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Background
The idea of computer virus came into being around 1980 and has continued threatening 
the society. During these early stages, the threat of this virus was minimal [1]. Modern 
civilized societies are being automated with computer applications making life easy in 
the areas such as education, health, transportation, agriculture and many more. Follow-
ing recent development in complex computer systems, the trend has shifted to sophis-
ticate dynamic of computer virus which is difficult to deal with. In 2001, for example, 
the cost associated with computer virus was estimated to be 10.7 United State dollars 
for only the first quarter [1]. Consequently, a comprehensive understanding of computer 
virus dynamics has become inevitable to researchers considering the role played by this 
wonderful device. To ensure the safety and reliability of computers, this virus burden can 
be tackled in twofold: microscopic and macroscopic [2−6].

The microscopic level has been investigated by [3], who developed anti-virus program 
that removes virus from the computer system when detected. The program is capable of 
upgrading itself to ensure that new virus can be dealt with when attacks computer. The 
characteristics of this program are similar to that of vaccination against a disease. They 
are not able to guarantee safety in computer network system and also difficult to make 
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good future predictions. The macroscopic aspect of computer has seen tremendous 
attention in the area of modeling the spread of this virus and determining the long-term 
behavior of the virus in the network system since 1980 [4]. The concept of epidemiologi-
cal modeling of disease has been applied in the study of the spread of computer virus in 
macroscopic scale [6−8].

Possibly reality of nature could be well understood via fractional calculus perspec-
tive. A considerable attention has been devoted to fractional differential equations by 
the fact that fractional-order system is capable to converge to the integer-order system 
timely. Fractional-order differential equations’ applications in modeling processes have 
the merit of nonlocal property [9–11]. The model proposed in [10] is a deterministic 
one and fails to have hereditary and memory effect and therefore, cannot adequately 
describe the processes very well.

In this paper, we present the fractional-order derivative and obtain analytic numeric 
solution of the model presented in [10]. The rationale behind the application of frac-
tional derivatives can also be ascertained from some of the current papers published on 
mathematical modeling [12–16]. In addition to this, the practical implication of frac-
tional derivative can be established in [17].

Model formulation
In this study, we take into account the model proposed by [10]. In their study, the 
total population of this model is denoted by T which is subdivided into four groups. S 
denotes the non-infected computers capable of being infected after making contact with 
infected computer. A is the kind of computers non-infected equipped with antivirus. I 
denotes infected computers capable of infecting non-infected computers and R deals 
with removed ones due to infection or not. The recruitment rate of computers into the 
non-infected computers’ class is denoted by N and µ is the proportion coefficient for the 
mortality rate which is not attributable to the virus. β is the rate of proportion of infec-
tion as a result of product of SI. The conversion of susceptible computer into antidotal is 
the product of SI denoted by αSA. The proportion of converting infected computers into 
antidotal ones in the network is the product of SA denoted by αIA. The rate of removed 
computers being converted into susceptible class is represented by σ and δ denotes the 
rate at which the virus rate computers useless and remove from the system.

The mathematical model under consideration here is given as:

Here, the recruitment rate is taken to be N = 0, indicating that there is no new com-
puter entering into the system during the propagation of the virus. This is because in 
reality the transfer of virus is faster than adding new computers into the system. The 
same reason can assign to the choice of µ = 0, taking into account the fact that the com-
puter outmodedness time is longer than the time of the virus action being manifested. 
Accordingly, equation system (1) is reformulated as follows:

(1)



























dS
dt

= N − αASSA− βSI − µS + σR,

dI
dt

= βSI − αAIAI − δI − µI ,

dR
dt

= δI − σR− µR,

dA
dt

= αASSA+ αASAI − µA.
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In this paper, we shall fully explore the concept of fractional derivatives and other cur-
rent proposed derivatives, and in this study, we shall examine this model in the con-
text of fractional derivatives as well as the beta-derivatives. Consequently, Eq. (2) can be 
transformed into the following:

where A0D
α
t  represents the Caputo derivative or the new derivative called beta-derivative. 

In the next section, some background on the use of fractional and beta-derivatives will 
be presented. The basic aim of this study is to explore both fractional and beta-deriv-
atives for modeling epidemiological problem in computers. The fractional derivatives 
are noted for non-local problems and maybe appropriate for epidemiological issues. The 
fractional order, however, is an indispensable tool for numerical simulations, and there-
fore, a local derivative with fractional order is presented in this study to model the prop-
agation of computer virus in a network.

This provides the invariance of � as to be determined. We conclude from this theorem, 
that it is sufficient to deal with the dynamics of (1) in �. In this respect, the model can be 
assumed as being epidemiologically and mathematically well-posed [18].

Basic concept about the beta‑derivative and Caputo derivative

Definition 1  Let f be a function, such that, f : [a,∞) → R. Then, the beta-derivative 
is expressed as follows:

for all x � a,β ∈ (0, 1]. Then if the limit of the above exists, it is said to be beta-differen-
tiable. It can be noted that the above definition does not depend on the interval stated. If 
the function is differentiable, then definition given at a point zero is different from zero.

Theorem 1  Assuming that g �= 0 and there are two functions beta-differentiable with 
β ∈ (0, 1]; then, the following relations can be presented:

(2)



























dS
dt

= −αASSA− βSI + σR,

dI
dt

= βSI − αAIAI − δI ,

dR
dt

= δI − σR,

dA
dt

= αASSA+ αASAI .

(3)



























A
0
D
α
t S(t) = −αASSA− βSI + σR,

A
0
D
α
t I(t) = βSI − αAIAI − δI ,

A
0
D
α
t R(t) = δI − σR,

A
0
D
α
t A(t) = αASSA+ αASAI .

(4)A
0D

β
x

(

f (x)
)

= lim
ε→0

(

x + ε

(

x + 1
Γ (β)

)1−β
)

− f (x)

ε
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1.	 A
0D

α
x

(

af (x)+ bg(x)
)

= aA0D
α
x

(

f (x)
)

+ bA0D
α
x

(

f (x)
)

 for all a and b being real num-
bers,

2.	 A
0D

α
x (c) = 0 for c any given constant,

3.	 A
0D

α
x

(

f (x)g(x)
)

= g(x)A0D
α
x

(

f (x)
)

+ f (x)A0D
α
x

(

g(x)
)

4.	 A
0D

α
x

(

f (x)
g(x)

)

=
g(x)A0D

α
x (f (x))−f (x)Dα

x (g(x))
g2x

The proofs of the above relations are identical to the one in [19].

Definition 2  Assuming that f : [a,∞) → R be a function in a way that f is differenti-
able and also alpha-differentiable. Assume g be a function defined in the range of f and 
also differentiable, then we obtain the following rule:

The above operator is referred to as the inverse operator of the proposed fractional 
derivative. We shall present the principle behind this statement using the following 
theorem.

Theorem 2  A
0D

α
x

[

A
0 I

β
x f (x)

]

= f (x) for all x � a with f a given continuous and differenti-
able function.

Definition 3  The Caputo fractional derivative of a differentiable function is expressed 
as:

The properties behind the use of the Caputo derivative can be established in [14–16, 19]. 
Given all the information discussed, we shall introduce in the subsequent section the 
analysis of this model.

Analysis of the mathematical model
This section is devoted to discuss the stability analysis of the model. The disease-free 
equilibrium and endemic equilibrium points are established. To determine the equilibria 
points, we make an asumption that the system does not depend on time; hence,

(5)A
0D

α
x I

β
x

(

f (x)
)

=

x
∫

a

(

t +
1

Γ (β)

)β−1

f (t) dt.

(6)Dα
x

(

f (x)
)

=
1

Γ (n− α)

x
∫

0

(x − t)n−α−1

(

d

dt

)n

f (t) dt, n− 1 < α � n.

(7)A
0D

α
t S(t) =

A
0D

α
t I(t) =

A
0D

α
t R(t) =

A
0D

α
t A(t) = 0.

(8)























0 = −αASS
∗
A
∗ − βS∗I∗ + σR∗

0 = βS∗I∗ − αAIA
∗
I
∗ − δI∗

0 = δI∗ − σR∗

0 = αASS
∗
A+ αASA

∗
I
∗

.
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Solving the above system, we obtain

Hence, the disease-free equilibria are given as:

The stability analysis of this model has been extensively dealt with in [10]. The next sec-
tion will be concentrated on an approximate solution based on the two analytical tech-
niques for each situation.

Analysis of approximate solutions
One of the most challenging tasks in non-linear fractional differential equation systems 
is probably how to obtain exact analytical solutions. This accounts for the reasons why 
in recent times, a lot of attention has been devoted in the quest for obtaining techniques 
that can ensure asymptotic solutions in such situations. We shall make reference to some 
of the recent techniques on this subject which are efficient and effective and have been 
widely used; for instance, the decomposition method [12], Sumudu homotopy perturba-
tion method [20], the Adomian Decomposition method [11, 21], homotopy perturbation 
method [19, 22, 23], the homotopy Laplace perturbation method [24], and the homot-
opy. In this study however, we shall make use of two of these stated techniques, spe-
cifically the Laplace homotopy perturbation method and the homotopy decomposition 
method. The homotopy decomposition method will be employed to provide solution 
to the model with the beta-derivative, followed by the Laplace homotopy perturbation 
method which will be used to solve the system with Caputo derivative.

Solution with the Laplace homotopy perturbation method

This form was initially proposed in [18], and has been also employed in various scientific 
researches. We shall explore the methodology for obtaining solution to system (3) with 
the Caputo fractional derivative in this section:

Applying the Laplace transform operator on both sides of the above system, we obtain 
the following:

(9)S∗ =
δ

β
; I∗ =

T − δ/β

1+ δ/σ
; R∗ =

T − δ/β

1+ σ/δ
; A = 0.

(10)E1 = (S, I ,R,A) = (0, 0, 0,T );

(11)E2 = (S, I ,R,A) = (T , 0, 0, 0).

(12)



























C

0
D
α
t S(t) = −αASSA− βSI + σR,

C

0
D
α
t I(t) = βSI − αAIAI − δI ,

C

0
D
α
t R(t) = δI − σR,

C

0
D
α
t A(t) = αASSA+ αAIAI .

(13)



























S(τ ) = 1

τα
S(0)+ 1

τα
ℓ(−αASSA− βSI + σR),

I(τ ) = 1
τα
I(0)+ 1

τα
ℓ(βSI − αAIAI − δI),

R(τ ) = 1

τα
R(0)+ 1

τα
ℓ(δI − σR),

A(τ ) = 1
τα
A(0)+ 1

τα
ℓ(αASSA+ αAIAI).
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The Laplace variable is denoted by τ s. Further, the inverse Laplace transform is applied 
on both sides of the system to yield

Following the system above, we shall make an assumption that a solution can be obtained 
in the form of series as follows:

Conversely, substituting the above solution in system (11) and adding the embedding 
parameter p ∈ (0, 1], bringing all the terms of the same power of the embedding param-
eter p together, we have

In broad-spectrum, we shall obtain the following system of iteration formulas (15):

The above general rule can be simplified in the following algorithm steps:

(14)



































S(t) = S(0)+ ℓ−1
�

1

τα
ℓ(−αASSA− βSI + σR)

�

,

I(t) = I(0)+ ℓ−1
�

1
τα
ℓ(βSI − αAIAI − δI)

�

,

R(t) = R(0)+ ℓ−1
�

1
τα
ℓ(δI − σR)

�

,

A(t) = A(0)+ ℓ−1
�

1
τα
ℓ(αASSA+ αAIAI)

�

.

(15)S(t) =

∞
∑

n=0

Sn(t), I(t) =

∞
∑

n=0

In(t), R(t) =

∞
∑

n=0

Rn(t), A(t) =

∞
∑

n=0

An(t).

(16)p0 :











S0(t) = S(0)
I0(t) = I(0)
R0(t) = R(0)
A0(t) = A(0)

,

(17)p1 :



































S1(t) = ℓ−1
�

1

τα
ℓ(−αASS0A0 − βS0I0 + σR0)

�

I1(t) = ℓ−1
�

1
τα
ℓ(βS0I0 − αAIA0I0 − δI0)

�

R1(t) = ℓ−1
�

1

τα
ℓ(δI0 − σR0)

�

A1(t) = ℓ−1
�

1
τα
ℓ(αASS0A0 + αAIA0I0)

�

(18)

pn :























































Sn(t) = ℓ−1

�

1
sα ℓ

�

−αAS
n−1
�

j=0

A(n−j−1)SjAj − β
n−1
�

j=0

I(n−j−1)Sj + σR(n−1)

��

In(t) = ℓ−1

�

1
sα ℓ

�

β
n−1
�

j=0

I(n−j−1)Sj − αAl

n−1
�

j=0

I(n−j−1)Aj − δI(n−1)

��

Rn(t) = ℓ−1
�

1
sα ℓ

�

δI(n−1) − σR(n−1)

�

�

An(t) = ℓ−1

�

1
sα ℓ

�

αASαAS
n−1
�

j=0

A(n−j−1)SjAj + αAl

n−1
�

j=0

I(n−j−1)Aj

��

.

(19)p0 :











S0(t) = S(0)
I0(t) = I(0)
R0(t) = R(0)
A0(t) = A(0)
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Algorithm 1. This technique can be employed to obtain a special solution to system 
(2) via a Caputo fractional derivative

Input p0 :











S0(t) = S(0)
I0(t) = I(0)
R0(t) = R(0)
A0(t) = A(0)

  as initial input,

j-number terms in the rough computation,

Output: 











Sappr(t) = S(0)
Iappr(t) = I(0)
Rappr(t) = R(0)
Aappr(t) = A(0),

the estimated solution.

Step 2: For j = 1 to n− 1 do step 3, step 4 and step 5:

Step 3: Compute

Step 4: Compute

Step 5: Compute

(20)Step1 : Put











S0(t) = S(0)
I0(t) = I(0)
R0(t) = R(0)
A0(t) = A(0)

and











Sappr(t) = S(0)
Iappr(t) = I(0)
Rappr(t) = R(0)
Aappr(t) = A(0)

=











S0(t) = S(t)
I0(t) = I(t)
R0(t) = R(t)
A0(t) = A(t),

(21)



































S1(t) = ℓ−1
�

1

τα
ℓ(−αASS0A0 − βS0I0 + σR0)

�

I1(t) = ℓ−1
�

1
τα
ℓ(βS0I0 − αAIA0I0 − δI0)

�

R1(t) = ℓ−1
�

1
τα
ℓ(δI0 − σR0)

�

A1(t) = ℓ−1
�

1
τα
ℓ(αASS0A0 + αAIA0I0)

�

(22)











































































Sn(t) = ℓ−1

�

1
τα
ℓ

�

−αAS
n−1
�

j=0

A(n−j−1)SjAj − β
n−1
�

j=0

I(n−j−1)Sj + σR(n−1)

��

In(t) = ℓ−1

�

1
τα
ℓ

�

β
n−1
�

j=0

I(n−j−1)Sj − αAI
n−1
�

j=0

I(n−j−1)Aj − δI(n−1)

��

Rn(t) = ℓ−1
�

1

τα
ℓ
�

δI(n−1) − σR(n−1)

�

�

An(t) = ℓ−1

�

1

τα
ℓ

�

αASαAS
n−1
�

j=0

A(n−j−1)SjAj + αAI
n−1
�

j=0

I(n−j−1)Aj

��

(23)























S(m+1)(t) = Bm(t)+ S(appr)(t)

I(m+1)(t) = Bm(t)+ I(appr)(t)

R(m+1)(t) = Km(t)+ R(appr)(t)

A(m+1)(t) = Km(t)+ A(appr)(t)

(24)























S(appr)(t) = Sappr(t)+ S(m+1)(t)

I(appr)(t) = Iappr(t)+ I(m+1)(t)

R(appr)(t) = Rappr(t)+ R(m+1)(t)

A(appr)(t) = Aappr(t)+ A(m+1)(t)
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Stop.
The above algorithm shall be applied to obtain the unique solution of system (3) via 

the Caputo derivative. We shall explore the situation where the beta-derivative is used 
and this will be discussed in “Basic concept about the beta-derivative and Caputo deriva-
tive” section.

Solution with the homotopy decomposition method

This method is explored here to obtain a special solution to system (3) with the beta-
derivative. The reason is that using the Laplace transform on this derivative does not 
guarantee desirable results. The inverse operator of this derivative, however, can be 
applied which is termed as the beta-integral, and this helps to convert the ordinary dif-
ferential equation into an integral equation in a way that the concept of homotopy can 
be applied. Consequently, taking the inverse operator on both sides of system (2), we 
have the following system of integral equations:

where

Additionally, we shall make an assumption that a solution of the above can be derived in 
a form of series as follows:

Conversely, substituting the above solution in system (15) and adding the embedding 
parameter p ∈ (0, 1], bringing all the terms of the same power of the embedding param-
eter p together, we have

(25)



























S(τ ) = S(0)+ A
0
I
α
t (−αASSA− βSI + σR)

I(τ ) = I(0)+ A
0
I
α
t (βSI − αAIAI − δI)

R(τ ) = R(0)+ A
0
I
α
t (δI − σR)

A(τ ) = A(0)+ A
0
I
α
t (αASSA+ αAIAI)

(26)
A
0 I

β
t

(

f (x)
)

=

t
∫

0

(

τ +
1

Γ (β)

)1−β

f (τ )dτ .

(27)S(t) =

∞
∑

n=0

Sn(t), I(t) =

∞
∑

n=0

In(t), R(t) =

∞
∑

n=0

Rn(t), A(t) =

∞
∑

n=0

An(t).

(28)p0 :











S0(t) = S(0)
I0(t) = I(0)
R0(t) = R(0)
A0(t) = A(0)
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In broad sense, we shall have the ensuing system of iteration formulas:

The above embellishment can be taken up in the succeeding procedure.

Input 











S0(t) = S(0)
I0(t) = I(0)
R0(t) = R(0)
A0(t) = A(0)

as initial input,

j-number terms in the rough computation,

Output:











Sappr(t)
Iappr(t)
Rappr(t)
Aappr(t)

 the estimated solution.

Step 1:

Step 2: For J − 1 to n− 1 do step 3, step 4 and step 5:

(29)
p1 :























































S1(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

{−αASS0A0 − βS0I0 + σR0}dτ

I1(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

{βS0I0 − αAIA0I0 − δI0}dτ

R1(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

{δI0 − σR0}dτ

A1(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

{αASS0A0 + αAIA0I0}dτ .

.

(30)pn :



















































































Sn(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

�

−αAS
n−1
�

j=0

A(n−j−1)SjAj − β
n−1
�

j=0

I(n−j−1)Sj + σR(n−1)

�

dτ

In(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

�

β
n−1
�

j=0

I(n−j−1)Sj − αAI
n−1
�

j=0

I(n−j−1)Aj − δI(n−1)

�

dτ

Rn(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β
�

δI(n−1) − σR(n−1)

�

dτ

An(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

�

αASαAS
n−1
�

j=0

A(n−j−1)SjAj + αAI
n−1
�

j=0

I(n−j−1)Aj

�

dτ .

(31)put











S0(t) = S(t)
I0(t) = I(0)
R0(t) = R(0)
A0(t) = A(0)

and











Sappr(t)
Iappr(t)
Rappr(t)
Aappr(t)

=











S0(t)
I0(t)
R0(t)
A0(t)

(32)























































S1(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

{−αASS0A0 − βS0I0 + σR0}dτ

I1(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

{βS0I0 − αAIA0I0 − δI0}dτ

R1(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

{δI0 − σR0}dτ

A1(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

{αASS0A0 + αAIA0I0}dτ
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Step 3: Compute:

Step 4: Compute:

Step 5: Compute:

Numerical results
We shall employ both Algorithms 1 and 2 to obtain an approximate solution of system 
(3) via the Caputo fractional derivative and the beta-derivative methods.

With the Caputo fractional derivative

In this part, Algorithm 1 is applied to obtain an approximation solution of system (3):

(33)



























































Bn(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

�

−αAS
n−1
�

j=0

A(n−j−1)SjAj − β
n−1
�

j=0

I(n−j−1)Sj + σR(n−1)

�

dτ

Bn(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

�

β
n−1
�

j=0

I(n−j−1)Sj − αAI
n−1
�

j=0

I(n−j−1)Aj − δI(n−1)

�

dτ

Kn(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β
�

δI(n−1) − σR(n−1)

�

dτ

Kn(t) =
t
�

0

�

τ + 1
Γ (β)

�1−β

�

αASαAS
n−1
�

j=0

A(n−j−1)SjAj + αAI
n−1
�

j=0

I(n−j−1)Aj

�

dτ

(34)























S(m+1)(t) = Bm(t)+ S(appr)(t)

I(m+1)(t) = Bm(t)+ I(appr)(t)

R(m+1)(t) = Km(t)+ R(appr)(t)

A(m+1)(t) = Km(t)+ A(appr)(t)

(35)























S(appr)(t) = S(appr)(t)+ S(m+1)(t)

I(appr)(t) = I(appr)(t)+ I(m+1)(t)

R(appr)(t) = R(appr)(t)+ R(m+1)(t)

A(appr)(t) = A(appr)(t)+ A(m+1)(t)

(36)











S0(t) = e
I0(t) = f
R0(t) = g
A0(t) = h

(37)

S1(t) =
tµ(−αASeh−βef+σ g)

Γ [1+µ]

I1(t) =
tµ(βef−αAIhf−δf )

Γ [1+µ]

R1(t) =
tµ(δf−σ g)
Γ [1+µ]

A1(t) =
tµ(αASeh+αAIhf )

Γ [1+µ]
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With the beta‑derivative

Algorithm 2 is used to derive the following series solutions:

Numerical simulations

In this section, we use parameters in [10], to obtain numerical simulation on illustration 
of the approximate solutions based on function of time as well as alpha. The parameter 
values used are αAS = 0.6, αIA = 0.4, β = 0.2, σ = 0.85, δ = 0.40 and with the following 
initial conditions S(0) = 100, I(0) = 10, R(0) = 5 and A(0) = 20.

Figures 1, 2, 3, 4, 5, 6, 7 and 8 depict the graphical representations of system (3). It is 
clearly seen from the graph that susceptible class which also represents the total popula-
tion get quickly infected due to how fast the virus spread with the system. It is obvious 
in the above figures that the total number of infected computers decreased as the total 
number of antidotal increased which is a strategy to reduce the number of susceptible 
computers. The numerical predictions (Figs. 1, 2, 3, 4, 5, 6, 7, 8) are also attributable to 
fractional order of beta. Realistically, when the beta is above 0.5, the non-realistic pre-
diction is attained. As the beta value increases above 0.5, it appears that anodotal com-
puters exceed the entire initial population. Thus, there exists unrealistic prediction. The 
best option to secure more computers is put anti-virus on both infected and susceptible 
computers to avoid disaster and huge cost. This is achieved when the beta value is <0.5 
as observed in (Figs. 4, 5, 6, 7, 8). It is not surprising, given the potential danger of anti 
virus in a computer system because the entire initial population ends up in that com-
partment. It is remarkable to note that when beta is 1 we obtain the ordinary deriva-
tive which implies the model ordinary derivative and hardly give good predictions. The 
newly introduced beta-calculus, however, has the potential of vividly describing a given 
physical problem. The obtained Figs. 1, 2, 3, 4, 5, 6, 7 and 8 is far better and accurate as 
compared to those obtained in [17]. This work has given better predictions as shown in 
Figs. 1, 2, 3, 4, 5, 6, 7 and 8 which is not the case of integer order in [17].    

(38)
S1(t) =

(

(

1
Γ [µ]

)−µ

−

(

t + 1
Γ [µ]

)−µ

(1+ tΓ [µ])2
)

(

−αASeh− βef + σ g
)

(−2+ µ)Γ [µ]2

(39)
I1(t) =

(

(

1
Γ [µ]

)−µ

−

(

t + 1
Γ [µ]

)−µ

(1+ tΓ [µ])2
)

(

βef − αAIhf − δf
)

(−2+ µ)Γ [µ]2

(40)
R1(t) =

(

(

1
Γ [µ]

)−µ

−

(

t + 1
Γ [µ]

)−µ

(1+ tΓ [µ])2
)

(

δf − σ g
)

(−2+ µ)Γ [µ]2

(41)
A1(t) =

(

(

1
Γ [µ]

)−µ

−

(

t + 1
Γ [µ]

)−µ

(1+ tΓ [µ])2
)

(

αASeh+ αAIhf
)

(−2+ µ)Γ [µ]2
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Conclusions
The concept of beta-derivative and Caputo fractional derivative has assisted in investi-
gating the spread of computer virus in a system. This computer virus has been found all 
over the world where computers are available and causing major financial losses to many 
establishments. It is worthy to note that the definition of fractional derivative is associ-
ated with the convolution of the derivative of a given function with its function power. 
Convolution is applied to many branches of engineering including image processing 
as a filter. Fractional derivative, however, in epidemiology serves a memory capable of 
tracing the spread from beginning to the infected individual. For beta-derivative which 

Fig. 1  Approximate solution for α = 0.105

Fig. 2  Approximate solution for α = 0.105

Fig. 3  Approximate solution for α = 0.105
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ranges between fractional order and local derivative, the spread of computer virus at 
local level is identified with a given fractional order. In this study, two distinct concepts 
of derivatives are employed to investigate the spread of computer virus. The proposed 
model based on the methodology used was solved iteratively. The numerical simulation 
results depict that the prediction is based on the fractional order of beta. Simply when 
beta is close to 1, we obtain non-realistic prediction which is not the case in [10] and 
when beta is ≤0.5, a good prediction is attained. Since it is the desire of any institution 
to have their computers with virus free, the initial computers at the end of the simula-
tion moved into Anodotal section when beta is <0.5 as observed in Figs. 4, 5, 6, 7 and 8. 

Fig. 4  Approximate solution for β = 1

Fig. 5  Approximate solution for β = 0.65

Fig. 6  Approximate solution for β = 0.3
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It worthy to notice that when beta is 1, we have ordinary differential derivative cases for 
both derivatives which do not provide a good prediction. Thus, with the newly intro-
duced, beta-calculus has the potential of providing a vivid account of physical problem 
more precisely.
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