
Dragoni and Lorenzano Earth, Planets and Space  (2017) 69:145 
DOI 10.1186/s40623-017-0731-2

FULL PAPER

Dynamics of a fault model with two 
mechanically different regions
Michele Dragoni   and Emanuele Lorenzano* 

Abstract 

We consider a fault containing two regions with different mechanical behaviours: a strong, velocity-weakening region 
(asperity) and a weak, velocity-strengthening region. The fault is embedded in a shear zone subject to a constant 
strain rate by the motions of adjacent tectonic plates. The fault is modelled as a discrete dynamical system whose 
state is described by two variables expressing the slip deficits of the two regions. Because of plate motion, the asper-
ity accumulates stress and eventually releases it, producing an earthquake, when a frictional threshold is exceeded. 
The weak region is subject to a very slow creep during interseismic intervals and may slip at a higher rate (afterslip) 
as a consequence of coseismic stress imposed by the asperity failure. The evolution equations of the system are 
solved analytically for the interseismic intervals, the asperity slip and the afterslip in the weak region. It is found that 
the amount of afterslip is proportional to the seismic slip of the asperity, in agreement with observations. The model 
shows that afterslip is a natural consequence of seismic slip in a fault containing a velocity-strengthening region. 
Afterslip may have any duration, according to the intensity of velocity strengthening, thus accounting for the wide 
range of observed durations. The model is applied to the fault of the 2011 Tohoku-Oki earthquake. The results suggest 
that the first four months after the event were dominated by afterslip, while the subsequent postseismic deformation 
was probably due to viscoelastic relaxation in the asthenosphere.
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viscoelastic relaxation
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Introduction
It is a common observation that fault slip following an 
earthquake may continue for some time, at a decreasing 
rate. This phenomenon is known as afterslip and may 
last up to several months. It is expected to be the conse-
quence of aseismic slip of a velocity-strengthening region 
of the fault, which has been loaded by the coseismic slip 
of a velocity-weakening region (Scholz 1990).

In fact, seismic and geodetic observations have shown 
that faults can accommodate tectonic motion in different 
ways. Some fault regions respond with stable, quasi-static 
motion, with slip rates comparable to tectonic rates; 
other regions remain locked for decades or centuries and 
then experience fast slip with emission of seismic waves. 
Typically, the amount of afterslip is proportional to that 

of seismic slip. For instance, afterslip can account for a 
part of the postseismic deformation following the 1906 
San Francisco earthquake (Kenner and Segall 2000).

One way to account for such observations is to sepa-
rate the fault surface into two kinds of regions: stable 
regions, which mostly creep, and unstable regions, which 
produce earthquakes (e.g. Johnson 2010). In studying a 
thrust earthquake at the Japan Trench, Heki et al. (1997) 
found that the afterslip distribution was relatively even 
throughout the fault surface, while the coseismic slip 
was concentrated in a small central part corresponding 
to an asperity. Yagi and Kikuchi (2002) acknowledged 
that afterslip following the 1994 Sanriku-Haruka-Oki 
earthquake took place in a region adjacent to the asperity 
whose failure generated the mainshock. However, it has 
been suggested that in some cases the two regions may 
not be spatially separated (Noda and Lapusta 2013).

There is obviously an interaction between the two fault 
regions. The interaction between seismic and aseismic 
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fault slip was studied by Dragoni and Tallarico (1992) 
and Tallarico et  al. (2002). Kato (2004, 2014) discussed 
the interplay between velocity-weakening and velocity-
strengthening patches on a fault plane and the conditions 
for seismic and aseismic slip events. Dublanchet et  al. 
(2013) and Yabe and Ide (2017) considered a fault with 
a large number of asperities and pointed out that asper-
ity concentration remarkably affects the slip behaviour of 
heterogeneous faults containing both velocity-weaken-
ing and velocity-strengthening regions: specifically, the 
entire fault may slip seismically if the asperity concentra-
tion exceeds a critical threshold. Bulk relaxation of the 
crust and the effect of pore fluid diffusion may also play a 
role. Belardinelli and Bonafede (1995) modelled afterslip 
as driven by viscous flow in the asthenosphere. A study 
of the effects of viscoelastic relaxation on a complex fault 
was made by Amendola and Dragoni (2013) and Dragoni 
and Lorenzano (2015).

Several empirical relationships have been proposed in 
order to describe aseismic slip. Nason and Weertman 
(1973) proposed an exponential function approaching a 
constant value. More recently, observations and theoreti-
cal considerations suggested that afterslip can be repre-
sented as a logarithmic function of time (Marone et  al. 
1991). Even though this function represents well the 
observations in many cases, it yields a slip that increases 
indefinitely with time and must be truncated ad hoc. A 
discussion of different time functions was presented by 
Barbot et al. (2009).

Seismic and aseismic slip in a two-degree-of-freedom 
spring-block model was studied by Yoshida and Kato 
(2003). Friction on the blocks was described by means of 
a rate- and state-dependent friction law. Under the con-
dition of velocity-weakening for one block and velocity-
strengthening for the other, afterslip was found as a result 
of the relaxation of the stress imposed on the latter by the 
sudden slip of the former. The model was further inves-
tigated by Abe and Kato (2013) employing a different 
expression for the friction law and assuming a velocity-
weakening behaviour for both blocks. Numerical simula-
tions were carried out using different initial conditions 
for the stiffnesses of the coupling springs, and several slip 
patterns were acknowledged accordingly, including sta-
ble sliding, seismic and aseismic slip. In both papers, the 
evolution equations were solved numerically.

The aim of the present study is to obtain afterslip as a 
dynamic mode of a fault containing two regions with dif-
ferent mechanical behaviours: a strong, velocity-weaken-
ing region (asperity) and a weak, velocity-strengthening 
region. The two regions may have different areas and seis-
mic wave radiation associated with asperity slip is con-
sidered. We base on a model developed by Dragoni and 
Santini (2015) and Dragoni and Tallarico (2016), where 

the average values of stress, friction and slip are consid-
ered for each region, so that the fault is described as a 
discrete dynamical system (Ruff 1992; Rice 1993; Turcotte 
1997). Such an approach has the advantage of reducing 
the number of degrees of freedom required to describe 
the dynamics of the fault; furthermore, it allows the study 
of the evolution of the system by means of orbits in the 
phase space, making it possible to better visualize the 
different aspects of the dynamics. On the whole, models 
with a finite number of degrees of freedom allow to focus 
on the main features of the seismic source, while avoid-
ing the more complicated characterization based on con-
tinuum mechanics.

We describe the different stages of fault behaviour, 
including the interaction between the weak region and 
the asperity responsible for earthquakes. During the 
interseismic intervals, the asperity accumulates stress 
that is released by asperity slip in seismic events. When 
the asperity slips, it transfers stress to the weak region, 
triggering the afterslip. In the same way, we expect that 
afterslip transfers stress back to the asperity, thus chang-
ing its state and subsequent evolution. An analytical solu-
tion for the evolution equations of the system will be 
obtained.

As an example, we apply the model to the fault of the 
2011 Tohoku-Oki earthquake. The moment rate function 
associated with this event was dominated by one single 
hump (Wei et al. 2012), making it appropriate to ascribe 
the seismic slip to a large unstable region on the fault 
plane; what is more, this earthquake was followed by a 
prolonged afterslip episode (Ozawa et  al. 2011). Obser-
vations show that seismic slip concentrated in a compact 
area at shallow depth, while afterslip occurred on a simi-
lar area downslip (Lay et al. 2012; Silverii et al. 2014). A 
part of postseismic deformation was certainly due to vis-
coelastic relaxation in the asthenosphere (Sun et al. 2014; 
Yamagiwa et  al. 2015), and an attempt will be made to 
discriminate between the two mechanisms.

The model
We consider a plane fault embedded in a shear zone 
between two tectonic plates moving at constant relative 
velocity v. The shear zone is assumed to be a homogene-
ous and isotropic Hooke solid with rigidity µ. As a conse-
quence of plate motion, the fault is subject to a tangential 
strain rate ė.

The fault contains two regions with different mechani-
cal behaviours: a strong region (asperity) with a high 
static friction and a velocity-weakening dynamic friction 
and a weak region with a negligible static friction and a 
velocity-strengthening dynamic friction. Henceforth, 
symbols with an index 1 refer to the asperity and symbols 
with an index 2 refer to the weak region.
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The two regions have areas A1 and A2 , respectively 
and the distance between their centres is a (Fig. 1). They 
are allowed to slip in the direction of the tangential trac-
tion imposed by the motion of tectonic plates. Their slip 
is controlled by their constitutive equations and by the 
forces exerted by the surrounding medium. We introduce 
a discrete fault model where the average values of stress, 
friction and slip on each region are considered. The state 
of the fault is described by two variables: the slip defi-
cits x(t) and y(t) of the asperity and of the weak region, 
respectively, as functions of time t. At a certain instant t 
in time, the slip deficit of a fault region is defined as the 
slip that such region should undergo in order to recover 
the relative plate displacement occurred up to time t.

Of course, this is a simplification of fault mechanics. 
Considering only the average values of stress, friction 
and slip on a fault region entails that the region moves 
as a rigid surface and slip propagation within the region 
is not allowed. However, we are mostly interested in the 
effect of asperity slip on the weak region. Since asperity 
slip is very fast with respect to afterslip, the final asperity 
dislocation is more relevant than the detailed space-time 
history of slip. In the case of afterslip, the model does 
not describe the possible propagation of slip on the weak 
region, but assumes that slip involves the final area since 
the beginning. Since the two regions move as rigid sur-
faces, it is simpler to use forces instead of tractions. Let f1 
and f2 be the tangential forces applied to the asperity and 
to the weak region in the slip direction and let f ′1 and f ′2 
be the frictional resistances. The evolution equations for 
the two regions can be written as

where µ1 and µ2 are the masses associated with the two 
regions and dots indicate differentiation with respect to t. 
The force f1 applied to the asperity includes three terms: 
the elastic force due to plate motion, the elastic force due 

(1)µ1ẍ = f1 + f ′1

(2)µ2ÿ = f2 + f ′2

to a difference in the slip deficits of the two regions and a 
rate-dependent force due to radiation damping (e.g. Rice 
1993). It can be written as

where K1 and Kc are coupling constants and Γ  is the 
impedance of the medium. The force f2 applied to the 
weak region includes only the first two terms:

where K2 is a coupling constant. The coupling constants 
can be expressed as

where s is the average tangential traction (per unit 
moment) that the dislocation of one region imposes to 
the other one. According to (3) and (4), the forces applied 
to each region depend on x and y, so that a change in x or 
y entails a change in both forces, hence a change in the 
stress distribution on the fault. The interaction between 
the two regions is controlled by the constant Kc.

The gravity force is neglected. In fact, it has a role only 
when movements have a vertical component, so it inter-
venes only in dip-slip faulting. However, the variables x 
and y express the relative motion of fault walls. The effect 
of gravity on the motion of one wall is opposite to the 
effect on the other one. There is not exact compensation, 
but this suffices to render gravity a second-order effect 
that can be ignored in a first approximation. Neglecting 
gravity has the effect to slightly overestimate or underes-
timate dynamic friction. As to friction, we use simplified 
versions of the general rate and state-dependent law. For 
the asperity, we assume a velocity-weakening law, char-
acterized by a static friction fs and an average dynamic 
friction fd:

For the weak region, we assume a velocity-strengthening 
law

where f0 is the steady-state dynamic friction and Λ is 
a constant. The minus sign is due to the fact that ẏ < 0 
during fault slip. The evolution equations for the two 
regions are then

(3)f1 = −K1x − Kc(x − y)− Γ ẋ

(4)f2 = −K2y− Kc(y− x)

(5)K1 =
2µėA1

v
, K2 =

2µėA2

v

(6)Kc = µA1A2s

(7)f ′1 =
{

fs, ẋ = 0

fd, ẋ �= 0

(8)f ′2 = f0 −Λẏ

(9)µ1ẍ + Γ ẋ + (K1 + Kc)x − Kcy− fd = 0

(10)µ2ÿ+Λẏ+ (K2 + Kc)y− Kcx − f0 = 0

A1 A2

a
Fig. 1  Sketch of the fault model. An asperity with area A1 and a weak 
region with area A2 are shown. The rectangular frame is the fault 
border. The state of the fault is described by the slip deficits x(t) and 
y(t) of the two regions
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Hence, the evolution of the fault is governed by a sys-
tem of two coupled ordinary differential equations. We 
exclude simultaneous slip of the two regions (e.g. Dub-
lanchet et  al. 2013; Yabe and Ide 2017), even though it 
could be easily treated by models describing the dynam-
ics of faults with two asperities (e.g. Dragoni and San-
tini 2015; Dragoni and Tallarico 2016). Accordingly, 
the system has three dynamic modes, corresponding to 
evolution in the interseismic interval, seismic slip of the 
asperity and afterslip in the weak region. We now special-
ize Eqs. (9) and (10) for the three modes.

1.	 During interseismic intervals, f1 < fs by definition, so 
that the asperity is stationary. However, its slip deficit 
x increases due to tectonic loading. As to the weak 
region, we allow a steady-state creep at constant 
stress, so that its slip deficit y increases with time, but 
slower than x. Equations (9) and (10) become 

2.	 During asperity slip, both tectonic loading and 
steady-state creep can be neglected, because they 
give negligible contributions in such a short time. 
Equations (9) and (10) become 

3.	 During afterslip in the weak region, the asperity is 
stationary. Afterslip has a much shorter duration 
than typical interseismic intervals; therefore, we 
neglect tectonic loading also in this case. Equations 
(9) and (10) become 

Solutions
In order to solve the evolution equations, we employ a 
dimensionless formulation. We introduce nondimen-
sional variables and time

and nondimensional forces

We also introduce the following nondimensional 
parameters:

(11)ẍ = 0

(12)(K2 + Kc)y− Kcx = f0

(13)µ1ẍ + Γ ẋ + (K1 + Kc)x − Kcy− fd = 0

(14)ẏ = 0

(15)ẋ = 0

(16)µ2ÿ+Λẏ+ (K2 + Kc)y− Kcx − f0 = 0

(17)X =
K1x

fs
, Y =

K1y

fs
, T =

√

K1

µ1

t

(18)F1 =
f1

fs
, F2 =

f2

fs

where α expresses the coupling between the asperity 
and the weak region; β is the ratio between the steady-
state frictional stress of the weak region and the static 
frictional stress of the asperity; γ is a function of the 
seismic efficiency of the asperity; ǫ is the ratio between 
the dynamic and the static frictions of the asper-
ity; � measures the intensity of velocity strengthen-
ing; ξ is the ratio between the areas of the two regions; 
V is the nondimensional velocity of tectonic plates. 
The parameter values have the following ranges: 
α ≥ 0, 0 < β < 1, γ ≥ 0, � > 0, 0 < ǫ < 1, ξ > 0,V > 0. 
We also assume that the masses associated with the two 
regions are proportional to their areas: accordingly,

where (5) was employed. Hence, the forces (3) and (4) 
become

We next express the evolution equations for the three 
dynamic modes in nondimensional form and give their 
solutions.

Interseismic intervals
The evolution Eqs. (11) and (12) become

where dots indicate differentiation with respect to T. 
With initial conditions

their solution is

where, according to (25),

(19)
α =

Kc

K1

, β =
f0

fs
, γ =

Γ√
K1µ1

(20)

ǫ =
fd

fs
, � =

Λ√
K1µ1

, ξ =
A2

A1

, V =
√
K1µ1

fs
v

(21)
µ2

µ1

=
K2

K1

= ξ

(22)F1 = − (1+ α)X + αY − γ Ẋ

(23)F2 = − (α + ξ)Y + αX

(24)Ẍ = 0

(25)(α + ξ)Y − αX = β

(26)X(0) = X0, Ẋ(0) = V , Y (0) = Y0

(27)X(T ) = X0 + VT

(28)Y (T ) = Y0 +
α

α + ξ
VT

(29)Y0 =
αX0 + β

α + ξ
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The solution shows that the slip deficit X of the asperity 
increases in time with the velocity V of tectonic plates, 
so that the asperity is stationary. The slip deficit Y of the 
weak region also increases in time, but with a lower rate

implying a steady creep �Y (T ) with constant rate

that is smaller than plate velocity. From (22) and (23), the 
forces on the two regions are

Thanks to (27) and (28), they become

where

showing that stress increases linearly with time on the 
asperity, while it remains constant on the weak region.

Seismic slip
We suppose that asperity slip starts at T = T1, when the 
forces have the values

Thanks to (32) and (33), they can be written as

The system of the two equations yields the state of the fault 
at the beginning of the seismic event:

The evolution Eqs. (13) and (14) become

We solve (41) in the case of weak damping, implying that 
the rate-dependent term is small with respect to the other 
forces: this choice is suggested by the fact that the seismic 

(30)Ẏ =
α

α + ξ
V

(31)�Ẏ = V − Ẏ =
ξ

α + ξ
V

(32)F1(T ) = − (1+ α)X(T )+ αY (T )

(33)F2(T ) = − (α + ξ)Y (T )+ αX(T )

(34)F1(T ) = F1(0)−
α + αξ + ξ

α + ξ
VT

(35)F2 = −β

(36)F1(0) = −(1+ α)X0 + αY0

(37)F1 = − 1, F2 = −β

(38)(1+ α)X − αY = 1

(39)(α + ξ)Y − αX = β

(40)X1 =
α + αβ + ξ

α + αξ + ξ
, Y1 =

α + αβ + β

α + αξ + ξ

(41)Ẍ + γ Ẋ + (1+ α)X − αY1 − ǫ = 0

(42)Ẏ = 0

efficiency of faults is small (e.g. Kanamori 2001). If we set 
T1 = 0 for the sake of simplicity, the initial conditions are

and the solution is

where

and

The duration of the seismic event, calculated by setting 
Ẋ = 0, is

The slip amplitude of the asperity is defined as

and the final amplitude is

where

The moment rate of the seismic event can be calculated as

where M1 is a reference seismic moment, corresponding to 
slip U. From (49) and (44), we obtain

The final seismic moment is

From (22) and (23), the forces on the asperity and on the 
weak region during the event are

(43)X(0) = X1, Ẋ(0) = 0, Y (0) = Y1

(44)

X(T ) = X1 −
U

2

[

1−
(

cosω1T +
γ

2ω1

sinω1T

)

e
− γ

2
T

]

(45)Y = Y1

(46)U = 2
1− ǫ

1+ α

(47)ω1 =

√

1+ α −
γ 2

4

(48)Ts =
π

ω1

(49)�X(T ) = X1 − X(T )

(50)Us = κU

(51)κ =
1

2

(

1+ e
− γ

2
Ts

)

(52)Ṁs(T ) = M1

�Ẋ(T )

U

(53)Ṁs(T ) = M1

1+ α

2ω1

sinω1T e
− γ

2
T

(54)Ms = κM1

(55)F1(T ) = − (1+ α)X(T )+ αY1 − γ Ẋ(T )

(56)F2(T ) = − (α + ξ)Y1 + αX(T )
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At the end of the event (T = T2), the slip deficits of the two 
regions are

Introducing (57) into (55) and (56), we obtain the forces

The force F1 on the asperity has decreased in magnitude, 
with a force drop

At the same time, the force F2 on the weak region has 
increased in magnitude by an amount αUs: this drives the 
region out of the steady-state creep and starts the afterslip.

Afterslip
In dimensionless form, the evolution Eqs.  (15) and (16) 
become

Since afterslip has a long duration with respect to seismic 
slip, a high value of � is expected; hence, we consider the 
overdamped solution of (62). If we set T2 = 0 for the sake 
of simplicity, initial conditions are

and the solution is

where

and

The afterslip amplitude is

or

(57)X2 = X1 − κU , Y2 = Y1

(58)F1(T2) = − 1+ (1+ α)Us

(59)F2(T2) = −β − αUs

(60)�F1 = (1+ α)Us

(61)Ẋ = 0

(62)ξ Ÿ + �Ẏ + (α + ξ)Y − αX2 − β = 0

(63)X(0) = X2, Y (0) = Y2, Ẏ (0) = 0

(64)X = X2

(65)

Y (T ) = Ȳ − (Ȳ − Y1)

(

coshω2T +
�

2ξω2

sinhω2T

)

e
− �

2ξ
T

(66)Ȳ =
αX2 + β

α + ξ

(67)ω2 =

√

�2

4ξ2
− 1−

α

ξ

(68)�Y (T ) = Y1 − Y (T )

(69)

�Y (T ) = Ua

[

1−
(

coshω2T +
�

2ξω2

sinhω2T

)

e
− �

2ξ
T

]

with a final value

Thanks to (40), (50), (57) and (66), we obtain

showing that afterslip in the weak region is proportional 
to the seismic slip of the asperity, in agreement with 
observations (e.g. Scholz 1990). The state of the fault at 
the end of afterslip is then

It is noteworthy that X3 and Y3 satisfy (24) and (25), i.e. 
the evolution equations for interseismic intervals. Hence, 
the system can go through a cycle made of a sequence of 
its three dynamic modes.

From (69) and (71), the afterslip rate is

The geodetic moment rate associated with afterslip is

whence

and the final moment is

differing from the seismic moment (54) by a factor 
αξ/(α + ξ). According to (69), the final value Ua of after-
slip is reached only for T → ∞. However, the slip rate �Ẏ  
is exponentially decreasing and, after some time, afterslip 
becomes indistinguishable from the steady-state creep typi-
cal of interseismic intervals. Therefore, we can assign after-
slip a finite duration, defined as the time interval Ta after 
which the afterslip rate (73) lowers below the creep rate (31):

The equation can be easily solved for Ta if we note 
that, for large values of T, we can write to a very good 
approximation

where

(70)Ua = Y1 − Ȳ

(71)Ua =
α

α + ξ
Us

(72)X3 = X2, Y3 = Ȳ

(73)�Ẏ (T ) =
αUs

ξω2

sinhω2T e
− �

2ξ
T

(74)Ṁa(T ) = ξM1

�Ẏ (T )

U

(75)Ṁa(T ) = M1

ακ

ω2

sinhω2T e
− �

2ξ
T

(76)Ma =
αξ

α + ξ
κM1

(77)�Ẏ (Ta) =
ξ

α + ξ
V

(78)�Ẏ (T ) =
αUs

2ξω2

e
−T/Θ

(79)
Θ =

(

�

2ξ
− ω2

)−1
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Then (77) yields

Afterslip duration Ta is remarkably affected by the degree 
of coupling between the two regions of the fault. This is 
illustrated in Fig. 2, where Ta is shown as a function of the 
coupling parameter α for different values of the parame-
ter ξ. The graph shows an initial steep growth for smaller 
values of α, reaching a maximum value that depends on 
the particular combination of the parameters of the sys-
tem; finally, it decreases for higher values of α. From (22) 
and (23), the forces acting on the asperity and on the 
weak region during afterslip are, respectively,

If we introduce expressions (72) for X3 and Y3, we obtain 
the forces at the end of afterslip (T = T3)

The force F1 on the asperity has increased (in magni-
tude) with respect to its value at T = T2, because afterslip 
transfers stress to the asperity. A comparison with (58) 
shows that F1 has increased by an amount αUa; hence, it 
is closer to the condition for asperity failure. The amount 
of stress transferred to the asperity significantly increases 
with the coupling parameter α; however, F1(T3) > −1 , 

(80)Ta = Θ ln
αUs(α + ξ)

2ξ2ω2V

(81)F1(T ) = − (1+ α)X2 + αY (T )

(82)F2(T ) = − (α + ξ)Y (T )+ αX2

(83)F1(T3) = − 1+
α + αξ + ξ

α + ξ
Us

(84)F2(T3) = −β

which guarantees that afterslip never triggers asperity 
failure. Nevertheless, the amount of stress that afterslip 
transfers to the asperity will produce a time advance of 
the next earthquake. This is illustrated in Fig.  3, where 
F1(T3) is shown as a function of α for different val-
ues of the parameter ξ. The force F2 on the weak region 
shows that the condition for steady-state creep has been 
recovered.

Subsequent evolution
We can now calculate the duration Tis of the next inter-
seismic interval. We see from (83) that, in order to reach 
the unit value, F1 must increase in magnitude by an 
amount

This requires a time

where Ḟ1 is the rate of increase of F1 that can be calcu-
lated from (34). We obtain

In order to enlighten the role of afterslip, we calculate the 
interseismic interval T ′

is in the absence of afterslip. In this 
case, according to (58), F1 must increase in magnitude by 
an amount

(85)�F1 =
α + αξ + ξ

α + ξ
Us

(86)Tis =
�F1

|Ḟ1|

(87)Tis =
Us

V

(88)�F ′
1 = (1+ α)Us

10.50

α

0

4

8

12

T
a

×105

ξ = 0.5
ξ = 1
ξ = 2

Fig. 2  Afterslip duration. The afterslip duration (80) is plotted as 
a function of the coupling parameter α for different values of the 
parameter ξ. Other parameters are ǫ = 0.7, γ = 1, � = 105 and 
V = 10−9

10.50

α

-0.85

-0.75

-0.65

-0.55

F
1(
T
3)

ξ = 0.5
ξ = 1
ξ = 2

Fig. 3  Tangential force on the asperity at the end of afterslip. The tan-
gential force (83) is plotted as a function of the coupling parameter α 
for different values of the parameter ξ. Other parameters are ǫ = 0.7 
and γ = 1
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so that

The ratio between the two times is

Since α and ξ are positive, the ratio is always smaller than 
1, meaning that the following earthquake is anticipated 
by the occurrence of afterslip.

From (31) and (87), the cumulative creep in the inter-
seismic interval is

corresponding to a geodetic moment

Comparing (92) with (54) and (76), we see that, in a cycle 
including the three dynamic modes, the total geodetic 
moment is a fraction ξ of the seismic moment and the 
total moment release is

Discussion
In order to test the model, it is necessary to assign 
appropriate values to the parameters. They will be cho-
sen within the allowed ranges, but do not pertain to any 
real case. A different set of parameters would imply dif-
ferent values of the quantities characterizing the seismic 
cycle, but would not alter the general conclusions of this 
section.

As an example, we consider a fault zone with rigidity 
µ = 30 GPa, in the presence of a relative plate velocity 
v = 3 cm a−1 and a tangential strain rate ė = 10−14 s−1 . 
We consider a medium-size earthquake produced by a 
fault with A1 = A2 = 500 km2, a = 25 km and a strike-
slip mechanism. We assume that the seismic event has 
a duration ts = 10 s and a slip amplitude us = 1 m. The 
seismic moment is then ms = 1.5× 1019 N m.

The parameter α can be evaluated from the values of 
the quantities A2, v, ė, a and the kind of source mecha-
nism. In fact, from (5) and (6), we have

For nonoverlapping regions, it is a good approximation 
to use tractions produced by pointlike dislocations (e.g. 
Dragoni and Lorenzano 2016)

(89)T ′
is =

(1+ α)(α + ξ)

α + αξ + ξ

Us

V

(90)
Tis

T ′
is

= 1−
α2

(1+ α)(α + ξ)

(91)Uis =
ξ

α + ξ
Us

(92)Mis =
ξ2

α + ξ
Ms

(93)M = (1+ ξ)Ms.

(94)α =
A2vs

2ė

(95)s = ka−3

where k = 5/(12π) for strike slip and k = 1/(6π) for dip 
slip.

It is evident that the value of the distance a may have a 
strong influence on α. In fact, if we increase a,α becomes 
smaller and smaller. But we cannot decrease a below a 
certain value without decreasing the area A2; otherwise, 
the two regions would overlap. It follows that α is always 
much smaller than 1 (in the present example, α = 0.2). 
From the solutions of the governing equations, it can be 
seen that α is always summed to unity or to the parame-
ter ξ, which is in the order of unity. Therefore, the results 
are moderately sensible to the value of α and the sensi-
tivity decreases with decreasing α. The parameter β is by 
definition smaller than 1. Since asperity models assume 
that weak regions may slip at a much lower stress level 
than asperities, a value β = 0.1 is reasonable, meaning 
that the force on the weak region is one-tenth of the force 
on the asperity at the onset of seismic slip. In applications 
to real cases, the value can be chosen in order that the 
model gives the best fit with observations. The parame-
ter ǫ is by definition smaller than 1. Experiments on rock 
samples suggest values ranging between 0.5 and 1 (Jaeger 
and Cook 1976). We take ǫ = 0.7. Small variations do not 
have important consequences.

The parameter γ is a function of α, ǫ and the seismic 
efficiency η (Dragoni and Santini 2015). A straightfor-
ward calculation yields

where

The seismic efficiency of faults is relatively small, rang-
ing in many cases from 0.1 to 0.3 (e.g. Kanamori 2001). 
The value 0.15 is in this range and corresponds to γ = 1 . 
According to the previous choice, we consider the value 
ξ = 1 for the ratio between the areas of the two regions.

The parameter V can be calculated from the observed 
plate velocity v, the duration ts and the slip amplitude us 
of the seismic event. From the definitions, we obtain

With the values assumed above, V = 10−9.
With these values of the model parameters, Fig. 4 shows 

the main features of the seismic event. The slip amplitude 
�X, the moment rate Ṁs and the forces F1 and F2 are 
shown as functions of time in the interval 0 ≤ T ≤ Ts . 
The event duration is Ts ≃ 3.2, with a final slip ampli-
tude Us = 0.30 and a seismic moment Ms/M1 = 0.60. In 

(96)γ =
2
√
1+ α lnψ

√

π2 + ln
2 ψ

(97)ψ =
(1− ǫ)(1− η)

1− ǫ − η(1+ ǫ)

(98)V =
Us

us

ts

Ts

v
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Fig. 4c, we note a decrease (in magnitude) of the force F1 
on the asperity and a corresponding increase of the force 
F2 on the weak zone. At the end of the event, the force 
drop on the asperity is (1+ α)Us = 0.36, while F2 has 
received a contribution −αUs = − 0.06 from the asper-
ity, reaching the value − 0.16.

Calculation of afterslip requires the parameter �. Its 
value controls the afterslip duration Ta and may have 
large variations. We take � = 105, implying an afterslip 
duration ta ≃ 20 days, if the duration of seismic slip is 
ts = 10 s and ξ = 1. Since � is much greater than 1− α/ξ , 
formula (69) for �Y  can be written in a simpler form. 
Expressing the hyperbolic functions by exponentials, one 
easily finds

to a very good approximation.

(99)�Y (T ) = Ua

(

1− e
−T/Θ

)

Figure 5 shows the main features of afterslip. The slip 
amplitude �Y , the moment rate Ṁa and the forces F1 
and F2 are plotted as functions of time in the interval 
0 ≤ T ≤ Ta. The final slip amplitude is Ua = 0.05 and the 
geodetic moment is Ma/M1 = 0.10. According to (71), 
the total afterslip is about 17% of seismic slip and the 
same is for the moment release. At the beginning of after-
slip, the force F2 is equal to − 0.16. Then, it decreases in 
magnitude, approaching the value −β at the end of after-
slip. At the same time, F1 increases in magnitude by an 
amount αUa = 0.01.

The sequence of three dynamic modes (seismic slip, 
afterslip, interseismic evolution) makes a cycle that can 
be represented in the plane XY (Fig. 6). The coordinates 
of points P1,P2,P3 are given in (40), (57) and (72), respec-
tively. During the interseismic interval, the representative 
point of the system moves on line (39). When it reaches 
P1, the seismic event takes place. The point moves by a 

Fig. 4  Seismic slip. The graphs show a the slip amplitude �X ; b the 
associated moment rate Ms; c the forces F1 (solid) and F2 (dashed) on 
the asperity and on the weak region, respectively, as functions of 
nondimensional time T

Fig. 5  Afterslip. The graphs show a the afterslip amplitude �Y ; b 
the associated moment rate Ma; c the forces F1 (solid) and F2 (dashed) 
on the asperity and on the weak region, respectively, as functions of 
nondimensional time T
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quantity Us given by (50), reducing the value of X and 
reaching P2. Here, afterslip begins and lowers the value of 
Y by a quantity Ua given by (71), driving the point to P3:  
this is again on line (39) and a new interseismic interval 
begins. The orbit is independent of �.

Of course, this cycle represents an ideal situation. 
There are several factors that may change this scheme. 
Often the seismic source is not made of a single asperity, 
but of two or more asperities that introduce complexity 
in the dynamics (Dragoni and Tallarico 2016). Secondly, 
the fault is not an isolated system, but is subject to stress 
perturbations from the slipping of neighbouring faults 
(Dragoni and Piombo 2015). These complexities may be 
introduced without difficulty in the model and would 
break the periodicity of the cycle.

In addition, bulk viscoelastic relaxation of the asthe-
nosphere may add to afterslip as a source of postseismic 
deformation. The surface displacement associated with 
postseismic deformation has been often modelled as a 
function

where b is a constant and τ is a characteristic time (Scholz 
1990; Marone et al. 1991; Heki et al. 1997; Barbot et al. 
2009). This function becomes arbitrarily large for t → ∞ , 
even though its derivative tends to zero. In many cases, 
it fits reasonably well the postseismic deformation data 
in finite time intervals. On the contrary, (99) yields an 

(100)s(t) = b ln

(

1+
t

τ

)

afterslip approaching a maximum value Ua and the sur-
face displacement would be

where s̄a is the asymptotic value and

If we suppose that the asthenosphere is a Maxwell body 
with a characteristic time θ ′, the surface displacement 
produced by viscoelastic relaxation can be written as

where s̄v is the asymptotic value. Due to the high value 
of the asthenosphere viscosity, the timescale of viscoelas-
tic relaxation is typically much longer than that of after-
slip, i.e. θ ′ ≫ θ. Then, if we consider the time interval 
0 ≤ t ≤ ta, during which afterslip is observed, we have 
t ≪ θ ′ and the total displacement is given by

with c = s̄v/θ
′. This function has a slope that decreases 

much slower than sa(t), thus resembling the logarithmic 
function (100).

An application: the 2011 Tohoku‑Oki earthquake
The 2011 Tohoku-Oki earthquake was a very large 
event, with Mw = 9.0 (Ide et al. 2011; Simons et al. 2011; 
Maercklin  et al. 2012). The coseismic slip distribution 
extended approximately 400 km along the Japan trench, 
with a maximum slip ranging between 27 m (Ozawa 
et al. 2011) and 80 m (Iinuma et al. 2012). The data reveal 
a compact area of large slip, extending from the trench 
to about 50 km of depth (Bletery et  al. 2014). Afterslip 
was mostly distributed in an area located downdip of the 
coseismic slip and extending to a depth of about 100 km 
(Lay et al. 2012; Silverii et al. 2014). A major role of vis-
coelastic relaxation was also suggested (Sun et  al. 2014; 
Yamagiwa et al. 2015).

The relevant data are given in Table 1. We take an aver-
age rigidity of the lithosphere µ = 40 GPa (Ozawa et al. 
2011), a velocity of subduction v = 8 cm a−1 (Simons 
et al. 2011) and a surface strain rate ės = 10−14 s−1 (Kato 
et al. 1998). We assume that the fault is made of a velocity-
weakening and a velocity-strengthening region (Fig.  7). 
The two regions are rectangles with sides 400 and 150 km 
long, so that their areas are A1 = A2 = 60,000 km

2, with 
a distance a = 150 km between their centres. We assume 
an average dip angle δ = 20◦ (Lay et al. 2012). The strain 
rate on the fault is then (Dragoni and Lorenzano 2016)

(101)sa(t) = s̄a
(

1− e
−t/θ

)

(102)θ =
ta

Ta

Θ

(103)sv(t) = s̄v

(

1− e
−t/θ ′

)

(104)s(t) = sa
(

1− e
−t/θ

)

+ ct

(105)
ė =

sin 2δ

2(1− ν)
ės

X

Y

P1

P2

P3

Ua

Us

Fig. 6  Geometrical illustration of the cycle made of seismic slip, 
afterslip and interseismic creep. The dashed line is given by (38), rep-
resenting the condition for asperity failure. The dotted line is given by 
(39), representing the condition for interseismic fault creep. The state 
of the fault is P1 at the beginning of the seismic event, P2 at the end of 
the event and P3 at the end of afterslip. The lengths of the catheti are 
the amplitudes Us of seismic slip and Ua of afterslip, respectively. From 
P3 to P1, the fault is subject to tectonic loading and creep. Arrows 
indicate the motion of the representative point of the system during 
the cycle
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where ν is the Poisson modulus, which we take equal to 
0.25. Accordingly, we get ė ≃ 4 × 10−15 s−1.

The duration of the seismic event was about 160 s, with 
a moment rate concentrated in a time interval ts = 80 s 
and a seismic moment ms = 3.5× 1022 N m (Maercklin 
et al. 2012; Wei et al. 2012; Bletery et al. 2014). Accord-
ingly, the average seismic slip was us = 15 m.

From these data, we evaluate the values of the model 
parameters α, ξ and V. The value of ǫ is taken as in the 
previous section. The value of γ, corresponding to a seis-
mic efficiency η = 0.17, is chosen in order to obtain the 
best fit for the moment rate. The value of � will be evalu-
ated on the basis of the assumed afterslip duration. The 
values are given in Table 2. Notice that we aim to investi-
gate only the seismic slip and afterslip phases associated 
with the event, whose evolutions are independent of β (as 
shown in “Seismic slip” and “Afterslip” sections); there-
fore, we do not need to assign a value to this parameter.

We reproduce the observed seismic moment rate in a 
time interval t1 ≤ t ≤ t2, where the dominant contribu-
tion to seismic moment is produced. In dimensional 
form, the moment rate (53) becomes

(106)ṁs(t) = m1

1+ α

2ω1

χ sinω1χ(t − t1) e
− γ

2
χ(t−t1)

where

and

where u is the slip that would be observed in the case 
γ = 0. Hence,

The final seismic moment is

The moment rate ṁs(t), calculated from (106) with 
t1 = 50 s and t2 = 130 s, is shown in Fig. 8a. It is super-
imposed to the observed moment rate given by Wei et al. 
(2012) and fits well the central peak. The seismic moment 
calculated from (110) is ms = 3.6× 1022 N m, in agree-
ment with observation. Figure  8b shows the evolution 
of forces on the asperity and on the weak region during 
the earthquake, calculated from (55) and (56). The mag-
nitude of F1 has a decrease of 32%, while that of F2 has 
an increase of 26% with respect to the initial value. The 
stress drop on the asperity can be calculated as

where �F1 is given by (60) and fs can be estimated as

where we used (17). Accordingly, we have

It results �σ ≃ 3 MPa, which has the same order of mag-
nitude as the values given by Bletery et al. (2014).

With regard to postseismic deformation, (71) pre-
dicts that the average afterslip amplitude on the weak 

(107)χ =
Ts

t2 − t1

(108)m1 = µA1u

(109)u =
us

κ

(110)ms = κm1

(111)�σ =
fs

A1

�F1

(112)fs =
K1u

U

(113)�σ =
(1+ α)K1us

A1

δ100

50

0

z (km)
Fig. 7  Fault model of the 2011 Tohoku-Oki earthquake. A1 and A2 are 
the areas of the asperity and of the weak region, respectively, and z is 
depth. The model is a simplified version of the tectonic settings sug-
gested by Lay et al. (2012) and Silverii et al. (2014)

Table 1  Data for the 2011 Tohoku-Oki earthquake

μ 40 GPa Rigidity of the lithosphere

v 8 cm a−1 Relative plate velocity

ė 4× 10−15 s−1 Tangential strain rate on the fault

δ 20◦ Average dip angle of the fault

A1 6× 104 km
2 Area of the asperity

A2 6× 104 km
2 Area of the weak region

a 150 km Distance between the centres of the two regions

ms 3.5× 1022 N m Seismic moment of the event

us 15 m Average slip of the asperity

ts 80 s Duration of seismic slip

ta 15 days Assumed duration of afterslip

Table 2  Values of model parameters for the 2011 Tohoku-
Oki fault

α 0.3 Coupling parameter between the two fault regions

γ 1.5 A measure of seismic efficiency

ǫ 0.7 Ratio between dynamic and static frictions on the asperity

� 105 A measure of intensity of velocity strengthening

ξ 1 Ratio between the areas of the two regions

V 10−9 Nondimensional plate velocity
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region is ua = 0.23us or 3.5 m. From (76), the geodetic 
moment associated with afterslip is ma = 0.23ms or 
8.3× 1021 Nm.

Let ss be the coseismic ground displacement. Accord-
ing to Ozawa et  al. (2011), a postseismic displacement 
s′a = 0.09 ss was reached at a time t ′a = 15 days after the 
seismic event. We can ascribe s′a entirely to afterslip, 
because viscoelastic relaxation takes place over much 
longer times. With a viscosity equal to 1019 Pa s (Wang 
et  al. 2012; Sun et  al. 2014), the Maxwell time is θ ′ = 8 
a. By means of (101) and taking into account that sur-
face displacement is proportional to fault slip, we find 
θ ≃ 30 days. Hence, θ ′ ≫ θ, as anticipated.

The surface displacement generated by afterslip is 
shown as a function of time in Fig. 9. The curve is con-
sistent with data from Diao et  al. (2013) and Silverii 
et  al. (2014), according to whom postseismic ground 
displacement reached the value s̄a after a time from 120 
to 150 days from the event. We conclude that afterslip 
reached the asymptotic value ua after a time ta of about 
four months. Further postseismic deformation should be 
ascribed to viscoelastic relaxation. Finally, by means of 
(80) and the relation

(114)Ta =
ta

ts
Ts

we find � ≃ 105.
The ground displacement produced by afterslip has been 

calculated making use of Okada’s (1985) formulae. The 
graphs of the horizontal and vertical displacement compo-
nents are shown in Fig. 10. The direction and magnitude of 
the calculated displacement are broadly comparable with 
displacements obtained from GPS data over a time inter-
val comparable with ta. For instance, Silverii et  al. (2014) 
reported a maximum horizontal displacement of the order 
of 1 m at the eastern coasts of the Iwate/Miyagi prefectures 
of Japan and a maximum vertical displacement of about 20 
cm in the same area. These figures are in good agreement 
with the results shown in Fig. 10, where the eastern coasts 
of the Iwate/Miyagi prefectures approximately correspond 
with the projection of the lower margin of the weak fault 
region on the Earth’s surface.

Of course, the present model cannot reproduce the 
details of the Tohoku-Oki earthquake nor of any other 
seismic event, but its aim is rather to investigate the basic 
mechanical processes occurring on the fault surface and 
to enlighten the relationships between them.

Conclusions
We presented a model that describes in a unique frame 
both seismic and aseismic slip on a fault, taking into 
account the interaction between the two processes. This 
has been achieved by considering a fault containing two 
regions with different mechanical behaviours: a strong, 
velocity-weakening region (asperity) and a weak, veloc-
ity-strengthening region.

During the interseismic intervals, the asperity is locked, 
while the weak region is subject to a very slow creep. 
Consequently, the slip deficit of the asperity increases 
in time with the velocity of tectonic plates, while the slip 
deficit of the weak region increases much slower. The 
asperity accumulates stress and eventually releases it, 
producing an earthquake, when a frictional threshold is 

Fig. 8  Coseismic phase of the 2011 Tohoku-Oki earthquake. a 
Moment rate ṁs (solid) as a function of time, calculated according to 
(106), compared with the observed moment rate (dashed) reported 
by Wei et al. (2012). b Evolution of forces F1 on the asperity (solid) and 
F2 on the weak region (dashed), in units of the static friction fs of the 
asperity

Fig. 9  Surface displacement generated by afterslip following the 
2011 Tohoku-Oki earthquake, according to the model. The surface 
displacement is estimated over a time interval of 120 days. It is nor-
malized to the coseismic surface displacement ss
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exceeded. As a consequence of coseismic stress imposed 
by the asperity failure, the weak region is then subject to 
aseismic slip (afterslip).

The evolution equations of the system have been solved 
analytically for the interseismic intervals, the asperity slip 
and the afterslip in the weak region. The amount of after-
slip is found to be proportional to the seismic slip of the 
asperity, in agreement with observations. The propor-
tionality factor depends on the geometry of the fault and 
on the velocity of tectonic motion.

The model shows that afterslip is a natural conse-
quence of seismic slip in a fault containing a velocity-
strengthening region. Afterslip may have any duration, 

according to the intensity of velocity strengthening, 
thus accounting for the wide range of observed dura-
tions. According to the model, afterslip approaches an 
asymptotic value as time increases. We have shown 
that the higher rate that is often observed in postseis-
mic deformation may be due to the superposition of 
the effects of afterslip and viscoelastic relaxation in the 
asthenosphere.

The model has been applied to the fault of the 2011 
Tohoku-Oki earthquake. On the basis of data, the fault 
has been considered as made of a single large asper-
ity, extending from the Japan trench to about 50 km of 
depth, and a weak region located downdip of the asper-
ity to a depth of about 100 km. With the appropriate val-
ues of the model parameters, the dominant part of the 
seismic moment rate has been reproduced. The stress 
transfer from the slipping asperity produces a substan-
tial increase of shear stress on the weak region, which is 
responsible for afterslip. The results suggest that the first 
four months after the event were dominated by afterslip, 
while the subsequent postseismic deformation was prob-
ably due to viscoelastic relaxation in the asthenosphere. 
Of course, the model presents a simplified description 
of real fault dynamics. It necessarily disregards com-
plicated physical processes that may be dealt with via a 
numerical approach. However, a discrete model as the 
one we presented offers an alternative insight on the 
essential dynamics of the seismic source in an analytical 
framework.

Authors’ contributions
MD developed the model, solved the equations and wrote a preliminary ver-
sion of the paper; EL checked the solutions and gave further contributions to 
the text and to data collection. Both authors discussed extensively the results. 
Both authors read and approved the final manuscript.

Acknowlegements
The authors are grateful to the editor Ryosuke Ando, to Suguru Yabe and to 
anonymous referees for useful comments on the first version of the paper.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data and results supporting this work were gathered from the papers listed 
in References and are freely available to the public.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

-2 -1 0 1 2

x1/L

-2

-1

0

1

2

x
2/
L max. displacement

0.7m

x
2
/L

x1/L

u3 (m)

a

b

Fig. 10  Ground displacement produced by afterslip following the 
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