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Abstract 

The cloud-free, wide-swath, day-and-night observation capability of synthetic aperture radar (SAR) has an important 
role in rapid landslide monitoring to reduce economic and human losses. Although interferometric SAR (InSAR) analy-
sis is widely used to monitor landslides, it is difficult to use that for rapid landslide detection in mountainous forest 
areas because of significant decorrelation. We combined polarimetric SAR (PolSAR), InSAR, and digital elevation model 
(DEM) analysis to detect landslides induced by the July 2017 Heavy Rain in Northern Kyushu and by the 2018 Hok-
kaido Eastern Iburi Earthquake. This study uses fully polarimetric L-band SAR data from the ALOS-2 PALSAR-2 satellite. 
The simple thresholding of polarimetric parameters (alpha angle and Pauli components) was found to be effective. 
The study also found that supervised classification using PolSAR, InSAR, and DEM parameters provided high accuracy, 
although this method should be used carefully because its accuracy depends on the geological characteristics of the 
training data. Regarding polarimetric configurations, at least dual-polarimetry (e.g., HH and HV) is required for land-
slide detection, and quad-polarimetry is recommended. These results demonstrate the feasibility of rapid landslide 
detection using L-band SAR images.
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Introduction
Landslides and slope failures induced by heavy rain and 
earthquakes caused two billion USD economic loss and 
ten thousand casualties in the last decade (International 
Federation of Red Cross and Red Crescent Societies 
2016). Synthetic aperture radar (SAR) now plays a key 
role in rapid landslide monitoring with its cloud-free, 
wide-swath, day-and-night observation capability. In par-
ticular, interferometric SAR (InSAR) analysis is widely 
used for early detection, continuous monitoring, and risk 
assessment of landslides (Strozzi et  al. 2005; Singhroy 
2005; Scaioni et al. 2014).

However, due to significant decorrelation, detect-
ing landslides in Eastern Asia by InSAR can be difficult, 

since many of them occur in mountainous forest areas. 
In early detection of the landslides induced by the 2018 
Hokkaido Eastern Iburi Earthquake, the affected area was 
so vast that it took 7  days to obtain aerial photographs 
of the entire area (Geospatial Information Authority of 
Japan 2018). The InSAR coherence was low (Aimaiti et al. 
2019) and could not contribute to early detection. In the 
landslides caused by the July 2017 Heavy Rain in North-
ern Kyushu (Geospatial Information Authority of Japan 
2017), the coherence was similarly low and could not be 
used to assess risks such as landslide dams. A more com-
prehensive use of SAR data (not only InSAR coherence) 
is needed to contribute to the rapid recognition and risk 
assessment of landslides.

Polarimetric SAR (PolSAR) analysis of L-band SAR 
data is commonly used for landslide detection in forested 
areas. Although the use of several polarimetric param-
eters has been suggested, the best parameter remains 
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unclear. Czuchlewski ( 2003), Shimada et al. (2014), Yon-
ezawa et al. (2012), and Watanabe et al. (2016) employed 
eigenvalue parameters (Cloude and Pottier 1996) such 
as polarimetric entropy and alpha angle. Shimada et  al. 
(2014), Shibayama et  al. (2015), and Watanabe et  al. 
(2016) also showed that polarimetric coherence between 
HH and VV polarization can be effectively used to detect 
landslides. Watanabe et al. (2012), Yonezawa et al. (2012), 
and Shibayama et  al. (2015) used model-based decom-
positions (Freeman and Durden 1998; Yamaguchi et  al. 
2005) that decompose radar scattering power into easy-
to-understand scattering mechanisms, such as surface 
scattering, double-bounce reflection, and volume scat-
tering. Most of the studies mentioned above basically 
applied a threshold to a polarimetric parameter to divide 
landslide areas and unchanged areas. Shibayama et  al. 
(2015) pointed out that polarimetric scattering mecha-
nisms at landslides vary drastically with the local inci-
dence angle (LIA) of radar, and thus proposed a decision 
tree classification that uses different thresholds according 
to LIA.

Interferometric SAR (InSAR) analysis is also effec-
tive for detecting landslides. Many studies of this have 
applied the differential InSAR (DInSAR) technique, 
which estimates the line-of-sight displacement from the 
interferometric phase (Singhroy 2009; Barra et  al. 2016; 
Bayer et al. 2017; Bozzano et al. 2017; Solari et al. 2020; 
Shi et al. 2020). However, the motion of rapid landslides 
discussed in this study cannot be estimated from the 
phase because of the strong decorrelation. The offset 
tracking technique can measure displacement larger than 
the InSAR can (Singleton et  al. 2014; Sun and Muller 
2016), but pixel matching fails where the terrain changes 
completely. Change detection using interferometric 
coherence is a promising approach, but Fujiwara et  al. 
(2019) and Aimaiti et al. (2019) reported that coherence 
is difficult to apply in forested areas, probably due to the 
significant decorrelation. Instead of coherence, phase 
variance (also called phase standard deviation—a meas-
ure of noise deviation in an interferometric phase) is also 
a good indicator of landslides (Fielding et al. 2005; Fuji-
wara et al. 2019). But because phase variance requires a 
large window size (e.g., 200 looks in Fielding et al. 2005), 
it has only been used for rough estimates of landslide dis-
tribution with a low resolution.

This study address landslide detection in mountain-
ous forested areas with high accuracy using both PolSAR 
and InSAR parameters, such as eigenvalue parameters, 
model-based decomposition components, polarimetric 
coherence, interferometric coherence, and phase vari-
ance. Terrain properties, such as slope and curvature, 
derived from a digital elevation model (DEM) were also 
used as ancillary data to precisely identify landslide areas. 
Although there have been many studies on landslide 
detection using PolSAR, InSAR, or DEM individually, 
few studies have combined all three analyses.

To identify landslides by combining multiple param-
eters, this study proposes decision tree classifications 
based on empirical rules and supervised classification 
using machine learning. The decision tree is a robust and 
computationally efficient approach, but it is difficult to 
integrate the many parameters derived from PolSAR and 
InSAR data. On the other hand, machine learning can 
easily handle many parameters and has the potential to 
detect landslides with high accuracy (Konishi and Suga 
2018). Machine learning consists of two processes: build-
ing a complex model from a training dataset and making 
predictions from a new dataset.

Most of the previous studies presented the results from 
applying the methods to only one event. To better evalu-
ate these methods, this research used quad-polarimet-
ric (fully polarimetric) L-band SAR data by PALSAR-2 
and quantitatively evaluated the detection accuracy for 
two landslide events, triggered by heavy rain and by an 
earthquake.

Test sites and data
The July 2017 Heavy Rain in Northern Kyushu brought 
record-breaking rainfall caused by a stationary rain front 
on July 5 and 6, 2017, in the Fukuoka Prefecture, Japan 
(Tsuguti et  al. 2019). The 2018 Hokkaido Eastern Iburi 
Earthquake is Mw 6.6 earthquake occurred on Septem-
ber 6, 2018, in the eastern Iburi region of Hokkaido, 
Japan (Osanai et  al. 2019). Both events caused a large 
number of landslides and slope failures in forested moun-
tainous areas.

Table  1 lists the PALSAR-2 data used in this study: 
the pre- and post-event data for each of the two test 
sites: the heavy rain in Fukuoka Prefecture (site F) and 
the earthquake in Hokkaido (site H). All the data are 

Table 1  ALOS-2 PALSAR-2 data used to detect landslides in this study

Case Observation date Spatial 
baseline 
(BP)

Temporal baseline Orbit, look direction Off-nadir angle Incidence angle

Post-event Pre-event

Site F (heavy rain) 2017-07-13 2016-08-11 47 m 336 days Ascending, Right 30.9° 33.8°

Site H (earthquake) 2018-09-08 2018-08-25 69 m 14 days Ascending, Right 28.4° 30.6°



Page 3 of 14Ohki et al. Earth, Planets and Space           (2020) 72:67 	

quad-polarimetric data available with HH, HV, VH, and 
VV polarization images. The perpendicular baselines that 
are crucial for reliable interferometric analysis are suffi-
ciently small (less than 100 meters). Whereas, the tem-
poral baseline of case H is 14 days (i.e., shortest baseline 
possible with this satellite), that of case K is very long, 
336 days. The long baseline can increase false detection 
of landslides caused by the temporal decorrelation and 
land-cover changes such as deforestation. The original 
spatial resolution of the SAR data is approximately 6 m.

We used the DEM from the Fundamental Geospatial 
Data provided by the Geospatial Information Authority 
of Japan (GSI), with 10-m resolution and approximately 
5-m elevation accuracy. The DEM represents the ground-
level elevation and does not contain a forest canopy.

In this study, we also used the polygon data of the land-
slides occurred in the events for training the supervised 
classification and validating our results. The reference 
landslides polygon data were produced by the Geo-
graphic Department Disaster Countermeasures Group 
of GSI based on airborne and ground surveys (GSI 2017, 
2018).

Methods
Polarimetric analysis
Figure 1 shows a schematic model of the landslides dis-
cussed in this study. For simplicity, we regarded land-
slides as land-cover changes from forest to bare soil, 
where the scattering mechanism changes from volume 
scattering to surface scattering. It should be noted that 
the surface scattering from bare soil is difficult to observe 
when the local incidence angle (LIA) is large. From the 
principle of side-looking radar (having a look angle of 
around 30° in this study), LIA is small on the slopes fac-
ing toward the satellite, and large on the far side of the 
mountain.

First, we calculated polarimetric parameters from the 
PALSAR-2 data. Each pixel of measured PolSAR data can 
be represented as a scattering vector as follows:

where SXY is the backscattering of each polarization 
under the assumption of radar reciprocity (SHV = SVH). 
Polarimetric correlation between HH and VV polariza-
tion is a good indicator of surface scattering and can be 
obtained as follows:

A scattering vector on the Pauli basis enhances the scat-
tering mechanism even more and can be given by

We obtained the coherency matrix from the averaged 
covariance of kP as follows:

.
T includes both the power and correlation information 

of every scattering mechanism. For example, T11 and T33 
approximately represent the powers of surface and volume 
scattering, respectively. The averaged alpha angle ᾱ was 
also derived from the eigenvalue analysis of T (Cloude and 
Pottier 1996) as follows:

where λi and ui are eigenvalues and eigenvectors of T, 
respectively. ᾱ corresponds to scattering mechanisms 
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Fig. 1  Schematic illustration of polarimetric scattering mechanisms for the cases of small and large LIA, before (left) and after (right) landslides
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such as surface (α ~ 0), volume (α ~ π/4), and double-
bounce (α ~ π/2) scattering.

To interpret T more physically, one can use model-
based decompositions (Freeman and Durden 1998; 
Yamaguchi et  al. 2005). In this study, we used a further 
improved model (Sato et al. 2012) where the total back-
scattering power is decomposed into four components: 
surface scattering PS, double-bounce PD, volume scatter-
ing PV, and helix scattering PC.

Figures 2a–e and 3a–e show images of the polarimet-
ric parameters in site F and site H, respectively. The land-
slide areas are seen in blue in Fig. 3a and c, indicating the 

presence of surface scattering. They also appear as high 
polarimetric coherence (Fig.  3d) and low alpha angle 
areas (Fig. 3e). Landslides in site F are less clearly visible 
in the images (Fig.  2a–e) due to the smaller and lesser 
landslide areas in this site. Figures  2i and 3i are optical 
satellite images shown only for visual comparisons, and 
are not used in further analysis.

Interferometric analysis
The SLC images of pre-event data were co-registered to 
post-event images for interferometric processing. The 
interferometric coherence γ (Figs.  2f, 3f ) and phase φ 

Fig. 2  Analysis images used to detect landslides caused by the July 2017 Heavy Rain in Northern Kyushu (site F). a Color composite of Pauli 
components (R:G:B = T22:T33:T11 = HH+VV:HV:HH−VV) of co-event data, b Pauli components of pre-event data, c color composite of the 
four-component decomposition (R:G:B = Double:Volume:Surface scattering), d polarimetric coherence, e Eigen value parameter, f interferometric 
coherence, g phase variation computed from filtered interferometric phase, h local incidence angle derived from DEM with the layover areas 
overlaid in red color, i optical image by Sentinel-2 acquired on October 20, 2017 (only for visual comparison, not used in analysis)
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Fig. 3  Analysis images used to detect landslides caused by the 2018 Hokkaido Eastern Iburi Earthquake (site H). Explanation of a to h is the same as 
in Fig. 2. i An optical image by Sentinel-2 acquired on March 23, 2018
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were calculated from HH-polarization image with 8 × 16 
multi-looking as follows:

Such a large multi-look size was necessary to obtain 
sufficient coherence in dense forests dealt in this study 
(Fujiwara et al. 2019). We compensated orbital and top-
ographic component of the phase using the DEM. The 
phase variance (Figs.  2g, 3g) was calculated from the 
multi-looked and filtered phase (Goldstein and Werner 
1998) as follows:

where 〈〉 denotes the 5 × 5 pixel averaging applied by 
Fielding 2005 to obtain meaningful statistics from 
the phase, and φ̄ is the mean phase. Note that phase is 
wrapped at ± π, φ needs to be unwrapped so that the 
deviation ( φ − φ̄ ) is within ± π.

Landslide areas can be seen as low coherence area 
(Figs. 2f, 3f ) and high phase variation areas (Figs. 2g, 3g). 
Compared to coherence, phase variance corresponds bet-
ter to the distribution of landslides (Fujiwara et al. 2019), 
but its resolution is degraded due to a large number of 
pixels being averaged in the calculation. The phase varia-
tion seems to be effective in a coarse estimation of land-
slides with lower resolution.

Terrain data analysis
We calculated three terrain parameters from the DEM: 
LIA, slope, and curvature. The LIA can be calculated as 
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an angle between radar line-of-site vector and normal 
of terrain. Figures  2h and 3h show images of LIA with 
the layover areas overlaid in red color. To generalize our 
method, we used the first (slope) and second (averaged 
curvature) derivatives of DEM (Hasegawa et  al. 2008) 
instead of the absolute value of elevation, which is highly 
site-dependent. All images derived from PolSAR, InSAR, 
and DEM data were resampled from the radar coordinate 
to the Universal Transverse Mercator projection with 
10-m spatial resolution.

Landslide detection by empirical approach
Table  2 lists the landslide detection methods compared 
in this study. Methods #1 and #2 are simple threshold-
ing of the images of γ and α, respectively. Method #3 
applies three “AND” conditions for detecting landslides. 
Note that the threshold of PV in method #3 was origi-
nally 65%, but changed to 45% in this study because the 
original paper used a three-component model (Freeman 
and Durden 1998) that overestimates PV, whereas this 
paper used the four-component model instead (Sato et al. 
2012). Methods #4 to #6 use different conditions for dif-
ferent ranges of LIA. We propose method #5 as a modi-
fication of method #4 to use the Pauli components (TXX) 
instead of model-based decomposition for computational 
efficiency, and more case divisions with LIA for improved 
accuracy. The threshold values of method #5 are simi-
larly defined as method #4. Method #6 added another 
AND condition of phase variation to further reduce the 
overestimation of landslides. Since phase variation is 
the low-resolution image suitable for coarse estimation 
of landslide areas, it is not suitable for use with strict 
thresholds. For this reason, we set lax threshold (0.05).

We applied these classifications to both pre-event 
image and the post-event image in order to subtract pre-
existing bare soil areas (e.g., old landslides, deforested 

Table 2  Landslide detection methods based on empirical rules compared in this study

# Method Conditions for detecting landslides

1 Shimada et al. (2014), Watanabe et al. (2016)* γHH,VV > 0.65

2 Shimada et al. (2014), Watanabe et al. (2016)* ᾱ < 35◦

3 Watanabe et al. (2012)* PV < 45%AND PD < 10%

AND PS > 10%

4 Shibayama et al. (2015) PS > 60% (if LIA < 30◦)
PS > 40% AND PS > PV (if 30◦ < LIA)

5 This study (PolSAR) T11 > 60% (if LIA < 20◦)
T11 > 50% (if 20◦ < LIA < 30◦)
T11 > 40% AND T11 > T33 (if 30

◦ < LIA)

6 This study (PolSAR + InSAR) T11 > 60% AND Vθ > 0.05 (if LIA < 20◦)
T11 > 50% AND Vθ > 0.05 (if 20◦ < LIA < 30◦)
T11 > 40% AND T11 > T33 AND Vθ > 0.05 (if 30◦ < LIA)
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areas not related to the disaster) from the results of the 
post-event image.

Landslide detection by machine learning
To obtain higher accuracy by combining many param-
eters from PolSAR, InSAR, and DEM, we applied a 
supervised classification using a machine learning 
method—Random Forest (RF) (Breiman 2001). RF is a 
fast and accurate classifier that automatically constructs 
a large number of decision trees using training data (with 
the number of trees = 100 and number of layers = 3 being 
set).

In the classification, based on the results of the empiri-
cal approach described above, we used the Pauli compo-
nents (T11, T22, T33) from PolSAR-derived parameters; 
coherence and phase variation from InSAR parameters; 
slope, curvature, and LIA from DEM. For the Pauli com-
ponents, we used post-event images (Figs. 2a, 3a) and dif-
ferential images with pre-event images (Figs. 2b, 3b).

The first column of Table  4 lists the cases we tested 
with different combinations of parameters and test sites. 
In cases #1 to #8, we took training and test data from the 
same event, with half of the samples being used as train-
ing data and the other half being used for validation. To 

validate the generalization of our method, we also tested 
cases #9 and #10 where training and test data were taken 
from different events.

Since quad-polarimetric data are not always available 
from actual satellite operation due to its disadvantages 
(limited swath width and huge data volume), it is impor-
tant to investigate the usability of reduced polarimetric 
data (Park and Lee 2019). Hence, we also examined the 
accuracies of dual-polarimetric (using only HH and HV 
polarization) and single-polarimetric (only HH) data in 
case #11 and #12, respectively.

Accuracy evaluation
The accuracy of landslide detection was validated by 
comparing our results with the reference data (GSI 2017, 
2018) and computing accuracy indices, such as Cohen’s 
Kappa coefficient (Congalton 1991), recall, and precision. 
Recall is the fraction of actual landslide areas that are 
correctly detected by SAR, and it can evaluate the under-
estimation of SAR results. Precision is the fraction of 
SAR-derived landslide areas that are actually landslides, 
and it can measure the overestimation of SAR results.

As the reference data of the landslides (black areas in 
Figs.  4e, 5e) based on manual interpretation of aerial 

Fig. 4  Landslides caused by the July 2017 Heavy Rain in Northern Kyushu (site F) as detected by the empirical approach (a) and the supervised 
classification using PolSAR, InSAR and DEM features (b–d), compared with the reference data by GSI (2017) (e). b Used the training data from the 
same site, c used the training data from the other site, d used only single-polarization (HH) data
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surveys may have minor errors regarding the shapes of 
the polygons, we exclude the “boundary area” (i.e., area 
within 10 m from the boundary of the polygon) from 
the accuracy validation to avoid the influence of polygon 
error.

Results and discussion
Empirical approach
Table 3 lists the results from the decision tree classifica-
tions (or simple thresholding) based on empirical rules. 
Method #2 (Alpha angle) provided relatively good accu-
racy among the methods proposed in the previous stud-
ies (methods #1 to #4). Accuracies at a lower incidence 
angle (< 30°) are better than at a higher incidence angle 
(≥ 30°), particularly in site F. Given the weak surface scat-
tering from landslide areas with high LIA (Fig.  1), it is 
more difficult to detect landslides. LIA dependency of the 

accuracy was more severe in site F due to its steeper ter-
rain (i.e., larger variation of LIA) than in site H. Method 
#4 (model-based decomposition with case divisions) 
resulted in better accuracy in site H, but not in site F. 
Proposed methods #5 and #6 using Pauli components 
with more case divisions with LIA provided better accu-
racy, particularly in site H. These comparisons show that 
polarimetric parameters (especially alpha angle and Pauli 
components) are useful to detect landslides in forested 
areas. However, it should be noted that large LIAs and 
steep terrain will degrade accuracies because of the small 
surface scattering.

Machine learning
Table  4 lists the accuracies of supervised classifica-
tion applying machine learning to various cases. Cases 
#1 to #8 compare different combinations of the feature 

Fig. 5  Landslides caused by caused by the 2018 Hokkaido Eastern Iburi Earthquake (site H) as detected by the empirical approach (a) and the 
supervised classification (b–d, same as Fig. 4), compared with the reference data by GSI (2018) (e)
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parameters used by the classifier. Cases #1 and #2 only 
used PolSAR data, but provided relatively good accuracy, 
especially case #2 (site H). Cases #3 and #4 with DEM did 
not improve accuracy, but cases #5 and #6 with InSAR 
did. Cases #7 and #8 used all three features and provided 
the highest accuracy of all, even at a higher LIA. These 
results illustrate the effectiveness of combining PolSAR, 
InSAR, and DEM.

Cases #9 and #10 are for the tests of site H obtained 
by the model trained using site F, and vice versa. Case #9 
provided better accuracy than did the empirical approach 
described in the previous section. This shows that a clas-
sifier trained using one event can detect the landslides of 
another, unknown event. The poor accuracy in case #10 
indicates significant degradation from overfitting for site 
H. The sediment rocks of Site H are covered with thick 
pyroclastic fall deposits from the volcanoes around the 
test site. The earthquake triggered many shallow land-
slides due to the slippery nature of the volcanic materials 

(Osanai et  al. 2019). Since many landslides occurred on 
relatively gentle slopes (< 30°), the model trained using 
site H cannot be applied to site F, where a more typical 
type of landslide occurred on steep terrain. The results 
show that the model trained using site F is more general-
ized (i.e., applicable to both sites H and F) and possibly 
applicable to many other landslides. This suggests that 
machine learning has the potential for detecting land-
slides accurately, but its accuracy depends on the geologi-
cal characteristics associated with the training data.

Cases #11 to #14 demonstrate the results of using 
quad-, dual- (HH and HV), and single-polarimetric 
(HH) data. It is natural that quad-polarimetry is the 
most accurate since it has more information on the 
scattering mechanisms. Single-polarization is not capa-
ble of landslide detection, especially at higher LIAs (in 
site H, κ = 0.189 by single-pol and 0.656 by quad-pol 
at LIA > 30°). Figure  1 shows that landslides in higher 
LIAs have small backscattering and that detecting them 

Table 3  Accuracies of landslide detection based on empirical rules applied to PALSAR-2 data

Method # Site F Site H

Accuracy (κ) Recall Precision Accuracy (κ) Recall Precision

LIA < 30 LIA > 30 Total LIA < 30 LIA > 30 Total

1 0.521 0.344 0.413 0.363 0.750 0.477 0.430 0.445 0.523 0.591

2 0.557 0.396 0.461 0.416 0.755 0.487 0.468 0.473 0.541 0.617

3 0.474 0.349 0.401 0.388 0.660 0.443 0.406 0.417 0.501 0.568

4 0.402 0.341 0.362 0.290 0.819 0.544 0.456 0.485 0.479 0.712

5 0.485 0.409 0.436 0.351 0.867 0.596 0.484 0.521 0.542 0.696

6 0.491 0.413 0.440 0.337 0.953 0.633 0.514 0.553 0.541 0.758

Table 4  Accuracies of landslide detection by the supervised classification for various conditions

# Parameters used in machine learning Dataset Accuracy (κ) Recall Precision

Training Test LIA < 30 LIA > 30 Total

1 PolSAR Site F Site F 0.643 0.376 0.474 0.378 0.918

2 PolSAR H H 0.663 0.577 0.606 0.512 0.946

3 PolSAR + DEM F F 0.671 0.411 0.508 0.419 0.894

4 PolSAR + DEM H H 0.660 0.561 0.594 0.494 0.958

5 PolSAR + InSAR F F 0.708 0.552 0.605 0.502 0.962

6 PolSAR + InSAR H H 0.716 0.634 0.661 0.577 0.941

7 PolSAR + InSAR + DEM F F 0.738 0.608 0.653 0.566 0.935

8 PolSAR + InSAR + DEM H H 0.733 0.656 0.682 0.616 0.913

9 PolSAR + InSAR + DEM F H 0.480 0.670 0.591 0.811 0.599

10 PolSAR + InSAR + DEM H F 0.240 0.279 0.266 0.188 0.958

11 Dual-PolSAR + InSAR + DEM F F 0.678 0.518 0.573 0.468 0.959

12 Dual-PolSAR + InSAR + DEM H H 0.565 0.483 0.510 0.405 0.964

13 Single-PolSAR + InSAR + DEM F F 0.659 0.435 0.513 0.399 0.990

14 Single-PolSAR + InSAR + DEM H H 0.520 0.189 0.305 0.226 0.915
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requires a decrease in HV, which contains a volume-
scattering component. Most of the disaster observations 
by PALSAR-2 were made in single-polarimetric interfer-
ometry (Tadono et al. 2019), but the results of this study 
indicate that landslide detection requires at least dual-
polarimetry, for landslide detection.

General discussions
Figures 4 and 5 show landslide maps obtained by differ-
ent methods, and Figs. 6 and 7 show enlargements of the 
images. As shown in Figs.  4a, 7a, the empirical method 
(#6 in Tables  2 and 3) agreed poorly with the reference 
data. This method assumes only a simple land cover 
change, from forest to bare land, and is less accurate due 
to the influence of other features such as buildings and 
crop fields). Figures 4b and 7b show that the supervised 
classifications (cases #7 and #8 in Table  4) are in good 
agreement with the reference data, since the model was 
trained with the actual data.

Figures  4c and 7c show the supervised classifications 
using training data from another site (cases #9 and #10 
in Table  4). It resulted in the significant underestimate 
of landslides for site F (Figs. 4c and 6c) due to the lower 
generality of training data as described above.

The lower accuracies of supervised classification using 
single-polarization data of cases #13 and #14 are shown 
in Figs. 4d and 7d. In Fig. 7d, the A areas have small LIAs 
and landslides could be detected even with single-polar-
ization, whereas the B areas have large LIAs and they 
could not be detected because of the lack of HV (volume-
scattering) data.

Figures 6 and 7 show that many small or narrow land-
slides (less than 20 m) went undetected, in particular, the 
small landslides in the northeastern part of site F (see 
also Fig. 4a–d). This underestimate arises from a lack of 
resolution. The fact that precision was higher than recall 
for many of the results shown in Tables 3 and 4 indicates 
there were underestimated small landslides. These results 
indicate that higher spatial resolution is needed for effec-
tive monitoring.

These results also have implications for the landslide 
observation strategies of the SAR satellite. Due to the 
long temporal distance, case #7 mistakenly detects a 
deforested area as a landslide, as shown in Fig. 4b. Obser-
vations must be made more often to eliminate temporal 
changes that are unrelated to the disaster. Moreover, due 
to the mountainous character of the test site, 4.5% of the 
pixels in site F and 4.2% of the pixels in site H are affected 
by layover. In this study, the layover areas are also used 

for landslide detection without masking, but this causes 
geometric errors in the results. More observations from 
different directions are necessary to minimize the effect 
of layover.

Conclusions
This study combined PolSAR, InSAR, and DEM data 
analyses to detect landslides induced by the July 2017 
Heavy Rain in Northern Kyushu and by the 2018 Hok-
kaido Eastern Iburi Earthquake. The following conclu-
sions were reached:

(1)	 Among simple, conventional thresholding meth-
ods using polarimetric parameters, alpha angle and 
Pauli components were effective in detecting land-
slides. Since these methods assume changes in only 
simple land cover from forest to bare land, their 
accuracy is limited. In particular, large incidence 
angles and steep terrain will degrade accuracies.

(2)	 Supervised classification using machine learning 
provided higher accuracy, with a kappa > 0.6, espe-
cially when all features (InSAR, PolSAR, and DEM) 
were used. However, this scheme should be applied 
cautiously because its accuracy depends on the geo-
logical characteristics of the training data.

(3)	 At least dual-polarimetry (e.g., HH and HV) is 
required for accurate landslide detection, particu-
larly at large incidence angle, and quad-polarimetry 
is recommended. Higher spatial resolution, higher 
temporal frequency, and observations from more 
directions are also necessary to minimize errors in 
detection.

These results successfully demonstrated the feasi-
bility of rapid landslide detection using L-band spa-
ceborne polarimetric and interferometric SAR. The 
machine learning-based methods are particularly effec-
tive, but more training data should be collected for fur-
ther improvements and generalization to overcome the 
overfitting problem. Our future investigation should 
also include the use of more information contained in 
polarimetric interferometry (PolInSAR) data, as this 
study only used the interferometry of HH polarization 
(Jung et  al. 2018). Since satellites acquire single- and 
dual-polarization data more frequently, the integration 
of such partial polarization (but highly frequent) data is 
also one possible approach in the future.
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Fig. 6  Enlarged images regarding the July 2017 Heavy Rain in Northern Kyushu. Landslides detected in this study (a–d, same as Fig. 4), color 
composite of Pauli components (e), and local incidence angle overlaid with the layover areas (f)
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Fig. 7  Enlarged images regarding the 2018 Hokkaido Eastern Iburi Earthquake. Landslides detected in this study (a–d, same as Fig. 5), color 
composite of Pauli components (e), and local incidence angle overlaid with the layover areas (f)
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Abbreviations
SAR: Synthetic aperture radar; InSAR: Interferometric SAR; PolSAR: Polarimetric 
SAR; ALOS-2: Advanced Land Observing Satellite-2; PALSAR-2: Phased array 
type L-band synthetic aperture radar-2; DEM: Digital elevation model; LIA: 
Local incidence angle.

Acknowledgements
We would like to thank Dr. Manabu Watanabe for helpful discussions and 
comments on this study. ALOS-2 PALSAR-2 data used in this study are copy-
righted by the Japan Aerospace Exploration Agency (JAXA).

Authors’ contributions
MO conceived this study, analyzed the data, and drafted the manuscript. TA 
performed the pre-processing of SAR data. TT supervised this project and 
edited the manuscript. MS developed the SAR processor used in this study 
and offered numerous suggestions regarding this study. All authors read and 
approved the final manuscript.

Funding
This work was supported by the Japan Aerospace Exploration Agency.

Availability of data and materials
The datasets generated during and/or analyzed during the current study are 
available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Japan Aerospace Exploration Agency, Chofu, Japan. 2 Tokyo Denki University, 
Tokyo, Japan. 

Received: 16 January 2020   Accepted: 4 May 2020

References
Aimaiti Y, Liu W, Yamazaki F, Maruyama Y (2019) Earthquake-induced land-

slide mapping for the 2018 Hokkaido Eastern Iburi Earthquake Using 
PALSAR-2 data. Remote Sens 11:2351

Barra A, Monserrat O, Mazzanti P, Esposito C, Crosetto M, Mugnozza GS 
(2016) First insights on the potential of Sentinel-1 for landslides detec-
tion. Geomat Nat Hazards Risk 7(6):1874–1883

Bayer B, Simoni A, Schmidt D, Bertello L (2017) Using advanced InSAR tech-
niques to monitor landslide deformations induced by tunneling in the 
Northern Apennines, Italy. Eng Geol 226(30):20–32

Bozzano F, Mazzanti P, Perissin D, Rocca A, De Pari P, Discenza ME (2017) 
Basin scale assessment of landslides geomorphological setting by 
advanced InSAR analysis. Remote Sens 9(3):267

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Cloude SR, Pottier E (1996) A review of target decomposition theorems in 

radar polarimetry. IEEE Trans Geosci Remote Sens 34(2):498–518
Congalton RG (1991) A Review of Assessing the Accuracy of Classifications 

of Remotely Sensed Data. Remote Sens Environ 37:35–46
Czuchlewski KR (2003) Polarimetric synthetic aperture radar study of the 

Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. J 
Geophys Res 108(F1):6006

Fielding EJ, Talebian M, Rosen PA, Nazari H, Jackson JA, Ghorashi M, Walker 
R (2005) Surface ruptures and building damage of the 2003 Bam, Iran, 
earthquake mapped by satellite synthetic aperture radar interferomet-
ric correlation. J Geophys Res 110:B03302

Freeman A, Durden SL (1998) A three-component scattering model for 
polarimetric SAR data. IEEE Trans Geosci Remote Sens 36(3):963–973

Fujiwara S, Nakano T, Morishita Y, Kobayashi T, Yarai H, Une H, Hayashi K 
(2019) Detection and interpretation of local surface deformation from 
the 2018 Hokkaido Eastern Iburi Earthquake using ALOS-2 SAR data. 
Earth Planets Space 71:64. https​://doi.org/10.1186/s4062​3-019-1046-2

Geospatial Information Authority of Japan (2017) Damage area map of the 
July 2017 Heavy Rain in Northern Kyushu. saiga​i.gsi.go.jp/3/20170​
726ha​ndoku​zu/hando​kuzu.pdf. Accessed 6 Jan 2020 (in Japanese)

Geospatial Information Authority of Japan (2018) Landslide map of the 2018 
Hokkaido Eastern Iburi Earthquake. saiga​i.gsi.go.jp/3/20180​906/iburi​
-hokai​_2-zenta​izu.pdf. Accessed 6 Jan 2020 (in Japanese)

Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysi-
cal applications. Geophys Res Lett 25(21):4035–4038

Hasegawa S, Dahal RK, Nishimura T, Nonomura A, Yamanaka M (2008) DEM-
based analysis of earthquake-induced shallow landslide susceptibility. 
Geotech Geol Eng 27:419

International Federation of Red Cross and Red Crescent Societies (2016) 
World Disaster Report 2016. www.ifrc.org/Globa​l/Docum​ents/Secre​
taria​t/20161​0/WDR%20201​6-FINAL​_web.pdf. Accessed 27 Mar 2020

Jung J, Yun S, Kim D, Lavalle M (2018) Damage-Mapping Algorithm Based 
on Coherence Model Using Multitemporal Polarimetric–Interferomet-
ric SAR Data. Trans Geosci Remote Sens 56(3):1520–1532

Konishi T, Suga Y (2018) Landslide detection using polarimetric ALOS-2/
PALSAR-2 data: a case study of 2016 Kumamoto earthquake in Japan. 
Proc. of SPIE 10788P-1

Osanai N, Yamada T, Hayashi S, Katsura S, Furuichi T, Yanai S, Murakami Y, 
Miyazaki T, Tanioka Y, Takiguchi S, Miyazaki M (2019) Characteristics 
of landslides caused by the 2018 Hokkaido Eastern Iburi Earthquake. 
Landslides 16:1517–1528

Park SE, Lee SG (2019) On the use of single-, dual-, and quad-polarimetric 
SAR observation for landslide detection. Int J Geo-Information 8:384

Sato A, Yamaguchi Y, Singh G, Park SE (2012) Four-component scattering 
power decomposition with extended volume scattering model. IEEE 
Geosci Remote Sens Lett 9(2):166–170

Scaioni M, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide 
investigations: an Overview of recent achievements and perspectives. 
Remote Sens 6:9600–9652

Shi X, Zhang L, Zhong Y, Zhang L, Liao M (2020) Detection and characteriza-
tion of active slope deformations with Sentinel-1 InSAR analyses in the 
Southwest Area of Shanxi, China. Remote Sens 12:392

Shibayama T, Yamaguchi Y, Yamada H (2015) Polarimetric scattering proper-
ties of landslides in forested areas and the dependence on the local 
incidence angle. Remote Sens 7:15424–15442

Shimada M, Watanabe M, Kawano N, Ohki M, Motooka T, Wada Y (2014) 
Detecting mountainous landslides by SAR polarimetry: a compara-
tive study using Pi-SAR-L2 and X-band SARs. Trans JSASS Aerosp Tech 
Japan. 12(ists29):9–15

Singhroy V (1995) Sar integrated techniques for geohazard assessment. Adv 
Space Res 15(11):67–78

Singhroy V (2009) Satellite remote sensing applications for landslide detec-
tion and monitoring. In: Sassa K, Canuti P (eds) Landslides-disaster risk 
reduction. Springer, Berlin

Singleton A, Li Z, Hoey T, Muller J-P (2014) Evaluating sub-pixel offset tech-
niques as an alternative to D-InSAR for monitoring episodic landslide 
movements in vegetated terrain. Remote Sens Environ 147:133–144

Solari L, Bianchini S, Franceschini R, Barra A, Monserrat O, Thuegaz P, Bertolo 
D, Crosetto M, Catani F (2020) Satellite interferometric data for land-
slide intensity evaluation in mountainous regions. Int J Appl Earth Obs 
Geoinf 87:102028

Strozzi T, Farina P, Corsini A, Ambrosi C, Thüring M, Zilger J, Wiesmann A, 
Wegmüller U, Werner C (2005) Survey and monitoring of landslide 
displacements by means of L-band satellite SAR interferometry. Land-
slides. 2:193–201

Sun L, Muller JP (2016) Evaluation of the use of sub-pixel offset tracking tech-
niques to monitor landslides in densely vegetated steeply sloped areas. 
Remote Sens 8(8):659

Tadono T, Ohki M, Abe T (2019) Summary of natural disaster responses by 
the Advanced Land Observing Satellite-2 (ALOS-2). Int Arch Photo-
gramm Remote Sens Spat Inf Sci. LXII-3/W7:69–72

Tsuguti H, Seino N, Kawase H, Imada Y, Nakaegawa T, Takayabu I (2019) 
Meteorological overview and mesoscale characteristics of the Heavy 
Rain Event of July 2018 in Japan. Landslides 16:363

https://doi.org/10.1186/s40623-019-1046-2
http://saigai.gsi.go.jp/3/20170726handokuzu/handokuzu.pdf
http://saigai.gsi.go.jp/3/20170726handokuzu/handokuzu.pdf
http://saigai.gsi.go.jp/3/20180906/iburi-hokai_2-zentaizu.pdf
http://saigai.gsi.go.jp/3/20180906/iburi-hokai_2-zentaizu.pdf
http://www.ifrc.org/Global/Documents/Secretariat/201610/WDR%202016-FINAL_web.pdf
http://www.ifrc.org/Global/Documents/Secretariat/201610/WDR%202016-FINAL_web.pdf


Page 14 of 14Ohki et al. Earth, Planets and Space           (2020) 72:67 

Watanabe M, Yonezawa C, Iisaka J, Sato M (2012) ALOS/PALSAR full polari-
metric observations of the Iwate-Miyagi Nairiku earthquake of 2008. 
Int J Remote Sens 33:1234–1245

Watanabe M, Thapa RB, Shimada M (2016) Pi-SAR-L2 observation of the 
landslide caused by Typhoon Wipha on Izu Oshima Island. Remote 
Sens 8:282

Yamaguchi Y, Moriyama T, Ishido M, Yamada H (2005) Four-component 
scattering model for polarimetric SAR image decomposition. IEEE Trans 
Geosci Remote Sens 43(8):1699–1706

Yonezawa C, Watanabe M, Saito G (2012) Polarimetric decomposition analysis 
of ALOS PALSAR observation data before and after a landslide event. 
Remote Sens 4:2314–2328

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Landslide detection in mountainous forest areas using polarimetry and interferometric coherence
	Abstract 
	Introduction
	Test sites and data
	Methods
	Polarimetric analysis
	Interferometric analysis
	Terrain data analysis
	Landslide detection by empirical approach
	Landslide detection by machine learning
	Accuracy evaluation

	Results and discussion
	Empirical approach
	Machine learning
	General discussions

	Conclusions
	Acknowledgements
	References




