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Dynamic faulting on a conjugate fault system
detected by near-fault tilt measurements
Eiichi Fukuyama
Abstract

There have been reports of conjugate faults that have ruptured during earthquakes. However, it is still unclear whether
or not these conjugate faults ruptured coseismically during earthquakes. In this paper, we investigated near-fault
ground tilt motions observed at the IWTH25 station during the 2008 Iwate-Miyagi Nairiku earthquake (Mw 6.9). Since
near-fault tilt motion is very sensitive to the fault geometry on which the slip occurs during an earthquake, these data
make it possible to distinguish between the main fault rupture and a rupture on the conjugate fault. We examined
several fault models that have already been proposed and confirmed that only the models with a conjugated
fault could explain the tilt data observed at IWTH25. The results support the existence of simultaneous conjugate
faulting during the main rupture. This will contribute to the understanding of earthquake rupture dynamics because
the conjugate rupture releases the same shear strain as that released on the main fault, and thus it has been
considered quite difficult for both ruptures to accelerate simultaneously.
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Introduction
Sometimes an earthquake occurs on a complex fault sys-
tem such as fault steps, jogs, or branches (Scholz 2002).
There have been several field observations on the conju-
gate faulting. I reviewed several earthquakes as described
below and summarized the findings in Figure 1. The
earthquakes were categorized into two groups based on
the timing of conjugate rupture with respect to the main
one. In category 1 earthquakes, the conjugate fault rup-
ture occurred simultaneously with the main rupture,
while in category 2 earthquakes, the conjugate fault rup-
ture occurred after the main rupture.
Category 1
1987 East Chiba earthquake Fukuyama (1991) investi-
gated the rupture process of the 1987 earthquake that
occurred off the east coast of Chiba (M 6.7) based on
the relocated aftershock distribution. The rupture was
initiated at the deep southern corner where a conjugate
fault could be recognized from the relocated aftershock
distribution. In this model, the rupture propagated
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1997 Kagoshima earthquake Horikawa (2001) analyzed
the May 1997 Kagoshima earthquake (M 6.0) by invert-
ing strong ground motions based on the fault model
constructed by the aftershock distribution (Miyamachi
et al. 1999). He concluded that the rupture was initiated
close to the junction of two fault segments and propa-
gated bilaterally.

2000 western Tottori earthquake Fukuyama et al.
(2003) investigated a detailed aftershock distribution of
the 2000 western Tottori earthquake (Mw 6.6). They
found that there was aftershock activity along the con-
jugate fault trace within 1 h after the main shock at
the northern end of the coseismic main rupture region
close to the main shock hypocenter. This suggests that
a possible conjugate rupture occurred simultaneously with
the main rupture as expected by the fault model of Iwata
and Sekiguchi (2002).

2007 Niigata Chuetsu-Oki earthquake Yukutake et al.
(2008) relocated the aftershocks of the 2007 Chuetsu-
Oki earthquake (Mw 6.6) and found that there was a
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Figure 1 Schematic illustration of the earthquake ruptures that
have been reported as conjugated fault ruptures. (a) Category 1
earthquakes and (b) category 2 earthquakes. Solid stars indicate the
initiation location of the rupture, and gray stars indicate the
hypocenter of the secondary rupture. Arrows show the direction of
fault motion. Solid lines are fault traces in map view for strike slip
earthquakes and in cross-section for thrust earthquakes.
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conjugate fault close to the hypocenter region and that
the hypocenter was located close to the junction. Aochi
and Kato (2010) investigated the possibility of a spontan-
eous rupture along the conjugated fault using the
boundary integral equation method.

Category 2 1987
Superstition hills earthquake The Superstition Hills
earthquake (M 6.8) occurred 12 h after the Elmore Ranch
fault earthquake (M 6.2) (Hudnut et al. 1989; Magistrale
et al. 1989; Wald et al. 1990). The Superstition Hills fault
is a conjugate of the Elmore Ranch. It should be noted
that the Elmore Ranch earthquake was initiated northeast
of the fault and the rupture propagated toward the junc-
tion. The Superstition Hills earthquake was initiated at the
junction and propagated toward the southeast.

2000 Wharton basin earthquake The June 2000
Wharton Basin earthquake (Mw 7.8) occurred in the
region of diffuse deformation between the Indian and
Australian plates, and it is considered as an intraplate
earthquake. Robinson et al. (2001) reported, from the ana-
lysis of teleseismic waveforms, and relocated aftershock
distribution that the Wharton Basin earthquake consisted
of two subevents, which were conjugate but they rup-
tured sequentially. The second rupture initiated
around the hypocenter of the first rupture.

2012 Sumatra earthquake The April 2012 Sumatra
earthquake (Mw 8.6) occurred at the northwestern
end of the Wharton Basin. This is an intraplate earth-
quake similar to the 2000 Wharton earthquake. Ac-
cording to the back projection of teleseismic data
from European and Japanese seismic arrays, it con-
sisted of four subevents that were conjugate and were
cascaded together; the rupture propagated sequentially
(Meng et al. 2012).

Category 2 earthquakes (1987 Superstition Hill, 2000
Wharton Basin, and 2012 Sumatra) ruptured sequen-
tially along the conjugate fault system, while in the cat-
egory 1 earthquakes (1987 East Chiba, 2000 Western
Tottori, and 2007 Niigata Chuetsu-oki), there is the
possibility that the rupture propagated simultaneously
along both conjugate faults. The aim of this paper is to
investigate the category 1 earthquakes in detail.
Based on theoretical modeling of dynamic fault ruptures,

several investigations were made on fault steps (e.g., Harris
and Day 1993; Kase and Kuge 1998) and fault branches
(e.g., Poliakov et al. 2002; Kame et al. 2003). The above ob-
servations are consistent with the theoretical investigation of
Kase and Kuge (1998) where they found that the conjugate
fault could be initiated where the main rupture terminated.
Xu et al. (2015) systematically investigated the physical
mechanism of this conjugated faulting using two dimen-
sional (2-D) dynamic rupture simulations. Actually, slip on
the two conjugate faults releases the same strain so that it
becomes difficult for the rupture to propagate simultan-
eously on both faults when the main rupture is propagating.
The only exception could be at the initiation of the rupture
or after the termination of the previous rupture.
It should, however, be noted that all of the above results are

based on the relocated aftershock distribution as well as the
fault slip distribution estimated by waveform inversions. As
can be seen in the fault model database (Mai 2004), waveform
inversion results are not unique and may include a certain
amount of uncertainty. Thus, there remains the possibility that
conjugate faulting did not occur simultaneously during the
main rupture. Therefore, we need a solid observation showing
that conjugate faulting has occurred during the main rupture.
The Iwate-Miyagi Nairiku earthquake (Mw 6.9, MJMA

7.2) occurred on 13 June 2008 at 23:43 (UT). The hypo-
center location was estimated to be at a latitude of
39.0269° N and a longitude of 140.8779° E; its depth was
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6.5 km (Sekine et al. 2008). This was one of the largest in-
traplate earthquakes with reverse faulting that had occurred
at a shallow depth inland in northeast Japan. According to
the F-net moment tensor estimated by regional broadband
seismograms, the estimated fault strike, dip, and rake
angles were N209° E, 51°, and 104°, respectively, and
the seismic moment was estimated to be 2.72 × 1019 Nm
(NIED 2008a). Based on the aftershock distribution esti-
mated by the Hi-net microseismic network, the fault
length and width were roughly 30 and 10 km, respectively
(NIED 2008b).
Before the earthquake, no active fault traces had been

recognized in the source region. However, immediately
after the earthquake, several fault surface breaks were
observed (e.g., Ishiyama et al. 2008; Maruyama et al.
2009), suggesting a west-northwest dipping reverse fault
with north-northeast strike.
In this paper, in order to investigate the conjugate fault-

ing during the main rupture, we analyzed the near-fault
accelerograms to estimate the coseismic tilt motion in
addition to the tiltmeter collocated as well as Global
Positioning System (GPS) data. Through this analysis, we
constrained the fault slip model of the 2008 Iwate-Miyagi
Nairiku earthquake and clarified whether a conjugated
fault slip occurred during the main rupture based on the
near-fault tilt data.

Tilt observations
The IWTH025 station, which is a KiK-net and Hi-net sta-
tion (latitude 39.00923° N, longitude 140.86363° E, height
386 m; the location was confirmed by a field survey),
which is called Ichinoseki-Nishi, and it is located very
close to the epicenter of the 2008 Iwate-Miyagi Nairiku
earthquake (2.3 km south-southwest of the epicenter,
Figure 2a). At this station, a three-component acceler-
ometer was installed on the surface, and a three-component
accelerometer, a three-component velocity seismometer, and
a two-component tiltmeter were installed at the bottom of a
260-m-deep borehole (Figure 2c). The corresponding
records should provide us with important information
on the source process of this earthquake. Since the tilt-
meter was designed to measure tiny tilt changes such
as from earth tides (approximately 10−7 radians), the
observation range was not sufficient to measure such a
huge ground tilt near the fault. Thus, the signal was
saturated immediately after the earthquake occurred,
and the tiltmeter recorded only the static tilt change
after the seismic radiation passed away (see Figure 3).

Tilt measured by accelerograms
We first computed ground displacements on the surface
as well as at the bottom of the borehole of the IWTH25
station by numerically integrating the accelerograms two
times in the time domain. In this integration procedure,
we only removed the initial offset of acceleration in the
original records and we kept the other offsets in the fol-
lowing processes. It should be noted that we did not
apply any baseline corrections to the accelerograms ex-
cept for the initial offset for the following reason.
It is well known that strong motion accelerograms

sometimes include baseline shifts caused by local tilts.
When an accelerogram tilts, its axes deviate from the
gravity axis, which causes additional acceleration. Several
techniques for baseline correction have been proposed
(e.g., Iwan et al. 1985; Boore 2001; Graizer 2006; Kinoshita
2008). However, as pointed out by Boore et al. (2002),
translation motion and rotation motion observed by
pendulum-type seismometers cannot intrinsically be
separated. Thus, it is theoretically impossible to extract
the rotation component from an accelerogram. There-
fore, in the present analysis, we did not correct the
baselines to obtain the displacements. We judged that a
baseline shift occurred (i.e., rotational motion occurred) only
when the displacements behaved as t2-type displacements.
As can be seen in Figure 4, ground displacements be-

haved in almost the same way for both locations. In par-
ticular, they were almost identical in terms of their UD
(up-down) and NS (north-south) components until 5 s.
Careful observation shows that in the EW (east-west)
component, a significant difference (approximately 0.2 m)
between the two displacements occurred between 3 and
8 s (Figure 4). Since the ground motion displacements of
UD and NS moved similarly for both surface and borehole
data until 5 s, and no t2-type behavior was observed in
the EW component during this time window, the dif-
ference in the EW component should be considered as
a well-recorded signal of ground motion reflecting a
large-scale deformation (at least larger than 260 m in
scale). This motion can be interpreted as a rotation
along the horizontal axis oriented in the NS direction,
i.e., EW tilt motion. Since the distance between the
two accelerograms was 260 m, the tilt angle change
was calculated to be 0.8 × 10−3 radians (Table 1), which
is five orders of magnitude larger than that of a typical
tidal change observed by conventional tiltmeters. Hereafter,
we call this tilt motion DIF tilt. It should be noted that this
tilt change occurred during the coseismic deformation,
i.e., during the increase in displacements.
Regarding the NS component, the surface displace-

ment started to behave as t2-type after 5 s (Figure 4) so
that in this time window the NS displacement at the sur-
face might include surface tilt around the sensor. We
could see similar features in the UD and EW compo-
nents. Thus, we could not estimate the NS tilt motion
correctly and we were unable to determine whether it
was positive or negative.
The error in the tilt estimates depends on how precisely

the displacements were estimated at both locations, and a
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Figure 2 Location of the IWTH25 station and its observation system. (a) Location of the IWTH25 station (red circle) plotted with other K-NET
(solid triangles) and KiK-net stations (solid circles). The blue star indicates the epicenter location of the 2008 Iwate-Miyagi Nairiku earthquake. The
rectangular region shows the fault area of the 2008 earthquake. The red open rectangle in the upper right inset stands for the area plotted.
(b) Close-up view of the location of IWTH25 plotted with the GPS station ICNS. The map image data is from the Geological Survey of Japan
through http:/cyberjapan.jp. Brown contours indicate the heights at an interval of 20 m. (c) Schematic illustration of the IWTH25 station. Beneath
the observation hut, a three-component accelerometer was installed, and it was isolated from the basement of the hut. In front of the hut, a
260-m-deep borehole was dug. At the bottom of the borehole, a sensor capsule was installed that included a three-component short-period
velocity seismometer, a three-component accelerometer, and a two-component tiltmeter.
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typical uncertainty in displacement is on the order of
3 cm. Therefore, the uncertainty in tilt motion reached
1 × 10−4 radians in this case.

Static tilt measured by other instruments
Some other observations were made of the static tilt
change at and around the IWTH25 station. Static tilt
change represents the tilt change measured by the differ-
ence between the tilt before and after the earthquake,
thus it might include post-seismic deformation in addition
to the coseismic one. A pendulum-type tiltmeter was in-
stalled at the bottom of the borehole in the same capsule
as the borehole accelerometer. The static tilt change was
observed to be 0.23 × 10−3 radians down to the east and
0.14 × 10−3 radians down to the north (Figure 3a, Table 1).
This is more or less consistent with the DIF tilt observed
by the accelerometers. Although the magnitude of the EW
tilt change measured by the tiltmeter was smaller, the tilt
direction was consistent with those of the accelerograms
taking into account the uncertainty in the NS component.
From the accelerogram on the surface, we could esti-

mate the surface tilt by measuring the static offset appear-
ing in the surface accelerogram, which was 2.2 × 10−3

radians down to the east (Figure 3b, Table 1). We call this
tilt SUF tilt to avoid potential confusion with DIF tilt. The
SUF tilt change was larger than the DIF tilt change, but
the tilt direction was again consistent with the DIF tilt. In
the borehole accelerogram, the static offsets were not con-
sistent among the three components, suggesting that these
offsets were not caused only by tilt motion. Accordingly,
we did not use the offset of the borehole accelerogram for
the tilt estimation.
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Figure 3 Tilt data at the IWTH25 station. (a) Tilt change data observed by the tiltmeter installed at the bottom of the borehole at the IWTH25
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In addition, we could roughly estimate the tilt change
using the GPS displacement at the station named ICNS
(39.01206° N, 140.86314° E, 468.5 m, Figure 2b) with re-
spect to the displacement at IWTH25. The coseismic
displacements at ICNS were estimated to be 0.439 m to
the east, 0.339 m to the north, and 1.557 m upward
(Ohta et al. 2008, Table 1). Since the ICNS station is located
about 320 m N6.5° W from IWTH25, and it is 83 m higher
than that of IWTH25 (Figure 2b), a tilt motion of 3 × 10−3

radians down to the east can be estimated (Table 1). This is
again consistent with other observations.

Interpretation of tilt data
The tilt estimated above should be quite useful for inter-
preting the dynamic faulting of this earthquake. Several
kinematic fault models have been proposed for this
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earthquake. Ohta et al. (2008) constructed a fault model
consisting of two planar faults by inverting GPS data
around the source region. Takada et al. (2009) estimated
a fault model to fit the Interferometric Synthetic Aperture
Radar (InSAR) data. Takada’s model consists of five planar
reverse faults, one of which has a conjugate dip. Abe et al.
(2013) updated Takada’s model by assuming two nonplanar
Table 1 Observed and predicted displacements and tilts at IW

Data/Model Disp. East [m] Disp. North [m] Disp. u

ICNS GPS1 0.439 0.339 1.577

IWTH25acc_S2 0.3 0.65 1.5

IWTH25acc_B3 0.1 0.65 1.5

IWTH25tilt4 - - -

IWTH25_diff5 - - -

IWTH25-ICNS6 - - -

Ohta et al. (2008)7 0.235 −0.179 0.341

Takada et al. (2009) 8 0.367 −0.517 0.580

Suzuki et al. (2010) 9 0.321 0.334 0.892

Suzuki + conj. fault10 0.258 0.599 1.465
1GPS displacement at ICNS station taken from (Ohta et al. 2008). 2Displacement and
measured by the borehole accelerogram at IWTH25. 4Tilt measured by the tiltmeter
displacements at IWTH25 (DIF tilt). 6Tilt measured by the spatial derivative between
by the fault models of Ohta et al. (2008), Takada et al. (2009), and Suzuki et al. (201
model of Suzuki et al. (2010) with fault 3 (conjugate fault) of Takada et al. (2009).
fault segments. Asano and Iwata (2008), Suzuki et al.
(2010), and Cultrera et al. (2013) estimated the kinematic
fault motion using strong motion seismograms. Hikima
et al. (2008) used strong motion and geodetic data. Yokota
et al. (2009) used 1-Hz GPS data. Asano and Iwata (2008),
Hikima et al. (2008), Yokota et al. (2009), Suzuki et al.
(2010), and Cultrera et al. (2013) assumed one planar fault
TH25 and ICNS

p [m] Tilt E-down [×10−3radian] Tilt N-down [×10−3radian]

- -

2.16 −0.73

- -

0.23 0.14

0.8 > ± 0.1

3.2 −3.9

−0.122 0.010

−0.054 −0.056

−0.097 0.110

0.108 0.141

tilt (SUF tilt) measured by the surface accelerogram at IWTH25. 3Displacement
at IWTH25. 5Tilt measured by the spatial derivative of surface and borehole
ICNS and IWTH25 (borehole). 7–9Predicted displacements and tilts at IWTH25
0), respectively. 10Predicted displacements and tilts at IWTH25 by the fault
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divided by approximately 2 × 2 km2 subfaults, and the
strike- and dip-slip developments were estimated at each
subfault.
Here, we compute the ground deformation at the

IWTH25 station using the models by Ohta et al. (2008),
Takada et al. (2009), and Suzuki et al. (2010). Ground
displacements and ground tilts were computed using the
crustal deformation code from Okada (1992). The results
are summarized in Table 1.
As shown in Ohta et al. (2008), the model by Ohta

et al. could not fit the GPS data at ICNS which is close
to the IWTH25 station. Thus, apparently, this model
could not explain the deformation at IWTH25 as shown
in Table 1. This is because they used only two planar
rectangular faults, on each of which uniform slip was as-
sumed. Therefore, the fault model estimated using GPS
data was not suitable for the present purpose.
Suzuki et al. (2010) used 180 subfaults (each with

2 × 2 km2 areas) with seven time windows (each has a
0.8-s duration with an interval of 0.4 s) and estimated
strike- and dip-slips at each spatiotemporal window.
Thus, their model includes spatial variation of slip on
the fault as well as rake angle variation in spite of a
planar single fault assumption. As shown in Figure 5
and Table 1, in their model, the ground deformation
direction could be explained, where the existence of
the shallow asperity controls the ground deformation.
a)

c)

Figure 5 Ground deformation and ground tilt computed using the Ta
Arrows represent horizontal displacements and contours indicate vertical d
direction (dipping direction) and contours show the magnitudes of tilt. (c)
circles show the locations of the epicenter and the IWTH25 station, respect
However, their model could not explain the tilt direc-
tion at IWTH25.
Takada et al. (2009) inverted the InSAR data to esti-

mate the orientation of five planar faults and their slips.
In order to explain the spatial extent of the large dis-
placement area on the surface, they introduced a conju-
gate fault (fault 3 in Takada et al. 2009) at the western
boundary of the aftershock region. In their model, since
the IWTH25 station is located at the edge of rectangular
faults, near-field ground deformation cannot be modeled
well there (Figure 6 and Table 1). In addition, it is not
clear whether the estimated slip on the conjugate fault
occurred coseismically during the earthquake or after
the earthquake as a post-seismic deformation because
the acquisition of satellite imagery data for InSAR ana-
lysis was not continuous. However, it is worth consider-
ing the conjugate fault because the InSAR data include
information on the spatial extent of the slip that was not
constrained by other observations.
Therefore, we think that both the heterogeneous slip

distribution on the main west-dipping fault and some
contribution on the east-dipping conjugate fault are re-
quired to explain the ground deformation and ground
tilt at the IWTH25 station. Thus, we computed the
ground deformation with the Suzuki et al. (2010) slip
model and the conjugate fault (fault 3 of Takada et al.
2009) (Figure 7 and Table 1). The obtained results fit
b)

d)

kada et al. (2009) model. (a) Ground displacements are shown.
isplacements. (b) Ground tilt distribution. Arrows show the tilt
Magnified version of (a). (d) Magnified version of (b). Green and red
ively.
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Figure 6 Ground deformation and ground tilt computed using the Suzuki et al. (2010) model. (a) Ground displacements, (b) ground tilt
distribution, (c) magnified version of (a), and (d) Magnified version of (b). Legends are the same as in Figure 5.

a) b)

c) d)

Figure 7 Ground deformation and ground tilt computed using the Suzuki’s model with Takada’s conjugate fault. Main fault slip distribution
is taken from Suzuki et al. (2010) and the conjugate fault is from fault 3 of Takada et al. (2009). (a) Ground displacements, (b) ground tilt distribution,
(c) magnified version of (a), and (d) Magnified version of (b). Legends are the same as in Figure 5.
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remarkably well with the observations at IWTH25.
Thus, we concluded that a conjugate fault slip is re-
quired to explain the displacement and tilt motion at
IWTH25.
An interesting consequence of this result is that the

slip on the conjugate fault occurred simultaneously dur-
ing the dynamic rupture of this earthquake on the main
fault because the tilt change at IWTH25 occurred
coseismically during the earthquake rupture as indi-
cated above. If both the west-dipping main fault and
the east-dipping conjugate fault slipped simultaneously
during the earthquake, the initiation mechanism for
the conjugate fault rupture might be of interest. It
should be pointed out that the conjugate fault and the
branched fault had opposite slip directions at the junction.
In the future, it would be interesting to investigate the
rupture dynamics for the simultaneous rupture of conju-
gate faults in the future.

Conclusion
At the IWTH25 station, near-field tilt motion was ob-
served by two sets of accelerometers vertically collocated
on the surface and at the bottom of a 260-m-deep bore-
hole during the 2008 Iwate-Miyagi Nairiku earthquake.
The amount of tilt was estimated to be 0.8 × 10−3 radians
down to the east. To explain this tilt motion based on
pre-existing fault models, we concluded that a slip along
the conjugate fault coseismically occurred during the
earthquake. This represents an important direct observa-
tion of a conjugated fault rupture in the field.
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