J2k1,k2;κs
(ti) of various pairs 

(κr , κs) of two key parameters κr ∈ K and κs ∈ K with 

r, s = 1, 2, . . . , 14 at the time moment t = ti , e.g. for 
κr = N

F2
m  and κs = HF2 ; see Limberger et al. (2014a).

For demonstrating the proposed optimization 
approach, a subset K1 ⊂ K of altogether r1 key param-
eters κr ∈ K1 will be chosen in our electron density mod-
elling as also done earlier by Limberger et  al. (2014b), 
Liang et al. (2015) and Tsai et al. (2016). For that purpose 
we will neglect the dependence on time t in the sequel. 
As already mentioned in the context of the definition of 
the set K in Eq. (10) we will assume now that all r1 key 
parameters κr ∈ K1 are subject to inequality constraints2, 
such as 

 where the lower bound function κr;l(ϕ, �) and the 
upper bound function κr;u(ϕ, �) are given as physi-
cally realistic limits. Examples for the key parameters 
κr ∈ K1 = {. . . ,N

F2
m , h

F2
m , . . .} according to Eqs. (12a) 

and (12b) with 220 km ≤ h
F2
m (ϕ, �) ≤ 500 km and 

(12a)−κr;u(ϕ, �)+ κr(ϕ, �) ≤ 0,

(12b)κr;l(ϕ, �)− κr(ϕ, �) ≤ 0,

Fig. 3  F2-layer electron density profile with the lower bound functions κr;l(ϕ, �) = N
F2
m;l(ϕ, �) = 0.2 EDU and κr;l(ϕ, �) = h

F2
m;l(ϕ, �) = 220 km as 

well as the upper bound functions κr;u(ϕ, �) = N
F2
m;u(ϕ, �) = 2.5 EDU and κr;u(ϕ, �) = h

F2
m;u(ϕ, �) = 500 km of the 2 key parameters NF2

m (ϕ, �) and 

h
F2
m (ϕ, �) at the spatial position (ϕ, �) ; the region within the bounds—highlighted in yellow colour—is denoted as the feasible region FR . The figure 

shows alongside also the day and night side electron density profiles, indicating that the bound functions are actually time-dependent

2  As the key parameters in Eq. (10) are modelled globally on a sphere, the con-
straints (12a), (12b), (14a) and (14b) apply and must be satisfied at all latitude, 
longitude pairs on the global grid.
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0.02 EDU ≤ N
F2
m (ϕ, �) ≤ 2.50 EDU are exemplar inequal-

ity constraints

For convenience, we define electron density units (EDU) 
as 1 EDU = 1012 el/m3 . The example realized by the four 
equations above for the upper and lower bounds on the 
F2-layer peak density NF2

m (ϕ, �) and the corresponding 
peak height hF2m (ϕ, �) at a specific spatial location (ϕ, �) 
is illustrated in Fig.  3. The region enclosed by the con-
straint bounds NF2

m;l , N
F2
m;u , hF2m;l and hF2m;u is called the 

feasible region FR for the key parameters NF2
m  and hF2m . 

The final solution of the estimation process must be a 
pair (NF2

m , h
F2
m ) ∈ FR . Figure 3 also shows that the lower 

and upper bounds for the two selected key parameters 
can be chosen differently for day and night, and thus are 
time-dependent.

Note, that we did not consider any inequality con-
straint among the same type of key parameter, but 
related to different layers, e.g. the condition hF1m < h

F2
m 

for the two peak heights of the F1 - and the F2-layer. This 
condition must be fulfilled and could be realized by two 
non-overlapping constraints, such as hF1m < h

F1
m;u = h

F2
m;l 

and hF2m;l ≤ h
F2
m .

Besides the inequality constraints, such as introduced 
in Eqs. (12a) and (12b), the equality constraints

must hold for the remaining r2 = 14 − r1 key parameters 
κr ∈ K2 with given physically realistic values κr,e(ϕ, �) . 
Note, that the subset K2 = K\K1 means the complemen-
tary set of K1.

Inserting the series expansion (11) into the inequality 
constraints (12a), and (12b) and neglecting the trunca-
tion error yields: 

 Defining the u× 1 vector

−500 km+ hF2m (ϕ, �) ≤ 0 km

220 km− hF2m (ϕ, �) ≤ 0 km

−2.50 EDU+ NF2
m (ϕ, �) ≤ 0 EDU

0.02 EDU− NF2
m (ϕ, �) ≤ 0 EDU .

(13)κr(ϕ, �) = κr;e(ϕ, �)

(14a)

−κr;u(ϕ, �)+

KJ1
−1∑

k1=0

KJ2
−1∑

k2=0

d
J1,J2
k1,k2;κr

N 2
J1,k1

(ϕ) T 2
J2,k2

(�) ≤ 0,

(14b)

κr;l(ϕ, �)−

KJ1
−1∑

k1=0

KJ2
−1∑

k2=0

d
J1,J2
k1,k2;κr

N 2
J1,k1

(ϕ) T 2
J2,k2

(�) ≤ 0 .

(15)dddκr =
[
d
J1,J2
0,0;κr

, d
J1,J2
1,0;κr

, . . . , d
J1,J2
KJ1

−1,KJ2
−1;κr

]T

of the B-spline series coefficients dJ1,J2k1,k2;κr
 as well as the 

u× 1 vector

of the 2D tensor product B-spline basis functions 
N 2
J1,k1

(ϕ) T 2
J2,k2

(�) Eqs. (14a) and (14b) can be rewritten 
as: 

 In the next step, we evaluate the lower bound function 
κr;l(ϕ, �) and the upper bound function κr;u(ϕ, �) at alto-
gether m1 points P(ϕi, �i) = Pi with i = 1, . . . ,m1 . Apply-
ing Eq. (11) to κr;l(ϕi, �i) and assuming that with m1 > u 
the points Pi are defined, for instance, on a regular grid 
or a Reuter grid on the sphere �H , the linear equation 
system

results, where the m1 × u matrix AAAκr = [(φφφJ1,J2 (ϕi , �i))
T
]i=1,...,m1

 
is of full column rank, the m1 × 1 vector 
κr;l = [κr;l(ϕi, �i)]i=1,...,m1

 collects the given lower 
bound function values and the m1 × 1 vector 
eeer;l = [−vκr;l (ϕi, �i)]i=1,...,m1 the corresponding negative 
truncation error values. The u× 1 vector

of the series coefficients dJ1,J2k1,k2;κr;l
 is defined analogously 

to the vector dddκr in Eq. (15). Under the assumption that 
all lower bound function values κr;l(ϕi, �i) are weighted 
equally the application of the least-squares estimation 
(LSE) to Eq. (18) yields the solution

and thus the vector

of the approximate values κr;l(ϕi, �i) for the lower bound 
function values κr;l(ϕi, �i) at the m1 grid points Pi . If we 
perform now in the same manner as in the Eqs. (18) to 
(21) for the upper bound function κr;u(ϕ, �) , we obtain 
the vector

(16)

φφφJ1,J2(ϕ, �) =
[
N 2
J1,0

(ϕ) T 2
J2,0

(�), N 2
J1,1

(ϕ)

T 2
J2,0

(�), . . . , N 2
J1,KJ1

−1(ϕ)

T 2
J2,KJ2

−1(�)
]T

(17a)−κr;u(ϕ, �)+
(
φφφJ1,J2(ϕ, �)

)T
· dddκr ≤ 0,

(17b)κr;l(ϕ, �)−
(
φφφJ1,J2(ϕ, �)

)T
· dddκr ≤ 0. .

(18)AAAκr dddκr;l = κr;l + eeer;l

(19)
dddκr;l =

[
d
J1,J2
k1,k2;κr;l

, d
J1,J2
1,0;κr;l

, . . . , d
J1,J2
KJ1

−1,KJ2
−1;κr;l

]T

(20)dddκr;l = (AAAT
κr
AAAκr )

−1 AAAT
κr
κ r;l ,

(21)κ r;l = AAAκr dddκr;l
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of the approximate values κr;u(ϕi, �i) for the lower bound 
function values κr;u(ϕi, �i) at the m1 grid points Pi from 
the estimation dddκr;u of the u× 1 vector

of the series coefficients dJ1,J2k1,k2;κr;u
 . In addition to the opti-

mization algorithm (presented in the next section), the 
proposed approach also requires least-squares adjust-
ment for determining the constraint bounds on B-splines 
coefficients; see Eq. (20). The equality and inequality con-
straints are originally applied to Chapman key parame-
ters and are then transformed to the B-spline coefficients 
using least squares estimate of the constraint bound. 
Combining least square and optimization together is the 
most direct way to represent the unknown B-spline coef-
ficients of Chapman key parameters as well as their con-
straint bounds in the Gauss–Markov Model (GMM)3 
described in the following section. Of course other 
options (e.g. spherical harmonics) to represent the trans-
formed constraint bounds (20) are also possible. But for 
the sake of utilizing the advantages of B-spline basis 
functions, we wish to use it here. Defining the (2 ·m1)× u 
constraint coefficient matrix BBBκr =

[
−AAAT

κr
, AAAκr

]T as well 
as the (2 ·m1)× 1 constraint bound vector 
bbbκr =

[
− κ

T
r;l , κ

T
r;u

]T the inequality constraints (12a) and 
(12b) can be expressed as the linear constraint matrix 
inequality (LMI)

for the u× 1 vector dddκr from Eq. (15) of the series coef-
ficients dJ1,J2k1,k2;κr

 for an unknown key parameter κr ∈ K1 . 
Since the Chapman function (8) and the exponential 
decay function (9) for the plasmasphere depend non-
linearly on a large number of key parameters κr ∈ K , the 
coefficient vector

needs to be decomposed into the vector dddκr |0 of the 
approximate, i.e., initial values dJ1,J2k1,k2;κr |0

 of the series 
coefficients dJ1,J2k1,k2;κr

 and the vector �dddκr of the corre-
sponding correction values �d

J1,J2
k1,k2;κr

 . Inserting Eq. (25) 
into Eq. (24) yields the LMI

(22)κr;u = AAAκr dddκr;u

(23)
dddκr;u =

[
d
J1,J2
k1,k2;κr;u

, d
J1,J2
1,0;κr;u

, . . . , d
J1,J2
KJ1

−1,KJ2
−1;κr;u

]T

(24)BBBκr dddκr ≤ bbbκr

(25)dddκr = dddκr |0 +�dddκr

(26)BBBκr �dddκr ≤ �bbbκr

for the u× 1 correction vector �dddκr with 
�bbbκr = bbbκr −BBBκr dddκr |0 . In the same manner as we derived 
the LMIs (24) and (26), we obtain from Eq. (13) the linear 
constraint matrix equality (LME)

where EEEκr is a m2 × u constraint coefficient matrix 
and eeeκr = EEEκr dddκr;e is the m2 × 1 corresponding con-
straint vector for the key parameter κr ∈ K2 with 
dddκr;e = (EEET

κr
EEEκr )

−1 EEET
κr
κr;e calculated4 analogously to Eq. 

(20) and m2 ≥ u . Inserting Eq. (25) into Eq. (27) yields 
the LME

for the u× 1 correction vector �dddκr with �eeeκr = eeeκr − EEEκr dddκr |0
 . 

Note, that in case of dddκr |0 = dddκr;e the right-hand side of 
Eq. (28) reduces to �eeeκr = 000(m2×1) , where 000(m2×1) means 
the m2 × 1 vector of zero values. Furthermore, in case 
m2 = u , we may set EEEκr = IIIu , where IIIu means the u× u 
identity matrix. However, in the following we will stay at 
the more general LME formulation (28).

To demonstrate the developed procedure, we introduce 
the subset

of the r1 = 5 key parameters of the F2-layer and the plas-
masphere. Consequently, the set K2 = K\K1 contains the 
remaining r2 = 9 key parameters of the D−,E - and F1
-layer. For setting up the parameter estimation model, we 
define the (14 · u)× 1 vector

with the (5 · u)× 1 vector dddK1 =
[
dddTκ1 , ddd

T
κ2
, . . . , dddTκ5

]T 
and the (9 · u)× 1 vector dddK2 =

[
dddTκ6 , ddd

T
κ7
, . . . , dddTκ14

]T 
for the coefficient vectors dddκr as defined in Eq. (15), with 
r = 1, 2, . . . , 14 . In the same manner we define the two 
(14 · u)× 1 vectors 

 of the vectors dddκr |0 and �dddκr of the initial series 
coefficient values and the corresponding correc-
tion values, respectively, as defined in Eq. (25). 

(27)EEEκr dddκr = eeeκr ,

(28)EEEκr �dddκr = �eeeκr

(29)
K1 = {κ1 = NF2

m , κ2 = hF2m , κ3 = HF2 , κ4 = NP
0 , κ5 = HP}

(30)dddK =
[
dddT
K1

,dddT
K2

]T
,

(31a)dddK|0 =
[
dddT
K1|0

,dddT
K2|0

]T
,

(31b)�dddK =
[
�dddT

K1
,�dddT

K2

]T

3  Only then the constraint and unconstrained terms of the Lagrangian func-
tion (38) can be represented using the same unknown parameter vector β to 
be later used in (34).

4  The equality constraint bounds transformation will lead to an approximation 
due to the truncation error in B-spline series expansion. This is perhaps one of 
the few disadvantages of transforming the constraint bounds from the space 
of key parameters to B-spline coefficients.
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Consequently, we obtain from Eq. (26) the LMI 
BBBK1�dddK1 ≤ �bbbK1 with BBBK1 =

[
BBBκ1 , BBBκ2 , . . . , BBBκ5

]
 and 

�bbbK1 =
[
�bbbTκ1 , �bbbTκ2 , . . . , �bbbTκ5

]T or

with BBBK =
[
BBBK1

, 000(10·m1)×(9·u)

]
 . In the same manner it  

follows from Eq. (28) the LME EEEK2
�dddK2

= �eeeK2
 with  

EEEK2
=

[
EEEκ6 , EEEκ7 , . . . , EEEκ14

] and �eeeK2
=

[
�eeeTκ6

, �eeeTκ7
, . . . , �eeeTκ14

]T 
or

with EEEK =
[
000(9·m2)×(5·u), EEEK2

]
.

To the knowledge of the authors, there are only a few 
relevant works, where an inequality constrained optimi-
zation algorithm (ICOA) is applied in geodesy, e.g. the 
geodetic levelling and datum definition by Koch (1985) 
and Koch (1988), the non-negative variance component 
estimation (VCE) as well as the zenith troposphere delay 
(ZTD) estimation by Roese-Koerner (2015). In the for-
mer two papers, the Lagrange multiplier and slack vari-
able concepts are already used (described in detail in 
the following section) and the latter uses the so-called 
“Active-set methods”; see Boyd and Vandenberghe 
(2004), Nocedal and Wright (2006). Inequality-con-
strained least squares was used by Zhang et al. (2013) to 
avoid negative VTEC in global ionosphere maps.

Optimization approach
To estimate the vector dddK as defined in Eq. (30) we need 
a sufficient number of observations, well distributed over 
the region of investigation, i.e. in our study given glob-
ally within the ionosphere and plasmasphere. To simplify 
the procedure we assume that electron density measure-
ments Ne(xj) at observations points P(xj) = Pj are given. 
Thus, we introduce the n× 1 vector y = ne − ne|0 as the 
difference of the n× 1 vector ne = [Ne(xj)]j=1,...,n of the 
electron density observations Ne(xj) and the n× 1 vector 
ne|0 = [Ne|0(xj)]j=1,...,n of the corresponding approximate 
values Ne|0(xj) computed from the vector dddK|0 of the 
initial B-spline coefficients as defined in Eq. (31a). Note, 
that in this study we deal exclusively with electron den-
sity observations yj = Ne(xj) and not with measurements 
yj = fj(Ne(x)) which are functionals of the electron den-
sity, such as GNSS STEC observations as introduced in 
Eq. (4). In this latter case further linearization steps have 
to be performed as well as a numerical integration along 
the ray-path between the transmitting satellite PS and 
the receiver PR ; for more details concerning these steps 
we refer to Limberger (2015), Liang (2017) or Zeilhofer 
(2008). Since in case of electron density measurements 

(32)BBBK �dddK ≤ �bbbK1 ,

(33)EEEK �dddK = �eeeK2 ,

yj = Ne(xj) the observation equation is non-linearly 
depending on most of the key parameters, we have to set 
up the n× (14 · u) matrix XXX =

[
XXXκ1 , XXXκ2 , . . . , XXXκ14

]
 of 

the partial derivatives of the electron density with respect 
to the B-spline coefficients of all 14 key parameters κ1 to 
κ14.

Following Koch (1999) and using the aforementioned 
matrices and vectors we introduce the Gauss–Markov 
model (GMM)

where βββ = �dddK is the (14 · u)× 1 vector of the unknown 
corrections for the B-spline coefficients as defined in Eq. 
(31b); eee is the n× 1 vector of the observation errors, D 
means the dispersion operator, PPP is the given n× n posi-
tive definite weight matrix of the observations and σ 2 
is the unknown variance factor. Note, that besides the 
B-spline coefficients of all 14 key parameters we do not 
consider any further unknown parameter in the vector βββ , 
e.g. no bias parameter. We apply the LSE such that the 
objective function

needs to be minimized subject to the LMI (32) and the 
LME (33). With the (10 ·m1)× 1 vector

of the non-negative slack variables s2i  we rewrite the LMI 
(32) as the LME

To minimize the objective function (35) subject to the 
LMEs (33) and (37), we define the Lagrange function

see e.g. Koch (1985) and Koch (1999). In Eq. (38) we intro-
duced the (10 ·m1 + 9 ·m2)× (14 · u) constraint coef-
ficient matrix BBB =

[
BBBT
K
, EEET

K

]T , the (10 ·m1 + 9 ·m2)× 1 
constraint bound vector bbb =

[
�bbbT

K1
, �eeeT

K2

]T , the 
(10 ·m1 + 9 ·m2)× 1 vector

of the slack variables with sssK2 = 000(9·m2)×1 , and thus 
sss ≥ 000(10·m1+9·m2)×1 , as well as the (10 ·m1 + 9 ·m2)× 1 
vector

(34)y + eee = XXXβββ with D(y) = σ 2PPP−1,

(35)J (βββ) =
1

σ 2
(y −XXXβββ)TPPP(y −XXXβββ)

(36)sssK1 =
[
s21, s

2
2, . . . , s

2
10·m1

]T

(37)
BBBK �dddK + sssK1 = �bbbK1 with sssK1 ≥ 000(10·m1)×1 .

(38)
L(βββ ,���, sss) =

1

σ 2

[
(y −XXXβββ)TPPP (y −XXXβββ)

+2 · ���T
(
BBBβββ − bbb+ sss

)]
;

(39)sss =
[
sssT
K1

, sssT
K2

]T
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of the Lagrange multipliers �i . Setting QQQ = 2 ·XXXTPPPXXX and 
qqq = 2 ·XXXTPPP y , Eq. (38) can be rewritten as

It shall be noted that in the special case that for the vec-
tor sss of the slack variables sss = 000 holds, the problem (41) 
becomes an optimization problem with equality con-
straints only. In case that for the vector ��� of the Lagrange 
multipliers ��� = 000 holds, the problem means an uncon-
strained optimization problem.

To estimate the optimal solution (β̃ββ , �̃��, s̃ss) , the deriva-
tives of the Lagrange function (41) with respect to the 
three unknown parameter vectors βββ ,���, and sss have to be 
set to the zero vector, i.e. 

 Evaluating these three derivatives, we obtain the so-
called Karush–Kuhn–Tucker (KKT) conditions: 

 see e.g. Karush (1939) and Kuhn and Tucker (1951). The 
consequence of Eq. (43c) is �̃i s̃2i = 0 subject to s̃2i ≥ 0 and 
�̃i ≥ 0 for i = 1, 2, . . . , (10 ·m1 + 9 ·m2) , i.e. the product 

(40)��� =
[
���
T
K1

, ���T
K2

]T

(41)
L(βββ ,���, sss) =

1

σ 2

[
1

2
· βββTQQQβββ −

(
qqqT − ���

TBBB
)
βββ

−���T (bbb− sss)+ yTPPP y
]
.

(42a)
∂L(βββ ,���, sss)

∂βββ
= 000(14·u)×1,

(42b)
∂L(βββ ,���, sss)

∂���
= 000(10·m1+9·m2)×1,

(42c)
∂L(βββ ,���, sss)

∂sss
= 000(10·m1+9·m2)×1 .

(43a)QQQ β̃ββ − qqq +BBBT
�̃�� = 000(14·u)×1,

(43b)BBB β̃ββ − bbb+ s̃ss = 000(10·m1+9·m2)×1,

(43c)
�̃��
T

s̃ss = 0 with s̃ss ≥ 000(10·m1+9·m2)×1

and �̃�� ≥ 000(10·m1+9·m2)×1 ;

of each pair of a Lagrange multiplier �̃i and the associ-
ated slack variable s̃2i  has to be zero. In other words, if the 
slack variable is different from zero, the corresponding 
Lagrange multiplier must be zero and vice versa. Further-
more, for the equality constraints (33) the slack variables 
are according to Eq. (39) zero by definition. Since the 
matrix QQQ is at least positive semi-definite, the KKT con-
ditions (43a) to (43c) are not only necessary, but also suf-
ficient. Consequently, the optimization problem (41) can 
be solved by evaluating the system (43a) to (43c); see e.g. 
Koch (1985) or Nocedal and Wright (2006).

There are different techniques to solve the KKT 
conditions (43a) to (43c); see e.g. Borwein and Lewis 
(2000), Gass and Harris (2001), Roese-Koerner 
(2015). We use the IPM ( Nocedal and Wright (2006), 
pg.481), where a solution pair {�̃��, s̃ss} is estimated itera-
tively from the assumption �̃i s̃2i = σcen · µcom for all 
i = 1, 2, . . . , (10 ·m1) , using the so-called “complimenta-
rity measure” µcom and the ”centering parameter” σcen ; 
see e.g. Mehrotra (1992), Tütüncü et al. (2003) and Noce-
dal and Wright (2006). µcom and σcen are tuning param-
eters and responsible for the intermediate solution path 
taken by the optimization parameters �̃�� and s̃ss  . This way, 
according to Nocedal and Wright (2006), we obtain the 
perturbed KKT condition

also known as complimentary slack condition, where 
111 =

[
1, 1, . . . , 1

]T means an (10 ·m1 + 9 ·m2)× 1 vec-
tor of ones. The other matrices and vectors in Eq. (44) are 
defined as

For simplification we introduce the three vectors 

 Whereas the vector βββ0 contains the given initial values, 
the vector �βββ  of the corresponding corrections can be 
calculated from the linear equation system

(44)SSS���111− σcen · µcom 111 = 000(10·m1+9·m2)×1 ,

SSS =

[
SSSK1 000(10·m1)×(9·m2)

000(9·m2)×(10·m1) SSSK2

]
; ��� =

[
���K1 000(10·m1)×(9·m2)

000(9·m2)×(10·m1) ���K2

]
,

SSSK1 = diag
(
s̃21, . . . , s̃

2
10·m1

)
; SSSK2 = diag

(
s̃210·m1+1 = 0, . . . , s̃210·m1+9·m2

= 0
)
,

���K1 = diag
(
�̃1, . . . , �̃10·m1

)
; ���K2 = diag

(
�̃10·m1+1, . . . , �̃10·m1+9·m2

)
.

(45a)βββ =
[
β̃ββ
T
, �̃��

T
, s̃ss

T ]T
,

(45b)βββ0 =
[
β̃ββ
T

0 , �̃��
T

0 , s̃ss
T
0

]T
,

(45c)�βββ =
[
�β̃ββ

T
, ��̃��

T
, �s̃ss

T ]T
= βββ − βββ0 .



Page 12 of 23Lalgudi Gopalakrishnan and Schmidt ﻿Earth, Planets and Space          (2022) 74:143 

which follows from the KKT equations (43a), (43b) and 
(44) applying Newton’s method. In Eq. (46) the matrices 
QQQ and BBB as well as the vectors qqq and bbb are known, the 
(10 ·m1 + 9 ·m2)× (10 ·m1 + 9 ·m2) matrices SSS0 and 
���0 are evaluated at the initial positions s̃ss0 and �̃��0 ; see e.g. 
Nocedal and Wright (2006). Note, in the context of the 
definition of the GMM (34) we set βββ = �dddK , and thus we 
may identify the vector β̃ββ0 , Eq. (45b), of the initial values 
for the B-spline coefficients as the zero vector.

As already mentioned the above presented solution of 
the KKT equations is based on the IPM. The reader is 
referred to Mehrotra (1992), Anderson et al. (1996), Bil-
lups and Ferris (1996), Potra and Wright (2000), Boyd 
and Vandenberghe (2004), Nocedal and Wright (2006), 
Mitchell et  al. (2006), Forst and Hoffmann (2010) for 
alternative KKT solution techniques.

The choice of the step size values between two adjacent 
iteration steps it and it + 1 is one of the most important 
specifications, because they are needed to calculate the 
updated values of the elements of the parameter vector 
βββ  defined in Eq. (45a). In an unconstrained optimization 
problem, a ”full step” can be taken, i.e. βββ it+1 = βββ it +�βββ it 
or in other words the step size matrix TTT it = III equals the 
identity matrix along the descent direction. However, 
the choice of the step size values in presence of inequal-
ity constraints is not trivial, e.g. due to the risk of over-
shooting the feasible region. In general, the solution of 
the linear equation system (46) has to be updated from 
the iteration step it to the next step it + 1 by

until convergence is reached. In Eq. (47) the update 
matrix TTT it is defined as

with the diagonal block matrices 

(46)



QQQ BBBT 000(14·u)×(10·m1+9·m2)

BBB 000(10·m1+9·m2)×(10·m1+9·m2) III (10·m1+9·m2)

000(10·m1+9·m2)×(14·u) SSS0 ���0


 ·



��βββ
�����
��sss


 =




−QQQβββ0 + qqq −BBBT
���0

−BBBβββ0 + bbb− sss0
−SSS0���0 111+ σcen · µcom 111


,

(47)βββ it+1 = βββ it +TTT it�βββ it

(48)TTT it = diag
(
TTTβ , TTT �, TTTs

)
,

 such that the diagonal elements are the respec-
tive step sizes used along βββ , ��� and sss satisfying the 
conditions

Although according to the definition (36) of the vec-
tor sss the slack variables for the equality constraints are 
included in TTT it , they can be omitted from Eq. (48). Since 
the non-negativity of the Lagrange multipliers �i and the 
slack variables s2i  has to be checked in each iteration, the 
chosen step size values along the descent direction are 
an important consideration. This procedure is one of the 
main modifications in our algorithm compared to the 
classical Newton method; see e.g. Nocedal and Wright 
(2006).

The descent direction (45c) is estimated by solving the linear 
equation system (46) with the initial update matrix TTT it = III . 
Further on, the step size estimation becomes a sub-problem 
where the goal is the estimation of the largest diagonal  
elements tβj for all j ∈ {1, . . . , 14 · u}, t�k , ts2k

for all k ∈ {1, . . . , 10 ·m1 + 9 ·m2} , 
of TTT it which when used in Eq. (47), satisfy the KKT condi-
tions (43c), and thus

(49a)TTTβ = diag
(
tβ1 , . . . , tβ14·u

)
,

(49b)
TTT � = diag

(
t�1 , . . . , t�10·m1

, t�10·m1+1
, . . . , t�10·m1+9·m2

)
,

(49c)

TTTs = diag

(
ts21

, . . . , ts210·m1

, ts210·m1+1
, . . . , ts210·m1+9·m2

)
,

[
tβ1 , . . . , tβ14·u

]
∈ (0, 1];

[
t�1 , . . . , t�10·m1

, t�10·m1+1
, . . . , t�10·m1+9···m2

]
∈ (0, 1];

[
ts21

, . . . , ts210·m1

, ts210·m1+1
, . . . , ts210·m1+9·m2

]
∈ (0, 1] .

(50)
TTT it = maximize

{
tβj , t�k , t̃s2k

| (̃sss +TTTs �s̃ss ≥ 000) and (�̃��+TTT ���̃�� ≥ 000)
}
,

such that 0 < {tβj , t�k , t̃s2k
} ≤ 1 for all j = {1, . . . , 14 · u}, k = {1, . . . , 10 ·m1 + 9 ·m2} ,
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where �s̃ss  and ��̃�� are the descent directions along the 
slack variables and the Lagrange multiplier vectors. Note, 
in the most general case, different step size matrices cor-
responding to each of the three vectors βββ , ��� and sss could 
be chosen. However, in this work, it was found that using 
only two step size matrices, i.e. one for the unknown 
model parameter vector βββ and the other for the vector 
pair ��� and sss , is sufficient, and thus TTT � and TTTs are assumed 
to be equal. These choices are made as part of the “design” 
of the developed ICOA. Furthermore, the step sizes 
are estimated in each iteration. This aspect is one of the 
most computationally demanding properties of the devel-
oped procedure, i.e. it becomes one of the disadvantages 
of adding more inequality constraints to our modelling 
problem; see Nesterov and Nemirovskii (1994), Todd 
et  al. (1998), Potra and Wright (2000), Halldórsson and 
Tütüncü (2003), Mitchell et al. (2006)). During this work, 
it was found that an approximate step size is also generally 

sufficient in the developed ICOA. Having estimated the 
step size matrix (48), the complementarity measure

is computed; for details see Tütüncü et al. (2003).
In the following, we present the altogether 8 steps of 

the developed iterative algorithm for the combined step 
size and descent direction estimation within the ICOA: 

(1)	 Set the initial values β̃ββ0 , s̃ss0 , �̃��0 from Eq. (45b) of the 
unknown optimization parameters and solve for the 
descent directions �s̃ss  and ��̃�� considering s̃ss0 ≥ 000 
and �̃��0 ≥ 000.

(2)	 Initialize the centering parameter σcen and use the 
initial step size matrix TTT it = III . Compute µcom using 
Eq. (51); this value of complimentarity measure 

(51)µcom =
(�̃��+TTT ���̃��)T (̃sss +TTTs �s̃ss)

10 ·m1 + 9 ·m2

Fig. 4  F3C electron density profiles Ne = Ne(xF3C) (green) and GRACE electron density profiles Ne = Ne(xGRACE) (red) during the time interval 00:00 
UT to 04:00 UT on March 12, 2015
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is called µcom,full because it means the ”full step” 
assumption TTT it = III.

(3)	 Estimate �β̃ββ , ��̃�� and �s̃ss  from the linear equa-
tion system (46) with the initial value vectors and 
matrices β̃ββ0 , �̃��0 , s̃ss0 , TTT it and the tuning parameters 
µcom,full and σcen.

(4)	 Estimate the step size TTT it from Eq. (50).
(5)	 Compute the complimentarity measure µcom using 

Eq. (51) with the update matrix TTT it from Step 4.
(6)	 Set the centering parameter 

σcen = (µcom,full/µcom)
3 as proposed by Tütüncü 

et al. (2003)).
(7)	 Compute the updated optimization parameters 

with Eq. (47) using TTT it computed in Step 4.
(8)	 Repeat the Steps 4 to 7 until convergence is reached.

We have derived in this work the linear equation system 
(46) to solve the inequality constrained optimization 
problem, in which, QQQ , BBB and PPP are known matrices; y and 
bbb are given vectors or calculable from given values. We 
used Newton’s method with the initial value βββ0 and the 
step size matrix TTT it . For our investigations, i.e. for the 
global electron density modelling problem, the choice of 
initial values defined within the feasible region is neces-
sary. In the next section, we will apply our proposed con-
strained optimization procedure to real data.

Application to real‑data, validation and discussion
In this section we apply the developed ICOA, as described 
in previous two sections, to model the electron density 
Ne from direct measurements yj = Ne(xj) given at obser-
vation sites P(xj) = Pj . To be more specific, we choose 
electron density profiles from GRACE and Formosat-3/
COSMIC (F3C) ionospheric radio occultation (IRO) 
measurements profiles. As reported in Yue et  al. (2014), 
F3C produced on average 1000 to 1500 occultations per 
day during the years 2014 and 2015. We refer to Tsai et al. 
(2016) for the role of the F3C mission and the follow-up 
mission Formosat-7/COSMIC-2 (F7C) in global electron 
density modelling and recommend the papers of Tsai 
et  al. (2009), Hernández-Pajares et  al. (1998), Limberger 
(2015) for detailed description of IRO retrieval methods. 
For the scope of this work, the focus was on the develop-
ment of ICOA and therefore the IRO observations have 
been directly taken from the COSMIC Data Analysis and 
Archive Center (CDAAC); see Schreiner et  al. (2003). 
Figure  4 shows the projections of the electron density 
profiles on the surface of Earth for a 4-h time interval at 
March 12, 2015. Note, in the context of IRO process-
ing an electron density profile cannot be interpreted as a 
set of electron density values given along the vertical, i.e. 
Ne = Ne(hj) , but given along the tangent points P(xTj ) 

which are defined as a series of the closest points to Earth 
along the line-of-sight between the occulting GPS and the 
LEO satellite at specific time moments; see e.g. Limberger 
et al. (2013). Since both the F3C mission and the GRACE 
mission provide only a relatively small number of electron 
density observations, we introduce a third type the elec-
tron density observations derived from the so-called sepa-
rability approach Hernández-Pajares et  al. (2000). In this 
approach electron density values at globally distributed 3D 
grid points P(ϕk , �k , hj) at time moment ti are defined as

where the VTEC values VTEC(ϕk , �k , ti) are evaluated 
from VTEC models at the 2D points P(ϕk , �k) at time ti 
and pk(hj , ti) means a value of a vertical profile function at 
the horizontal grid point P(ϕk , �k) evaluated at height hj at 
time moment ti fulfilling the normalization condition

As VTEC model we choose DGFI-TUM’s high-resolution 
global ionosphere map (GIM) ’othg’ which comprises a 
much higher spectral content (up to spherical harmonic 
degree n = 33 ) as the GIMs from the Ionospheric Associ-
ated Analysis Centers (IAAC) of the International GNSS 
Service (IGS). As stated in the IGS Technical Report 
2018 Villiger A (2019) ’othg’ is one of the worldwide best 
GIMs; it is based on a 2D B-spline representation accord-
ing to Eq. (11) and characterized by a spatial resolution 
of 2.5◦ × 5◦ with respect to latitude ϕ and longitude � 
as well as a temporal resolution of 10 minutes; for more 

(52)Ne(ϕk , �k , hj , ti) = VTEC(ϕk , �k , ti) · pk(hj , ti) ,

(53)pk(hj , ti) =
pk(hj , ti)∫ hmax

hmin
pk(h, ti) dh

.

Fig. 5  Number of electron density observations Ne = Ne(xGRACE) 
from GRACE, Ne = Ne(xF3C) from the F3C mission and Ne = Ne(xSA) 
from the separability approach during the time interval March 12, 
00:00 UT to 24:00 UT, 2015
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details concerning ’othg’ we refer to Goss et  al. (2019). 
The profile functions pk(h, ti) in Eq. (53) are computed 
from the International Reference Ionosphere (IRI) 2012 
Bilitza, Dieter et al. (2014) at around 90 discrete heights 
hj between 100 km and 1000 km at the regular grid points 
P(ϕk , �k at time moments ti between March 12, 2015, 
0:00 UT and March 14, 2015, 24:00 UT. This is the rea-
son for the large number of electron density observa-
tions from the separability approach (SA) compared to 
the GRACE and F3C input data, as shown in Fig. 5. Note, 
that the electron density observations (52) can be seen as 
semi-simulated data, since ’othg’ is computed from real 
GNSS data and could be supplemented by DORIS and 
satellite altimetry observations; the profile functions are 
in opposite generated by the empirical model IRI2012.

It needs to be mentioned that we chose this way of cre-
ating a sufficient large observation vector y for the GMM 
(34), because the number of real electron density meas-
urements from IRO, the Langmuir probe measurement 
system on CHAMP and Swarm, ionosonde data, etc., 
is much too less for estimating the 4D electron density 
function (1) by applying our developed ICOA. It is pos-
sible that in the near future, when using large amounts 

of data from GNSS (constellations), IRO missions and 
CubeSats, it will no longer be necessary to consider simu-
lated or semi-simulated input data. As shown in Fig.  8, 
the input block top left contains electron density obser-
vations Ne = Ne(xSA) generated accordingly to Eq. (52) 
from GNSS observations. The next block top mid com-
prises the electron density observations Ne = Ne(xF3C) 
from the IRO measurements of the F3C mission. Finally, 
the input data block top right contain electron density 
observations Ne = Ne(xGRACE) derived from GRACE 
and/or GRACE-FO IRO measurements. Additionally, 
electron density information from GRACE K-band meas-
urements, from CHAMP and Swarm Langmuir probe 
data can also be supported here. After running some pre-
processing steps, such as outlier detection the data are 
stored in the n× 1 vector y of the GMM (34). In a first 
run of the developed ICOA, we identify the weight matrix 
PPP with the identity matrix III . In our modelling approach, 
we set the B-spline levels J1 and J2 in the series expan-
sion (11) for the key parameter κr as well as for the cor-
responding upper and lower bound functions κr;u and κr;l 
to the values J1 = 4 and J2 = 3 ; cf. Fig 2. Consequently, 
with u = 432 our model consists of 14 · 432 = 6048 series 

Fig. 6  Maps of the lower bound of the three key parameters κ1;l = N
F2
m;l(ϕ, �) for the peak density (top row), κ2;l = h

F2
m;l(ϕ, �) for the corresponding 

peak height (middle) and the scale height κ3;l = H
F2
l
(ϕ, �) (bottom) at three different time epochs on March 12, 2015
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coefficients comprised in the vector dddK introduced in Eq. 
(30). Due to the decomposition of the set K into the sub-
sets K1 and K2 according to Eq. (29), we have to estimate 
altogether 5 · 432 = 2, 160 unknown series coefficients 
collected in the coefficient vector dddK1 . The remaining 
key parameters collected in the subset K2 , i.e. the peak 
densities, the corresponding peak heights and the scale 
heights of the D-, the E- and the F1-layer are assumed 
to be given. More specifically, the functions ND

m(ϕ, �) , 
hDm(ϕ, �) , NE

m(ϕ, �) , hEm(ϕ, �) NF1
m (ϕ, �) and hF1m (ϕ, �) 

have been taken from IRI2012 and the scale heights 
HD(ϕ, �) , HE(ϕ, �) and HF1(ϕ, �) are derived from the 
empirical ionospheric slab-thickness relation from Lim-
berger (2015), Liang (2017). The lower bound functions 
N

F2
m;l(ϕ, �) , h

F2
m;l(ϕ, �) , H

F2
l (ϕ, �) , NP

0;l(ϕ, �) and HP
l (ϕ, �) as 

well as the upper bound functions NF2
m;u(ϕ, �) , h

F2
m;u(ϕ, �) , 

H
F2
u (ϕ, �) , NP

0;u(ϕ, �) and HP
u (ϕ, �) are also obtained from 

IRI 2012. Examples of the lower and upper constraint 
maps are shown in Figs. 6 and Fig. 7.

We have estimated the B-spline coefficients correspond-
ing to the 5 key parameters κr of the set K1 between March 

12 to 14, 2015 with a temporal resolution of 1 hour. As 
examples, maps of the estimated F2-layer key param-
eters κ̃1 = Ñ

F2
m (ϕ, �) for the peak density, κ̃2 = h̃

F2
m (ϕ, �) 

for the corresponding peak height and the scale height 
κ̃3 = H̃F2(ϕ, �) at 17:00 UT on March 12, 2015, computed 
from the series expansion (11) at regular grid points, are 
shown in the top row of Fig.  9 along with maps of their 
estimated standard deviations σ̃ (NF2

m (ϕ, �)) , σ̃ (hF2m (ϕ, �)) 
and σ̃ (HF2(ϕ, �)) computed via a Monte Carlo approach; 
for details see Roese-Koerner et al. (2014)).

For the validation of these results, we evaluate the 
series expansion (11) for the key parameters κ̂1 = N̂

F2
m  

and κ̂2 = ĥ
F2
m at the exact locations of the selected iono-

sonde stations using the estimated B-spline coefficients; 
see Fig.  10. For the same time period, we also obtained 
the NF2

m  and hF2m directly measured in those stations5 for 
validation. The prevailing space weather situation for the 
month of March 2015 is also shown using the daily aver-
aged time series of Kp and F10.7 indices in Fig.  11. We 
define the deviations �N

F2
m  and �h

F2
m as the differences 

Fig. 7  Maps of the upper bound of the three key parameters κ1;u = N
F2
m;u(ϕ, �) for the peak density (top row), κ2;u = h

F2
m;u(ϕ, �) for the 

corresponding peak height (middle) and the scale height κ3;u = H
F2
u (ϕ, �) (bottom) at three different time epochs on March 12, 2015

5  The ionosonde observations are obtained from the NGDC open source 
repository ftp.ngdc.noaa.gov/ionosonde/
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Fig. 8  Flowchart of the developed approach to estimate the electron density of the ionosphere and plasmasphere following the ICOA to estimate 
the selected Chapman key parameters κr of the set K1 by applying inequality and equality constraints

Fig. 9  Maps of the estimated key parameters κ̃1 = Ñ
F2
m (ϕ, �) for the peak density (top left), κ̃2 = h̃

F2
m (ϕ, �) for the corresponding peak height (top 

mid) and the scale height κ̃3 = H̃F2 (ϕ, �) (top right) as well as their standard deviations σ̃ (NF2
m (ϕ, �)) , σ̃ (hF2m (ϕ, �)) and σ̃ (HF2 (ϕ, �)) (bottom panels) 

at 17:00 UT on March 12, 2015
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between the estimated and ionosonde-derived key 
parameters at the station locations. As selected results, 
we present (1) the time series of the estimated key 
parameters NF2

m  and hF2m in comparison with them from 
the ionosonde station EB040 between March 12 and 14, 
2015, in Fig. 12, (2) the time series of the key parameters 
deviations �N

F2
m  and �h

F2
m at the ionosonde station EB040 

during the same time interval, in Fig. 12 as well as (3) the 
average values of the deviations �N

F2
m  and �h

F2
m between 

March 12 and 14, 2015 at the station GR13L for temporal 
interval of 6 hours in Table 1.

As shown in Fig.  4, there is an insufficient global obser-
vation coverage of F3C and GRACE IRO observations for 

modelling the key parameters in K1 . This leads to a non-
uniformity between different regions, thus leading to a unu-
sually larger key parameter deviation. But the largest NF2

m  
deviation is observed during 0–6 UT on two of the three 
(13, 14 March 2015) days due to the possible inaccuracies of 
the approximate given values in K2 , especially for the layers 
that are presumed inactive during the night. The daily aver-
aged hF2m deviation across all stations was determined6 to be 
± 30 km without any systematic offset. Similar deviation 
values are also reported by Lei and Chuo (2014), Limberger 
et  al. (2014b), Liang et  al. (2015), McNamara et  al. (2008). 

Fig. 10  Locations of the ionosonde stations used for the validation. The two stations EB040 and GR13L for which the validation is performed are 
marked in “green”

Table 1  Mean deviations with respect to NF2
m (Columns 2–4) and to hF2m (Columns 5–7) at the station GR13L between March 12, 00:00 

UT to March 14, 24:00 UT, 2015

Time window 12 Mar 13 Mar 14 Mar 12 Mar 13 Mar 14 Mar
(UT) (EDU) (EDU) (EDU) (km) (km) (km)

0–6 0.09 ± 0.06 0.30 ± 0.07 0.16 ± 0.06 − 29.87 ± 7.66 − 19.57 ± 6.87 − 21.51 ± 9.56

6–12 0.06 ± 0.20 0.07 ± 0.31 0.04 ± 0.18 − 10.07 ± 6.13 − 8.27 ± 7.33 − 9.65 ± 10.40

12–18 0.16 ± 0.19 0.07 ± 0.13 0.08 ± 0.16 − 7.18 ± 6.98 − 6.43 ± 7.10 − 3.43 ± 8.50

18–24 − 0.01 ± 0.22 − 0.01 ± 0.24 − 0.01 ± 0.18 − 27.33 ± 7.31 − 24.65 ± 8.19 − 22.56 ± 7.08

6  Note, we show only results for the ionosonde station EB040 and not for the 
others.
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Furthermore, Hunsucker (1991), McNamara et  al. (2008) 
mention that the effect of the ionosonde instrument and the 
technology types, e.g. digisonde, dynasonde, incoherent scat-
ter radar is also significant for the analysis of deviation, which 
depends on several factors, such as the time of the day, sea-
son, location of ionosonde, the phase of the solar cycle, sun-
spot number and other modelling error(s). To analyse if there 
is a systematic offset in the deviation due to these reasons, 
ideally a longer validation campaign is required. Although 

we have assumed given values of the E-layer in our model-
ling approach but did not consider the sporadic E-layer, see 
Arras et al. (2009) and Tsai et al. (2018), which also needs to 
be considered in further work.

The difference between the estimated and the iono-
sonde-derived peak density as well as the peak height for 
the station EB040 is shown in Fig.  12, where the iono-
sonde captures the local variations of the electron den-
sity and the estimated key parameters follow a smooth 

Fig. 11  Space weather situation in March 2015 is shown using the daily averaged time series of Kp and F10.7 indices. While Kp index is unitless, 
F10.7 has the unit of solar flux units (SFU) with 1 SFU = 10−22Wm−2Hz−1 . The values corresponding to the time window in Table 1 correspond to 
day of year (DOY) 71, 72 and 73 of year 2015. Data for Kp and F10.7 are downloaded from NASA omniweb explorer portal https://​omniw​eb.​gsfc.​
nasa.​gov/​form/​dx1.​html accessed on 26 June 2022

Fig. 12  Comparison of estimated key parameters N̂F2
m (top left panel) and ĥF2m (top right panel) with the ionosonde data for the station EB040 at 

March 14, 2015. The lower panels show the corresponding deviations �N
F2
m (left) and �h

F2
m (right)

https://omniweb.gsfc.nasa.gov/form/dx1.html
https://omniweb.gsfc.nasa.gov/form/dx1.html
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transition with time. The ionosonde data has the higher 
temporal resolution of 10 minutes compared with our 
estimates at 1 hour. While it is necessary to use VTEC 
data for electron density modelling in our approach, its 
relative number of observations compared to that of F3C 
and GRACE is higher due to the larger number of dis-
crete altitudes used for defining the profile function. This 
situation is expected to change with more observations 
from the F7C mission and the availability of other IRO 
observations7.

For the GR13L station, the maximum deviation with 
respect to the peak density NF2

m  is 0.49 ± 0.23 EDU 
which is approximately 22% of the peak value and for 
h
F2
m we obtain -42.91 ± 7.97 km, which is approximately 

9% of the peak value at this location. The correspond-
ing mean values of the two key parameter deviations are 
0.17 EDU and 14.3 km, respectively. Both the maxima 
and the mean deviations are computed during the vali-
dation period 12 to 14 March 2015. At the EB040 sta-
tion, the corresponding maximum deviations are 0.77± 
0.09 EDU, 48.4 ± 12.5 km, respectively, and the trend is 
in the same order of magnitude at the other stations as 
well. Furthermore, we also noticed a difference between 
the deviations during the day and during the night. As 
already discussed, they are likely caused due to a non-
uniform observation coverage for ED modelling. Simi-
lar trends between the IRI model and GPS derived TEC 
values were also reported in Endeshaw (2020) and Bjo-
land et al. (2016). Due to the relatively large number of 
observations from the separability approach as well as a 
higher IRI model accuracy near the F2 peak height, IRI 
has a significant impact on all the modelled key param-
eters. Similar conclusions have been made by Limberger 
et  al. (2014b) and Liang et  al. (2016). It shall be noted 
that the larger deviations of the estimated peak density 
with respect to the ionosonde measurements are mainly 
due to the sensitivity, i.e. the linear relation between the 
electron density Ne and the peak density NF2

m  according 
to the Chapman function (8), compared to the double 
exponential relation of hF2m within the Chapman function. 
Also considering the truncation error involved in using 
B-spline expansions, the differences in the temporal 
resolution of the ionosonde measurements and the esti-
mated key parameters, the choice of the profile function 
p(h) obtained from the climatology in IRI, the approxi-
mate given values for the elements of the set K2 as well 
as the ionosonde observation quality, we conclude the 
deviations are within acceptable limits.

Summary and outlook
Electron density is the most important geodetic param-
eters in modelling the upper atmosphere, since it has a 
significant impact on many applications, such as precise 
point positioning and satellite navigation. Therefore, its 
precise modelling is both essential for applications as well 
as challenging for atmosphere sciences including space 
weather studies. However, a limited number of observa-
tion techniques with global coverage, especially along the 
altitude and the mutual correlation among different Chap-
man key parameters are the two main limitations. That 
means robust estimation estimates are required for 4D 
global electron density modelling. In this paper, we have 
developed an inequality constrained optimization algo-
rithm, the ICOA. We have used the multi-layer Chap-
man approach, where the electron density profiles of the 
different layers are defined by a set of altogether 14 key 
parameters. Depending on the chosen layers, their key 
parameters are then modelled using series expansions in 
terms of 2D tensor product B-spline functions; the cor-
responding coefficients are then estimated using ICOA. 
This approach allows for modelling and estimating multi-
ple Chapman key parameters simultaneously, thereby con-
sidering their mutual correlations. Furthermore, we have 
applied inequality constraints to physically localize the 
selected key parameters in physically realistic bounds. This 
way we defined the so-called feasibility region in which we 
have to search for the final solution. A validation with both 
simulated and ionosonde data was performed to assess the 
overall performance. Note, that the results from the simu-
lations are not shown in this paper. Some important find-
ings from our investigations can be summarized as follows:

•	 The estimated optimization parameters are sensitive 
to the initial values βββ0 , the total number as well as 
the spatial distribution and quality of the observa-
tions, the number of inequality constraints, their 
chosen lower and upper bound functions as well as 
on the selected B-spline levels for the Chapman key 
parameters.

•	 Particularly, within the optimization algorithm, the ini-
tial values βββ0 as defined in Eq. (45b) and the step size 
matrix TTT from Eq. (47) have significant impact on the 
estimated optimization parameters. Therefore, a system-
atic procedure is required and has to be applied for both 
aspects; cf. the presented recipe below Eq. (51). In this 
paper, initial values were chosen from within the feasible 
region FR.

•	 The choice of the lower bound functions κr;l and the 
upper bound functions κr;u are of particular impor-
tance when key parameters from two or more iono-
spheric layers have to be considered in the set K1 . As 

7  F7C data are already available since October 2019, but the time period we 
selected for our study is March 2015.
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shown in Fig.  3, the bound functions are generally 
time varying and numerically in different orders of 
magnitude. As an example, while the peak density of 
the F1-layer drops to zero at night, that of the F2-layer 
and the plasmasphere still have a significant value; 
see e.g. Bremer (1998) and Berkner and Wells (1934). 
Therefore, if the F1-layer key parameters are consid-
ered in the set K1 , their corresponding constraint 
bounds need to be adapted with time. Accordingly, 
a reasonable balance between extremely restric-
tive or more relaxed constraints for both the upper 
and the lower bound functions is needed. Qualita-
tively, restrictive constraints are those characterized 
by relatively small differences κr;u(ϕ, �)− κr;l(ϕ, �) ; 
relaxed constraints, however, allow for larger differ-
ences.

•	 In our study, the key parameters of the D-, the E- and 
the F1-layer are obtained from the IRI 2012 model. 
It shall be noted that IRI also makes assumptions, 
such as the existence of F1 layer only within mid- 
and low-latitudes; see Bilitza (2000), Coisson et  al. 
(2005). Although these assumptions may be reason-
able from a long-term climatology perspective, for 
precise global 4D electron density modelling we need 
improved models for these layers.

In future, the authors will further investigate the per-
formance of the constraint optimization technique for 
modelling different sets of key parameters in K1 , espe-
cially including the bottom layers. Furthermore, different 
B-spline levels for the individual key parameters as well 
as Formosat-7/COSMIC-2 (F7C2) electron density obser-
vations are also planned in near future. Since the scope 
of this paper is the ICOA, we have not investigated on 
the exact nature of mutual correlations between the key 
parameters of set K1 , which depends on the source and 
duration of data, space weather conditions and also the 
choice of profile function p(h) in Eq. (52). These aspects 
shall be investigated in future work as well.
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