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Paclobutrazol as a plant growth regulator
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Abstract 

Plant growth regulators are chemical substances which govern all the factors of development and growth within 
plants. The application of plant growth regulators to crops modifies hormonal balance and growth leading to 
increased yield, enhanced crop tolerance against abiotic stress and improved physiological trait of crops. Paclobutra-
zol (PBZ) [(2RS, 3RS)-1-(4-chlorophenyl)- 4, 4-dimethyl-2-(1H-1, 2, 4-trizol-1-yl)-pentan-3-ol], is one of the members of 
triazole family having growth regulating property. The growth regulating properties of PBZ are mediated by changes 
in the levels of important plant hormones including the gibberellins (GAs), abscisic acid (ABA) and cytokinins (CK). PBZ 
affects the isoprenoid pathway, and alters the levels of plant hormones by inhibiting gibberellin synthesis and increas-
ing cytokinins level and consequent reduction in stem elongation. When gibberellins synthesis is inhibited, more 
precursors in the terpenoid pathway accumulate and that resulted in the production of abscisic acid. PBZ is more 
effective when applied to the growing media and application on the growing medium would give longer absorption 
time and more absorption of active ingredient than foliar spray. The application of PBZ to crops is important in reduc-
ing plant height to prevent lodging and in increasing number and weight of fruits per tree, in improving the fruit 
quality in terms of increases in carbohydrates, TSS, TSS/TA and decreases acidity. It further reduces evapo-transpiration 
and decreases plant moisture stress by enhancing the relative water content of leaf area and develops resistance in 
the plants against biotic and abiotic stresses. In addition, it acts as highly active systemic fungicide and used against 
several economically important fungal diseases. In this review, the current knowledge and possible applications of 
PBZ, which can be used to improve the growth, yield and quality of crops, have been reviewed and discussed. The 
role of PBZ to mitigate the harmful effects of environmental stresses in crops is also examined. Moreover, various 
biochemical and physiological processes leading to improved crop production under the effect of PBZ are discoursed 
in detail.
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Background
Plant growth regulators are organic substances produced 
naturally in higher plants, controlling growth or other 
physiological functions at a site remote from its place of 
production and active in minute amounts [1]. They play a 
role in affecting growth, yield and quality of crops [2, 3]. 
Besides, they are important in stress protection [4].

Triazole compounds are systemic fungicides having 
plant growth regulating properties and are called as stress 
protectants, because of their innate ability to induce abi-
otic stress tolerance by increasing antioxidant enzymes 

and molecules in stress-affected plants [5]. The plant 
growth regulating properties of triazoles are mediated 
by their ability to alter the balance of important plant 
hormones including Gibberellic acid (GA), Abscisic acid 
(ABA) and Cytokinins [6]. They induce a variety of mor-
phological and biochemical responses in plants; inhib-
ited shoot elongation, stimulated root growth, increased 
cytokinin synthesis and a transient rise in ABA, as well 
as conferring protection from various environmental 
stresses [7, 8].

PBZ (Bonzi), a triazole family having growth regulat-
ing property, is an extremely active chemical and affects 
almost all plant species, whether applied as a spray or a 
soil drench [9]. PBZ inhibits GA biosynthesis by blocking 
the oxidation of ent-kaurene [10]. It is applied to plants in 
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the floricultural industry to control their size and qual-
ity [11]. It is applied to perennials and other pot crops at 
rates of 1–90 mg L−1 [9]. When applied as a foliar spray, 
PBZ is absorbed by petioles and stems and is translocated 
through the xylem to the growing tip. When applied as 
a soil drench, it is taken up through the roots and then 
translocated through the xylem to the apical meristems 
[12]. Soil drenches with PBZ may be more effective than 
the foliar sprays due to increase activity and less probabil-
ity of stunting and flowering delay, due to no direct con-
tact with flowers or flower buds [11]. Depending on plant 
species, PBZ can delay or promote flowering. PBZ half-
life in the soil varies between 6 and 12 months depend-
ing upon the soil type and environmental conditions [13]. 
Effectiveness of drenches is reduced if the crop is grown 
in a bark medium, because the chemical will adsorb to 
the bark and less will be available in the medium solution 
for the plant to absorb. Phytotoxicity symptoms are not 
common when applied to perennials, but care must be 
taken with those species that are known to be sensitive. 
Therefore, the aim of this review is to summarize the evi-
dence on the biochemical and physiological responses of 
PBZ as a growth regulator and as a stress protectant.

Paclobutrazol
Plant growth retardants are compounds which are used 
to reduce plant growth without changing developmen-
tal patterns or being phytotoxic [14]. The largest group 
of plant growth retardants consists of chemicals antago-
nistic to gibberellins (GA), the hormone that is respon-
sible for plant growth [7]. Commercially used inhibitors 
of GA biosynthesis are: (a) onium-type compounds, 
(b) compounds with a N-heterocycle (triazole-type), 
(c) structural mimics of 2-oxoglutaric acid, and (d) 16, 
17-dihydroGAs [14].

PBZ, a member of triazole plant growth regulator 
group, is used widely in agriculture [15]. It is a cell elon-
gation and internode extension inhibitor that retards 
plant growth by inhibition of gibberellins biosynthesis. 
Gibberellins stimulate cell elongation. When gibberel-
lin production is inhibited, cell division still occurs, but 
the new cells do not elongate. The result is shoots with 
the same numbers of leaves and internodes compressed 
into a shorter length. Reduced growth in the diam-
eter of the trunk and branches has also been observed. 
Another response of trees to treatment with PBZ is 
increased production of the hormone abscisic acid and 
the chlorophyll component phytol, both beneficial to tree 
growth and health. PBZ may also induce morphological 
modifications of leaves, such as smaller stomatal pores, 
thicker leaves, and increased number and size of surface 
appendages, and increased root density that may provide 
improved environmental stress tolerance and disease 

resistance [16]. PBZ also has some fungicidal activity due 
to its capacity as a triazole to inhibit sterol biosynthesis 
[16].

Chemistry
PBZ ([(2R, 3R + 2S, 3S)-1-(4-chloro-phenyl) 4,4-dime-
thyl-2-(1,2,4-triazol-1-yl)-pentan-3-ol]) has been devel-
oped as a plant growth regulator and is registered with 
trade names such as Bonzi, Clipper, Cultar, and Parsley. It 
belongs to the triazole compounds that are characterized 
by a ring structure containing three nitrogen atoms, chlo-
rophenyl and carbon side chains [17]. Structurally, PBZ is 
a substituted triazole with two asymmetric carbon atoms 
and is produced as a mixture of 2R, 3R, and 2R, 3R, and 
2S, 3S enantiomers [18] (Fig. 1).

Mode of action
Although the precise features of the molecular struc-
ture which confer plant growth regulatory activities are 
not well understood, it appears to be related to the ste-
reochemical arrangement of the substituents on the car-
bon chain [19]. There are indications that enantiomers 
having S configuration at the chiral carbon bearing the 
hydroxyl group are inhibitors of GA biosynthesis. One of 
the inhibitor of GA biosynthesis, paclobutrazol, is mainly 
used as growth retardant and stress protectant [20]. This 
retardation of growth is due to the interference of PBZ 
with gibberellin biosynthesis by inhibiting the oxidation 
of ent-kaurene to ent-kauronoic acid through inactivat-
ing cytochrome P450-dependent oxygenase [21, 22]. In 
addition, it tends to be much more effective than vari-
ous other plant growth regulators at relatively low rate of 
applications [22].

Fig. 1  The structure of paclobutrazol
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PBZ is also known to affect the synthesis of the hor-
mone abscisic acid and phytol. Abscisic acid is also 
synthesized via the terpenoid pathway (Fig. 2). When gib-
berellins synthesis is blocked, more precursors in the ter-
penoid pathway are accumulated and shunted to promote 
the genesis of abscisic acid [23]. It has also been reported 
to inhibit normal catabolism of ABA [24]. The effect of 
PBZ on both the synthesis and catabolism processes 
leads to enhanced concentrations of ABA in leaves. One 
of the major roles of ABA is to cause closing of stoma-
tal aperture and decreasing loss of water from leaves 
through transpiration. Improvement of water relations 
in treated plants takes place because of enhancement in 
ABA content that decreases stomatal aperture, decreases 
shoot growth and causing less surface area for transpi-
ration, more roots for uptake of water, and anatomical 
alterations in leaves that impart barriers to water loss.

Translocation and chemical stability
It was previously believed that triazoles were primar-
ily transported acropetally in the xylem [25]. However, 
PBZ has been detected in xylem and phloem sap of cas-
tor bean [26] and pear [27] indicating that triazoles can 
be transported acropetally and basipetally. Although 
the metabolic fate of applied has not been investigated 
in detail most of them have a high chemical stability 
[28] and depending on the site of application tend to be 
metabolized slowly [15]. Early and Martin [29] observed 
more rapid PBZ metabolism in apple leaves than other 
plant parts, while Sterrett [30] found little evidence for 
PBZ metabolism in apple seedlings. PBZ is comparatively 
more resistant to degradation than BAS 111 [31].

Methods of application
The most common application methods of PBZ are foliar 
sprays and media drench. PBZ shows good results for 
both methods [32]; however, drenches act longer and 
provide uniform control of plant height with lower doses 
[33]. When PBZ is applied by foliar spray, the compound 
is poorly soluble in water and consequently little translo-
cated in the phloem. Thus, when applied by spray to the 
plant canopy, its action is restricted to the wet contact 
area [34]. On the other hand, the application of PBZ by 
drench is uniform and increases the product efficiency in 
lower concentrations compared to foliar spray. Moreo-
ver, drench application of PBZ may directly inhibit GA 
synthesis as roots synthesize large quantities of GA [35]. 
Similarly, Banon et al. [36] and AlKhassawneh et al. [37] 
demonstrated that drench applications were more effec-
tive, allowing to use lower quantity of PBZ, which is 
desirable for both ecological and economic reasons. This 
effectiveness may be directly related to its high persis-
tence in the soil drench [38] and in plant organs [39, 40]. 

Gent and McAvoy [41] also indicated that PBZ persists 
in annuals, herbaceous perennials and, especially, woody 
ornamentals.

PBZ is considered a phloem immobile chemical [7], 
though some direct [26] and indirect [42] evidence exists 
that it is partially mobile in phloem. Studies indicate that 
PBZ and uniconazole-P move in plants acropetally via the 

Fig. 2  Terpenoid pathway for biosynthesis of gibberellins, abscisic 
acid, phytol, and steroids, and path for degradation of abscisic acid. 
Steps blocked by paclobutrazol indicated with Geranyl diphosphate 
synthase (GPS), Farnesyl diphosphate synthase (FPS), Geranyl 
geranyl diphosphate synthase (GGPS), ent-copalyl-diphosphate 
synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), 
ent-kaurenoic acid oxidase (KAO), Geranyl geranyl reductase (GGRS), 
Chlorophyll synthase (CHL) and Phytoene synthase (PSY) are the 
enzymes involved in the terpenoid pathway. ABA 8′-hydroxylase (ABA 
8′OH) involved in the enzymatic degradation of ABA into Phaseic 
acid. KO, KAO and ABA 8′OH are the enzymes inhibited upon PBZ 
application
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xylem, accumulate in leaves, and have very low mobility 
in phloem [14]. This results in a low level of PBZ residues 
in seeds and fruits as they are supplied with nutrients via 
the phloem [25]. However, low phloem mobility of PBZ 
further reduces the effectiveness of foliar spraying, since 
PBZ action on plant growth would be restricted to the 
site of application.

Application rates
A lot has been done to identify the best application rate 
of PBZ in different places. Factors like age of the trees, 
extent of vegetative growth and method of applica-
tion should be considered when determining the rate 
of PBZ to be applied. The rates also affect the different 
tree parameters variously. In general, the amount of PBZ 
required to promote flowering and fruiting in fruit crops 
is very low [27].

The rate of soil application is a function of tree size 
and cultivar. The rate is determined by multiplying the 
diameter of tree canopy in meters by 1–1.5  g of active 
ingredients of PBZ [43]. They indicated that other factors 
including soil type, irrigation system, etc. may affect PBZ 
activity and, thus, may be necessary to improve the effec-
tiveness of the chemical. As to them, overdose may cause 
undesirable effects such as restricted growth, panicle 
malformation (too compact), and shoot deformity. They 
also asserted that to insure uniform flowering and reduce 
the detrimental side effects, the search for better appli-
cation methods were investigated and one approach is to 
apply high volume of low PBZ concentration to improve 
better coverage.

Optimizing PBZ dose is a prerequisite for any yield 
improvement programmes. Severe and undesirable loss 
in seed and oil yield of Camelina was observed when 
the plants were treated with higher PBZ concentra-
tion (125  mg  L−1), while PBZ dose between 75  mg  L−1 
and 100  mg  L−1 can effectively improve the economic 
traits, including higher seed and oil yields in Camel-
ina. Severe retardation of Camelina growth was also 
reflected in plant height, branch and canopy size when 
the plants were sprayed with higher PBZ concentration 
(125 mg L−1) [44]. He also reported that Camelina seed 
yield increased by 74.23% when compared to the con-
trol with the applications of 100 g L−1. Similarly, reduced 
yields were recorded in peanut [45] and Jatropha [46] 
associated with higher PBZ concentrations.

Kamran et  al. [47] described that soaking of seeds 
under 300  mg L−1 PBZ increased the average maize 
grain yield by 61.3% as compared to the control. Patil and 
Talathi [48] also reported that application of 5 g of PBZ 
through soil enabled to induce early and regular fruiting 
with 2.8 times increase in yield in mango var. Alphonso. 
In addition, PBZ at a rate of 150 mg L−1 in bottle gourd, 

100 mg L−1 in bitter gourd, 150 mg L−1 in French bean, 
125  mg L−1 in cucumber and 40  mg L−1 in tomato 
increased the yield and quality of fruits [49].

Response of plants to PBZ
Plant hormone biosynthesis
Gibberellin: Gibberellins (GAs) are a large family of tet-
racyclic diterpenoid plant growth regulators. Since its 
original discovery, > 130 GAs have been identified in 
plants, fungi and bacteria, although only a few GAs have 
biological activity [50]; many non-bioactive GAs exist in 
plants, and these act as precursors for the bioactive forms 
or are de-activated metabolites. Gibberellins (GAs) are 
plant hormones that are essential for many developmen-
tal processes in plants, including seed germination, stem 
elongation, leaf expansion, trichome development, pol-
len maturation and the induction of flowering [51]. The 
major bioactive GAs, which includes GA1, GA3, GA4 and 
GA7, are derived from a basic diterpenoid carboxylic acid 
skeleton, and commonly has a C3 hydroxyl group [50].

Triazole compounds are antagonistic to gibberellins 
and auxins, reducing cell elongation and cell division 
by inhibiting GA3 biosynthesis [52]. They exhibit vary-
ing degrees of both plant growth and fungicidal activity. 
The intensity of their biological activity is dependent on 
their isomeric form [17]. The growth retarding property 
of PBZ is largely attributed to interference with gibber-
ellins biosynthesis. Gibberellins are synthesized from 
mevalonic acid via the isoprenoid pathway, and the 
PBZ specifically inhibits the oxidation of ent-kaurene 
to ent-kaurenoic acid through inactivating cytochrome 
P-450-dependent oxygenases [18]. Furthermore, PBZ-
induced growth inhibition can be reversed by exogenous 
application of gibberellins [53]. These observations sup-
port the hypothesis that growth inhibition due to PBZ is 
primarily due to reduced gibberellins biosynthesis.

Abscisic acid: The effect of PBZ on ABA is of interest 
because ABA, like the gibberellins, is synthesized via 
the isoprenoid pathway, and the two compounds often 
exhibit opposing physiological activities. The action of 
PBZ on ABA could be the source of stress protection 
that has been observed with PBZ [19]. ABA is a natu-
ral plant growth regulator that has been implicated in 
plant acclimation and protection against environmental 
stress. Exogenous application of ABA has been shown to 
increase plant resistance to salinity, ozone, heat, chilling 
and freezing [54].

Mackay et  al. [54] demonstrated that PBZ induced 
stress resistance and it also increased the endogenous 
concentrations of ABA in snap beans. Hauser et al. [55] 
also demonstrated that PBZ considerably increased 
endogenous ABA levels in detached leaves and hydro-
ponically grown seedlings of oilseed rape. ABA 
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accumulated in proportion to PBZ concentration. Mac-
kay et  al. [54] also hypothesized that stress protection 
inferred by PBZ may in part be the result of their effect 
on endogenous concentrations of ABA. However, both 
experiments showed that increases in ABA were short 
lived and eventually decreased to normal or below con-
trol levels. Hauser et al. [55] hypothesized that this may 
be due to stimulated ABA catabolism and/or by an inhi-
bition of its biosynthesis. Therefore, providing a continu-
ous supply, over the growing season, of the PBZ could 
help to maintain higher levels of endogenous ABA and 
thereby prolong its stress-protecting effects. In addition, 
Aly and Latif [56] also reported that PBZ increased the 
endogenous level of ABA in wheat.

Cytokinin: Cytokinins are synthesized in the roots and 
translocated acropetally to the shoots where they regu-
late both plant development and senescence [57]. They 
are involved in the control of various plant developmen-
tal processes such as cell division, apical dominance, 
stomatal behavior, root formation, leaf senescence, and 
chloroplast development [58].

Zhu et al. [21] observed an increase in the endogenous 
cytokinin (Zeatin) level in xylem sap of young apple trees 
in response to PBZ treatment. PBZ treatment delayed 
the onset of senescence in grapevine [59] and blueberry 
[60]. It has been reported that cytokinin or chemicals like 
thidiazuron with cytokinin-like activity stimulate chlo-
rophyll synthesis and retard senescence [61] and thus, 
PBZ-induced physiological responses may be associated 
with increased cytokinin synthesis or prevention of its 
degradation.

Fletcher et al. [7] also proposed that triazoles stimulate 
cytokinin synthesis and that enhance chloroplast differ-
entiation, chlorophyll biosynthesis and prevent chloro-
phyll degradation. An increased level of cytokinins and 
polyamines over the senescence-promoting hormones 
ABA and ethylene was reported in plants treated with 
PBZ. PBZ delayed senescence and extended period of 
‘stay-green’ in Camelina sativa [44] by enhancing endog-
enous levels of cytokinins and that promoted chlorophyll 
formation and increased activity of certain antioxidant 
enzymes. A longer ‘staygreen’ character simultaneously 
increased the period of leaf photosynthesis in PBZ-
applied plants by keeping the leaves photosynthetically 
efficient for a longer time which in turn enhanced the 
plant productivity of Camelina [44].

Stress protection
Biochemical effects of the triazole include detoxifica-
tion of active oxygen species, increased contents of anti-
oxidants and chlorophyll (Chl) [22]. More recently, it 
was found that triazole compounds have been reported 
to protect plants from various environmental stresses, 

including chilling, drought, heat, waterlogging, air pol-
lutants, and heavy metals [7, 62]. The triazole-mediated 
stress protection is often explained in terms of hormonal 
changes such as an increase in cytokinins, a transient rise 
in ABA and a decrease in ethylene [19, 54]. Enhanced 
chilling tolerance in triazole-treated tomato [64] was 
associated with increased antioxidant enzyme concen-
trations. In treated tomatoes, apart from the increase in 
the antioxidants a-tocopherol and ascorbate, free fatty 
acids were higher and there was a reduction in the loss of 
membrane phospholipids, as compared to the untreated 
controls. PBZ prevents the decline in total chlorophyll 
content in corn plants after exposure to chilling tempera-
tures [64]. PBZ-induced tolerance to low temperature 
stress has been associated with increased levels of endog-
enous ABA [7], which has been reported to trigger the 
genetic processes for hardening. In field studies, winter 
survival of peas and cereal crops [25] and resistance to 
frost damage in corn were enhanced by PBZ.

PBZ increases the survival rate of plants under drought 
conditions through a number of physiological responses. 
A reduction in the rate of transpiration (due to reduc-
tion in leaf area), increased diffusive resistance, alleviat-
ing reduction in water potential, increased relative water 
content, less water use, and increased anti-oxidant activ-
ity are some of the reported responses [21, 65]. PBZ also 
protects plants from high-temperature-induced injuries 
[64, 65]. Protection against high temperature stress is 
accompanied by the production of low molecular mass 
stress proteins [66] and the increase in the activity of 
antioxidant enzymes [64].

It has also been reported that several environmental 
factors such as drought, low and high temperature can 
cause an excess of toxic oxygen-free radicals [67]. Some 
of the free radical scavenging enzymes are reported to 
increase in wheat [65] and corn [64] plants after PBZ 
treatments and their activities are conserved even after 
exposure to extreme temperature. The triazole com-
pounds enhance the free radical scavenging capac-
ity of treated plants including the levels of carotenoids, 
ascorbate, superoxide dismutase and ascorbate peroxi-
dase [63]. Berova et  al. [68] suggested that the protec-
tion caused by PBZ was due to a similar mechanism of 
enhanced free-radical scavenging systems.

Assimilate partitioning
Assimilate partitioning to the different sinks may be 
controlled by environmentally regulated, hormonal bal-
ances [69]. PBZ treatment increased the root-to-shoot 
ratio [64], increased partitioning of assimilates to eco-
nomically important plant parts such as bulbs [70, 71], 
potato tubers [72, 73], carrot root [8] and rice grain yield 
[74]. The mechanism of tubers to act as a dominant sink 



Page 6 of 15Desta and Amare ﻿Chem. Biol. Technol. Agric.             (2021) 8:1 

during assimilate partitioning might be associated with 
PBZ stimulated low GA level in the tuber tissue that 
increases tuber sink activity [72].

Setia et  al. [75] also reported that the application of 
PBZ resulted in an overall increase in dry weight per 
plant and better partitioning of assimilates (percent 
ratio of siliqua dry weight to plant dry matter) in Bras-
sica juncea and Brassica carinata. Similarly, Kumar et al. 
[45] reported that PBZ treatment enhanced seed yield in 
Camelina sativa and this enhancement of yield was cor-
related with improvement in CO2 assimilation physiol-
ogy, sink activity partitioning of assimilates and rooting.

In addition, Yeshitela et al. [76] reported that the higher 
PBZ rates suppressed vegetative growth of mango and the 
assimilate that was to be expended for vegetative growth 
was diverted to intensifying flowering. This was proved 
by a higher total non-structural carbohydrate level of the 
shoots of the treated trees before flowering. Similarly, the 
reduction in vegetative growth of grape by altering rela-
tive sink strengths within the plant had an indirect con-
sequence of allowing a greater partition of the assimilates 
to reproductive growth, to flower bud formation, fruit 
formation and fruit growth of treated plants [77].

Mineral uptake
By influencing shoot and root morphology, PBZ alters 
mineral uptake. Rieger [78] working in hydroponics on 
‘Nemaguard’ peach rootstocks, found that PBZ treatment 
induced decreases in N, P, K, Fe and Mo, whereas levels 
of Ca, Mg, B and Mn were increased by PBZ. This author 
stated that the magnitude of changes in foliar nutrition 
was proportional to the degree of growth suppression. In 
the case of Fuji apple trees, Huang et al. [79] found that 
the differences in the total dry matter accumulated per 
kg of leaves were negligible. On the other hand, Wang 
et al. [80] observed that the PBZ treatments increase the 
content of N, P, K, Ca, Mg, B, and Zn in leaves of pear 
tree. Rieger and Scalabrelli [81] demonstrated in peach 
tree that the foliar concentrations of N, P, K, and Fe 
decrease slightly, while increase those of Ca, Mg, B and 
Mn. Recently, Yeshitela et al. [76] also reported that PBZ 
increased mango leaf Mg, Cu, Zn, and Fe content without 
affecting the concentration of N, P, K, and Ca. In addi-
tion, this author indicated that the higher concentra-
tion of PBZ (8.25 g a.i./tree) resulted in a decreased Cu 
concentration, while the increase in PBZ concentration 
(2.75-8.25  g a.i./tree) did not show an increment of the 
concentration of Zn.

Plant growth, yield and quality
Germination and seedling development  Common prob-
lems found when treating seeds with growth regulators are 
reduction or absence of germination and delay in seedling 

emergence. Apple seeds (Pyrus malus Mill.) imbibed in 7 
mg L−1 PBZ solution had 35% inhibition of germination 
and a germination delay by 2 days [82]. Similarly, Almond 
(Prunus dulcis L.) seeds soaked in 4000 or 8000 mg L−1 
PBZ solutions during 15 min failed to germinate [83].

Germination percentage of tomato seeds that were 
soaked in 500 or 1000 mg L−1 PBZ for 6, 16, or 24 h was 
lower than that of water-soaked seeds [84]. They further 
found that seedling height suppression at 36 days after 
sowing was > 30% for seeds that had been soaked for 16 h 
in 500 or 1000 mg L−1 PBZ compared to those soaked in 
water. Pill and Gunter [85] also found that exposing Cos-
mos bipinnatus seeds to 1000 mg L−1 PBZ during soak-
ing or priming reduced seedling height and also reduced 
seedling emergence with the responses being greater 
with longer exposure during priming than during soak-
ing. Similarly, Pasian and Bennett [84] noted that 500 or 
1000 mg L−1 PBZ reduced and delayed germination of 
tomato, geranium, and marigold seeds. These could be 
due to PBZ that adheres to the seed coat of treated seeds 
and then diffuses into the growth medium where it can 
be taken up by the seedling roots [86]. However, PBZ may 
penetrate the seed coat and exert a direct toxic effect on 
the embryo. The seed coats of tomato have a semiperme-
able layer [87] that may prevent the PBZ from entering 
the endosperm and embryo thereby lessening negative 
effects of PBZ on germination.

In addition, Kar and Gupta [88] described that treating 
sunflower (Helianthus annus L.) and safflower (Cartha-
mus tinctorius L.) seeds with PBZ diminished the rate 
of germination and reduced seedling growth. Simi-
larly, treating seeds with PBZ (at 250 mg per 1 kg seeds) 
retarded elongation of primary leaves in wheat (Triti-
cum durum L.), barley (Hordeum vulgare L.), oat (Avena 
sativa L.), and rye (Secale cereale L.) [89]. The first true 
leaves of seedlings from triazole-treated seeds had a dis-
turbed morphology. In these seedlings, root elongation 
was less severely retarded than shoot growth; roots were 
thicker and had higher water content [89].

For celery seeds, which require light for germination, 
the action of PBZ on GA biosynthesis was also light 
dependent. PBZ had a low effect on seed germination in 
the light, which might be due to increase in seed sensi-
tivity to GA and, respectively, lower GA requirement for 
germination [90]. Other data also suggested that germi-
nation of PBZ-treated seeds is dependent on seed GA 
levels influenced by light intensity [91].

Addition of GA or other chemicals (ethephon) to seeds 
may overcome the influence of growth regulators on 
seed germination. Only 5% of petunia (Petunia hybrida 
L.) seeds germinated after imbibing them for 14 days in 
an agar medium containing 5 mg L−1 PBZ. The addi-
tion of 10 μM GA solution to the PBZ-treated substrate 
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improved petunia germination up to 65% [92]. Soaking in 
PBZ solutions inhibited germination of amaranth (Ama-
ranthus sp.) seeds, while further soaking seeds in gibber-
ellin, ethephon, or 1-aminocyclopropane-1-carboxylic 
acid reversed the inhibitory effect of PBZ [93].

Shoot growth  Triazole treatments normally decreased 
the shoot length and increased thickness of the young 
plant stem, as well as the accelerated root formation is a 
significant advantage of the paclobutrazol treatment in 
Lycopersicon esculentum [94]. Triazole treatments have 
more pronounced effect of reducing height in wheat 
plants and appeared greener [6].

The most striking growth response observed in differ-
ent species treated with PBZ is shoot growth reduction 
[95]. This response could be attributed primarily due to 
decreased internode length. PBZ was also found to effec-
tively inhibit plant height, leaf expansion and alter the 
stem in Syzygium campanulatum [96]. Similarly, plant 
height was significantly reduced by PBZ application in 
canola [97], Vigna radiata [98], Epidendrum radicans 
[40], mango [99], wheat [68], Dianthus caryophyllus [36], 
Sesamum indicum [100], and Ocimum sanctum [101].

The PBZ effectively suppresses growth in a wide range 
of plant species, where treated plants tend to be smaller 
and more compact in appearance and have darker green 
leaves [102–105]. Terri and Millie [106] and Sebastian 
et al. [107] also reported that PBZ-treated plants tend to 
be dark green, shorter and more compact in appearance. 
Similarly, treating Chrysanthemum plants with PBZ as 
a soil drench resulted in thicker leaves, reduced stem 
diameter, and roots with an increased diameter [108]. 
Modification of shoot growth with the aid of PBZ may 
be helpful in maximizing return per unit land by allow-
ing increased plant populations of the compact plants per 
unit land area.

Leaf growth  Leaf area: Triazole treatments significantly 
reduced the leaf area and the reduction might be due to 
the reduction in leaf size [109]. Gomathinayagam et  al. 
[110] also reported that triazole treatments reduced the 
leaf area in Manihot esculenta.

PBZ induces various morphological modifications 
depending on plant species, growth stage, rate and 
method of application [76, 107]. Vijayalakshim and Srini-
vasan [111] found that application of PBZ in mango 
found to be significantly superior in increasing the leaf 
area compared to other treatments like potassium nitrate, 
urea and ethrel recording an average area of 94.89  cm2, 
whereas the control was only 63.65  cm2. According to 
these authors, the increase in leaf area has overcome the 
limitation of depletion for reserve food materials. As the 
reserve food materials were then plenty, the breaking up 

of alternate bearing cycle in the cultivars chosen has been 
achieved. However, this was found to be contradictory 
to the finding of Fernandez et  al. [112] who reported a 
decrease in leaf area with PBZ in Phillyrea angustifolia. 
Similarly, Paclobutrazol treatment also reduced the leaf 
area in Solanum tuberosum [72], Ocimum sanctum [101], 
Hordeum vulgare [113], Catharanthus roseus [114] and 
zinnia plants [115]. Although PBZ decreased the surface 
area of the plants, it improved the durability of leaves; 
therefore, the decrease in the surface area of leaves was 
compensated by the lack of leaf falling and by the leaf 
durability [72].

Chlorophyll synthesis Several studies demonstrated 
increase in chlorophyll content in triazole-treated plants 
[7, 94]. The greening effect caused by plant treatments 
with growth regulators can be explained by an increase 
in chlorophyll content and/or more densely packed chlo-
roplasts per unit leaf area due to a reduction in leaf area 
[116]. A similar explanation is suggested for the increased 
chlorophyll a and b contents in potato leaves [72].

Dewi et al. [117] reported that black rice plants treated 
with either 25 or 50 ppm PBZ have greener leaves com-
pared to control and the leaves also experienced late 
senescence. This could be due to an increase in the activ-
ity of oxidative enzymes that prevented cell maturation. 
Similarly, studies on Jatropha [46], tef [118] and Camel-
ina [119] showed that chlorophyll was higher on plants 
treated with PBZ compared to control. The increased 
chlorophyll content treated with PBZ might be from min-
imized damage caused by reactive oxygen and changes 
in the levels of carotenoids, ascorbate and the ascorbate 
peroxidase.

The report of Nivedithadevi et  al. [120] showed that 
plants treated with PBZ synthesized more cytokinin, 
which in turn enhanced chloroplast differentiation and 
chlorophyll biosynthesis, and prevented chlorophyll deg-
radation. Berova and Zlatev [94] also reported that the 
increase in chlorophyll content may be ascribed to higher 
cytokinin content that is known to stimulate chlorophyll 
biosynthesis and/or reduced chlorophyll catabolism. 
Furthermore, PBZ appears to have delayed the onset of 
senescence, represented by the rate of chlorophyll deg-
radation in attached mung bean leaves, which was prob-
ably due to the enhanced endogenous level of cytokinins 
through their secondary effect on plants [7]. In several 
plant species, PBZ-treated leaves were retained longer 
and the onset of senescence considerably delayed [59, 
60]. The senescence delaying activity may be related to 
the influence of PBZ on the endogenous cytokinin con-
tent [7].

Rate of photosynthesis and transpiration rate Contra-
dictory reports have been published regarding the effects 
of PBZ on crop photosynthetic efficiency; however, 
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indirectly by reducing leaf area it may reduce photosyn-
thetic surface area and thereby reduce the whole-plant 
photosynthesis [25]. DeJong and Doyle [121] noted no 
apparent effect of PBZ on photosynthetic rate of well 
exposed nectarine leaves during most of the growing sea-
son. Davis et  al. [25] reported that photosynthetic rate 
decreased as a result of inhibition of leaf expansion. Leaf 
is an important plant part as it contains mesophyll cells 
that are specialized as photosynthetic tissues. Gaussoin 
et  al. [122] also reported that plants treated with plant 
growth retardants often had a moderate restraining effect 
on carbon dioxide exchange rate, thus possibly reducing 
the photosynthetic rate.

Ahmad Nazarudin et al. [123] described that photosyn-
thetic rate and transpiration rate of Syzygium myrtifolium 
were reduced after treatment with PBZ. This might be 
due to the reduction in photosynthetic rate that would 
also imply reduction in the transpiration rate as both 
processes are associated with the opening and closing 
of stomata [124]. The decline in transpiration rate would 
then reduce the percentage of water released through 
stomata. Olsen and Andersen [125] reported that reduc-
tion in transpiration rate would protect the plant against 
abiotic stress due to water restriction or drought period. 
In addition, PBZ enhanced stress tolerance of plants by 
increasing the xylem pressure potential of the treated 
plants and thereby enhancing plant moisture status dur-
ing drought period. According to Abod and Jeng [126], 
the reduction in photosynthetic rate and transpiration 
rate was influenced by the stomatal activity and leaf area. 
However, Ahmad Nazarudin et  al. [123] reported that 
stomatal activity was not the main factor in the reduc-
tion of photosynthetic and transpiration rate in Syzygium 
myrtifolium. The possible reason could be the reduction 
of leaf area, which further contributed to the reduction of 
the total leaf surface that absorbs the sunlight.

On the contrary, PBZ increased the rate of net leaf pho-
tosynthesis [72]. This could be attributed to the higher 
chlorophyll content and earlier tuberization in response 
to the PBZ treatment. The increased net photosynthe-
sis in response to PBZ has also been reported in Setaria 
italic [127] and horse chestnut [128]. Similarly, Soumya 
[129] reported that foliar and drench applications of 
PBZ in chickpea were found to maintain higher rates of 
photosynthesis under water deficit condition and faster 
recovery after water stress termination. The increase in 
intercellular CO2 concentration and alteration in sto-
matal conductance was assessed the reasons for higher 
photosynthesis in PBZ-treated Amorphophallus campan-
ulatus [20, 130] and potted red fire spike [131].

Leaf thickness: The higher epicuticular wax deposition 
on treated leaves may be related to the increase in endog-
enous ABA levels in response to PBZ treatment [23]. An 

increase in ABA stimulates the synthesis of lipid trans-
fer proteins in barley that play an important role in the 
formation of epicuticular waxes, a process that affects the 
water relation of the leaves [132]. PBZ treatments caused 
an increase of 10% in total wax load and change the pro-
portion of certain wax constitutes in potted rose cultivars 
within 11 days of application [133]. The development of 
a thicker epicuticular wax layer provides better protec-
tion against some plant pathogens and minor mechanical 
damage [134].

Tekalign and Hammes [72] observed that potato plants 
cv. Zemen treated with PBZ at the dosage of 67.5  mg 
a.i. per plant increased total leaf thickness from 215 to 
267  µm bringing about 24% increase higher than the 
control. These authors also indicated that the increase 
in leaf thickness is attributed to an increase in epidermal 
cell diameter, palisade cell length and spongy mesophyll 
depth. Sopher et al. [35] also reported that in maize, PBZ-
treated leaves showed more epicuticular wax deposition 
and were thicker and broader owing to enlarged vascular 
elements, epidermal, mesophyll, and bundle sheath cells.

In peanut (Arachis hypogaea L.), leaves treated with 
PBZ exhibited well-differentiated palisade and spongy 
mesophyll layers with longer and longer cells [135]. Simi-
larly, Kishorekumar et  al. [136] indicated that Chinese 
potato leaves (Solenostemon rotundifolius) treated with 
PBZ showed an increased thickness of the upper and 
lower epidermis, as well as the length of the palisade and 
spongy cells. In addition, Jaleel et al. [137] reported that 
cells number in palisade (mesophyll) tissue per unit area 
have been reported to enhance to a larger extent in PBZ-
treated Catharanthus roseus.

Stem growth  Suppression of plant height by PBZ occurs 
because the compound blocks three separate steps in 
the terpenoid pathway for the production of gibberel-
lins (GAs). GA enhances internode elongation of intact 
stems [124]. Liu and Loy [138] showed that GA promotes 
cell division by stimulating cells in the G1 phase to enter 
the S phase and by shortening the duration of S phase. 
They concluded that increased cell numbers lead to more 
rapid stem growth. But treating plants with PBZ resulted 
in stems with the same numbers of leaves and internodes 
compressed into a shorter length [7, 139]. Similarly, 
reduction in internode length was indicated in tomato 
in response to PBZ treatment [140]. He further noticed 
that the application of PBZ at a rate of 400 ppm resulted 
in a decreased internode length as compared to 200 ppm 
PBZ application. PBZ can be effective for obtaining sturdy 
plant and reducing plant height in several species with-
out decreasing flowering quality [141, 142]. Webster and 
Quinlan [143] also reported that PBZ has great efficacy 
in reducing height growth of many temperate fruit spe-
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cies and cultivars. Similar reductions in plant height were 
reported in potato [72], Scaevola [106] and Dianthus car-
yophyllus [107], Syzygium myrtifolium [123] and Mangif-
era indica [76] in response to PBZ treatment.

Ahmad Nazarudin et al. [123] reported that PBZ appli-
cation showed a stunted growth of Syzygium myrtifolium 
during the 5-month period after application, while the 
increased PBZ concentration (1.25–3.75  g L−1) did not 
further reduced the plant height. Similarly, Tekalign and 
Hammes [72] indicated that both foliar and soil drench 
application of PBZ reduced the height of potato, though 
foliar application of PBZ is more effective than soil 
drench application. These authors further indicated that 
the increase PBZ concentration (45–90  mg a.i./plant) 
resulted in a reduced plant height. In addition, Yeshitela 
et al. [76] also described that the height of mango trees 
and length of new shoots shortened due to both foliar 
and soil drench application of PBZ.

PBZ treatment increased cortex thickness, size of the 
vascular bundles, and pith diameter and resulted in 
thicker stems [72]. This modification may be attributed 
to radial expansion of cells due to reduced endogenous 
GA activities in response to the treatment. Wenzel et al. 
[144] reported that GA limits the extent of radial expan-
sion of plant organs. In dicot stems, cell shape alterations 
are apparently caused by a more longitudinal orientation 
of cellulose microfibrils being deposited in the cell walls, 
preventing expansion parallel to the these microfibrils 
but allowing expansion perpendicular to them [145]. The 
non-uniform distribution and arrangement of the vascu-
lar elements in the potato stems resulted in irregularity in 
the shape of the stems. Various authors reported differ-
ent results in various plant species with respect to PBZ-
induced stem anatomy modifications. PBZ induced both 
cell number and length in safflower stem [146]. Burrows 
et al. [108] reported that PBZ treatment brought about a 
50% reduction in chrysanthemum stem diameter because 
of an enhanced development of secondary xylem and a 
marked reduction in the number of sclerenchyma bun-
dle caps. In peach shoots, PBZ reduced the proportion 
of xylem and increased that of phloem and cortex, and 
increased xylem density [147].

Root growth  Triazole treatments induced the root 
growth in cucumber, which was associated with increased 
the endogenous cytokinin levels [148]. PBZ treatment 
increased the root length and enhanced the lateral roots 
in tomato plants [94], Vigna unguiculata [149] and Fes-
tuca plant [150]. PBZ induced the root growth in both 
maize and wheat [151], mango [152], avocado [153], Abel-
moschus esculentus [154] and Ocimum sanctum [101]. 
Swietlik and Miller [155] reported that root length was 
stimulated by PBZ applications at low to moderate con-

centrations. Higher concentrations, however, may reduce 
root growth.

PBZ increased root diameter by increasing the width 
of cortex and by favoring the formation of more second-
ary xylem vessels. This modification may be attributed 
to radical expansion of cells due to reduced endogenous 
GA activities in response to the treatment [72]. These 
authors further indicated that untreated plants had more, 
thinner and longer roots compared to the treated plants. 
Increased root diameter has been correlated with larger 
cortical parenchyma cells in soybean and maize [156]. 
Increasing root diameter in chrysanthemum was due to 
an increase number of rows and diameter of cortical cells 
[108].

PBZ was observed to increase diameter and length of 
fibrous roots, enhances lateral root formation, reduced 
the diameter of xylem vessels; however, phloem sieve 
tubes had shown an increased diameter in PBZ-treated 
Catharanthus roseus plants [137]. The increased root 
length in PBZ-treated plants was found to be associated 
with larger parenchyma cells and promotes cell expan-
sion radially [7].

Flower enhancing  PBZ is effective not only in flower 
induction but also in early and off season flower induc-
tion in mango [77, 157–160]. PBZ, a gibberellin inhibitor, 
reduces vegetative promoter level and thereby increases 
florigenic promoter/vegetative promoter ratio which 
stimulates flowering shoots in weakly inductive shoots of 
fruit crops [76, 161–163].

Exogenous application of GA as well as endogenous 
high levels of gibberellins have proved a major hindrance 
in the way of flower bud differentiation in a number of 
temperate as well as tropical fruits [164]. PBZ, owing 
to its anti-gibberellin activity could induce or intensify 
flowering by blocking the conversion of kaurene into 
kaurenoic acid. The latter is a precursor of gibberellins. 
PBZ can considerably enhance the total phenolic content 
of terminal buds and alter the phloem to xylem ratio of 
the stem [165]. Such alterations could be important in 
restricting vegetative growth and enhancing flowering by 
altering assimilates partitioning and patterns of nutrient 
supply for new growth.

The application of PBZ before flower bud differentia-
tion or 3 months earlier than anticipated flowering has 
been effective in inducing flowering in mango without 
accompanying reduction in shoot length. However, 
higher concentration leads to canopy and panicle com-
paction [166, 167]. The response to PBZ varied with 
cultivar and crop load. The effectiveness of PBZ in pro-
moting flowering in Citrus sp. depends on the crop 
load as the heavy fruit load trees scarcely flowered. 
In medium to low fruit load trees, PBZ significantly 
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increased the percentage of sprouted buds and floral 
shoots and reduced the number of vegetative shoots 
[168].

Fruit and  tuber yield  Fruit yield: Foliar application 
of PBZ (200  ppm) was effective in increasing yield and 
minimizing fruit drop and fruit cracking in ber [169]. The 
effectiveness of PBZ was dependent on stage of devel-
opment as the application of PBZ at bud bursting and 
2 weeks before anthesis of grape increased the yield sig-
nificantly [77].

Soil application around the tree trunk (collar drench) 
was more efficacious than foliar application as it ensures 
proper uptake in inducing fruiting [170]. On the other 
hand, Yeshitela [77] reported that application of PBZ 
both as a soil drench and foliar application was effective 
in suppressing vegetative growth and enhancing yield in 
mango.

Souza-Machado et  al. [171] reported that significant 
earliness in harvest maturity was recorded in PBZ-
treated tomato plants but no significant total yield differ-
ences were recorded between the PBZ and control plants. 
However, Giovinazzo et  al. [172] found significant yield 
increases of 13% due to the PBZ treatments together 
with earlier harvest maturity by 6%. Similarly, Berova and 
Zlatev [94] reported that application of PBZ increased 
both early fruit yield and index of economic earliness in 
tomato. In addition, Mohamed et al. [173] also reported 
the remarkable improvement in fruit yield and water use 
efficiency of tomato.

There is usually a yield increase in mango associated 
with PBZ treatments, but Voon et  al. [161] emphasized 
the importance of supplying adequate nutrients, irriga-
tion and generally good tree maintenance to maintain 
these high yields. In the experiments of Medonca et  al. 
[174] also, PBZ increased the productivity of ‘Tommy 
Atkins’. Similar increase in productivity of ‘Tommy 
Atkins’ mango (increased total fruit number and total 
fruit weight per tree) was indicated in response to PBZ 
treatment [76]. He also indicated that soil application 
of PBZ increased total fruit number per tree and total 
fruit weight per tree as compared to foliar spray and the 
increased application of PBZ (2.78–8.25  g a.i./tree) also 
resulted in the higher total fruit number per tree and 
total fruit weight per tree.

Tuber yield: In the trials of Balamani and Poovaiah 
[175], PBZ application resulted in increased tuber yield 
per plant. However, it is not clear whether the reported 
yield increments were a consequence of an increase in 
tuber size or number. On the contrary, Bandara and 
Tanino [176] reported that PBZ nearly doubled the num-
ber of tubers per plant without affecting the total fresh 
weight of the tubers. This discrepancy may probably 

be explained by the cooler growing conditions in their 
experiment. Tekalign and Hammes [72] showed that PBZ 
application resulted in decreased tuber number per plant, 
which could be linked to the decline in stolon number as 
a result of a decrease in GA activity that may be associ-
ated with stolon initiation, and a strong negative corre-
lation between tuber fresh mass and number signifying 
that the substantial increase in individual tuber size was 
responsible for the yield increment. This may be due to 
the interplay of early tuberization, increased chlorophyll 
content, enhanced rate of photosynthesis, and retaining 
photosynthetically active leaves longer in response to 
the treatment. In addition, these authors described that 
PBZ application increased tuber fresh mass, dry matter 
content and specific gravity. They further indicated that 
low concentration of PBZ increased tuber fresh and dry 
weight, while the increase in PBZ concentration (67.5–
90.0  mg a.i./plant) did not increase the value of these 
parameters.

Similarly, the application of PBZ reduced the number of 
potato tubers [73, 102], the number of mini tubers [177] 
and the number of cassava tuber [178]. On the contrary 
to the increased fresh and dry weight of potato tuber 
[102, 179], potato mini tuber [177] and elephant foot yam 
[180], the fresh weight of cassava tuber was reduced in 
response to PBZ treatment [178].

Fruit and  tuber quality  Fruit quality: Fruit quality of 
mango and lemon (TSS and acid content) increased with 
PBZ application [160, 181]. Similarly, Vijayalakshmi and 
Srinivasan [111] and Yeshitela et  al. [76] reported that 
applying PBZ in mango had the greatest effect in increas-
ing total sugar, reducing sugar, TSS, sugar: acid ratio and 
a decrease in titratable acidity. On the other hand, PBZ 
had shown no improvement in fruit quality of grapes [77], 
strawberries [182] and peach [183].

Foliar application of 2500–3000 ppm PBZ three weeks 
after full bloom increased TSS and reduced acidity in 
peach [184] and cherries [185]. Yeshitela et  al. [76] also 
reported that the application of 8.25  g a.i./tree PBZ 
resulted in increased TSS. Even though, PBZ increased 
the quality of fruits, it was ascertained that the accumula-
tion of PBZ residues on the surface or inside mango fruit 
(especially due applications of higher rates) is unfriendly 
to human health [42].

Tuber quality: The PBZ application to cassava plant 
significantly increased starch content was reported by 
Yang and Cao [186] and Medina et al. [178]. Similarly, in 
potato, the application of PBZ decreased the assimilate 
partitioning to stem, leaves, root and stolon but increased 
the partitioning of dry mass production to tubers [72]. An 
increase in specific gravity and dry matter content of the 
tubers in response to PBZ may be attributed to reduced 
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GA activity in the tuber tissue that in turn increased sink 
strength to attract more assimilates and enhance starch 
synthesis [72]. Under favorable conditions for tuberi-
zation (GA content below threshold level due to PBZ), 
the activities of enzymes involved in potato tuber starch 
biosynthesis such as ADPG-pyrophosphorylase, starch 
phosphorylase and starch synthase increased [187].

PBZ also help to increase the production of antioxidant 
such as carotenoid content in plants to fight against oxi-
dative stress [7, 188, 189]. Similar results were reported 
on tuber crop species that utilize low concentrations of 
triazole compound derivatives as treatments with con-
centrations ranging from 10 to 30 ppm to increase carot-
enoid content in the tuber of white yam [190].

Conclusion
PBZ, a triazole, is an extremely active chemical and 
affects almost all plant species, whether applied as a spray 
or a soil drench. It is more effective when applied to the 
growing media and application on the growing medium 
would give longer absorption time and more absorp-
tion of active ingredient than foliar spray. It inhibits GA 
biosynthesis by blocking the oxidation of ent-kaurene. 
PBZ has been used to provide plant protection against 
numerous abiotic stresses such as chilling, water deficit 
stress, flooding and salinity. PBZ depressed the vegetative 
growth components, but GA induced vegetative growth 
components through total shoot length and total bud 
number increases. PBZ induced the increase in tuber 
yield, specific gravity and dry matter yield, fruit number 
and yield, TSS, TSS/TA, reducing sugar and total sugar, 
and a decrease in TA. This review has compiled and dis-
cussed the nature of PBZ, the role of PBZ as a protection 
against numerous abiotic stresses such as chilling, water 
deficit stress and heat stress, the effects of PBZ on the 
vegetative growth, yield and quality of crops. This review 
will be useful for the professionals and researchers work-
ing on plant growth regulators to improve crop produc-
tion through the use of PBZ.
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