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Abstract 

Background:  Exploration of composition and chemical characteristics of soil dissolved organic matter (DOM) is 
significant to understand its biogeochemical role in terrestrial ecosystems. A total of 43 cropped and 16 natural soils 
(0–20 cm) under four soil types (cinnamon, chernozem, red and paddy soils) across China were collected to investi-
gate the spectral characteristics of DOM using UV–Vis and 3D-EEM spectroscopy.

Results:  The chernozem soils exhibited the highest aromaticity and humification degree among the four soil types. 
Ranges of biological index (BIX, 0.53–1.17) and fluorescence index (FI, 1.55–2.10) were found in the investigated DOM, 
showing joint contribution from allochthonous and autochthonous sources. Higher BIX and FI in the DOM of the 
paddy and red soils indicated a greater reliance on autochthonous sources for these two soil types. The cropped soils 
showed no significant differences in chemical characteristics and sources from the natural soils for the cinnamon, 
chernozem and red soils. UVA (16.2–47.9%) and UVC fulvic-like substances (15.4–40.5%) were the prevailing DOM 
components, which were highest in the chernozem soils. Additionally, the cropped soils had a higher proportion of 
humic-like substances than the natural soils in the DOM.

Conclusions:  Both soil type and land-use strongly affected the chemical characteristics of soil DOM, but only soil 
type had an impact on the DOM composition for the collected soils. These findings may contribute to the prediction 
of the biochemical behavior of soil DOM under different soil types and land-uses in terrestrial ecosystems.

Keywords:  Water-soluble organic matter, Land-use, Soil type, Three-dimensional excitation–emission matrix 
fluorescence (3D-EEM) spectroscopy, Parallel factor analysis (PARAFAC), Spectral indices
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Background
Soil dissolved organic matter (DOM) is a mixture of 
various soluble organic compounds, which are mainly 
derived from terrestrial and autochthonous sources 
[1], including soluble substances in decaying root and 
leaf, root exudates, leaching or decomposition of older 
soil organic matter (SOM) and microbial metabolism 
[2]. Despite its small content in soil, DOM is the most 
reactive fraction of organic matter in soils and plays a 

significant role in the terrestrial biogeochemical cycles 
[3–5]. Generally, soil DOM is comprised of humic-, 
tyrosine- and fulvic-like substances, phenolic com-
pounds, carbohydrates, polysaccharides and N-contain-
ing molecules derived from protein and chitin [6, 7]. 
Due to its complex structure, DOM has been regarded 
as a binding hot spot for heavy metals and organic pol-
lutants, affecting the transportation and fate of soil con-
taminants [8–10]. Moreover, many studies have reported 
discrepant effects of variant chemical functional groups, 
compositional structures and sources of DOM on the 
fate and transportation of heavy metals in soil [11–13]. 
Fest et al. [14] showed that high-molecular-size fractions 
promoted the combination of DOM with heavy metals. 
However, the enhancement of DOM with condensed 
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humic substances has been proposed to suppress metal 
transportation [15]. Therefore, it is significant to explore 
the composition and chemical characteristics of DOM in 
soil to understand its biogeochemical role.

Many researches have focused on the influence of land-
use and soil type on the chemical properties, sources and 
composition of soil DOM [16, 17]. Chantigny et al. [18] 
reported a lower DOM concentration in the cultivation 
soils than in the forest and grassland soils. Some studies 
also observed varied chemical properties and composi-
tions of DOM under different land-uses, especially when 
comparing the natural and cropped lands [19, 20]. Addi-
tionally, Gao et  al. [1] found that the DOM in chestnut 
and red soils had higher aromaticity than in other soils 
such as chernozem and cinnamon soils. Wang et  al. 
[21] also reported that DOM of a clayey soil showed a 
remarkably higher aromaticity and hydrophobicity than 
the DOM of a sandy soil. Therefore, we hypothesized 
that the chemical characteristics and composition of soil 
DOM may be affected by the land-uses and the soil types.

The objective of this study was thus to identify the chem-
ical characteristics, sources and composition of DOM 
extracted from soils across China under different land-
uses (natural and cropped land) and soil types (chernozem, 
cinnamon, red and paddy soils) using ultraviolet–vis-
ible (UV–Vis) and three-dimensional excitation–emission 
matrix fluorescence (3D-EEM) spectroscopy.

Methods
Soil collection
A total of 16 natural and 43 cropped surface soils 
(0–20 cm) were collected from 59 sampling sites across 
19 provinces of China (Additional file 1: Table S1). Sites of 
four soil types (chernozem, number of samples (n) = 16; 
red, n = 11; cinnamon, n = 14; and paddy soil, n = 18) and 
two land-uses (native and cropped land) were selected as 
sampling locations. Maize (Zea may L.), zucchini (Cucur-
bita pepo L.), oilseed rape (Brassica campestris L.) and 
rice (Oryza sativa L.) were grown in the croplands, while 
the natural lands were mainly forest and grasslands. 
Detailed climatic, vegetation and sampling information 
is given in Additional file 1: Table S1. Three soil samples 
were collected from each sampling site and thoroughly 
mixed into one sample. The soils were then transported 
to the laboratory immediately. The samples were freeze-
dried after removing roots and gravel and then ground to 
pass through 2- and 0.15-mm nylon sieves.

Soil characterization and DOM extraction
Soil pH was measured with a S20K pH meter (Mettler 
Toledo, Switzerland) in a soil/water ratio of 1:2.5. SOM 
content was determined by the wet H2SO4–K2Cr2O7 
oxidation method [22]. Cation-exchange capacity (CEC) 

was detected using the ammonium acetate (NH4COOH) 
method [23]. An elemental analyzer (Elementar, Ger-
many) was used to determine the total nitrogen (TN) 
and carbon (TC) in the soils. The contents of dissolved 
organic carbon (DOC) and nitrogen (DON) were meas-
ured by the method described by Jones and Willett [24].

The extraction of soil DOM was performed referring to 
a simply modified method described by Gao et al. [1]. In 
brief, 4  g of freeze-dried soil was mixed with deionized 
water with a soil/water ratio of 1:10 in a 50-ml centrifuge 
tube. The mixture was shaken under N2 environment at 
25  °C for 18 h and then centrifuged at 8000g and 25  °C 
for 20 min. After a filtration through a 0.45-μm glass fiber 
filter, the solution of DOM was obtained and stored at 
− 20 °C until analysis.

UV–Vis and 3D‑EEM spectroscopy
In order to avoid inner-filter effects on fluorescence and 
UV–Vis analysis, the concentrations of total organic 
carbon (TOC) in the DOM solutions were uniformly 
diluted to 10 mg/l prior to determination [25]. UV–Vis 
spectra of the DOM sample in a 1-cm quartz cuvette 
were recorded on a UV-2802 spectrometer (UNICO, 
UK) with a scanning wavelength of 254 nm. Deionized 
water was used as a measurement blank for the UV–
Vis spectral analysis. SUVA254 was calculated by divid-
ing the UV absorbance at wavelength of 254 nm by the 
DOC concentration to indicate the relative contents of 
aromatic compounds [26].

A F7000 fluorescence spectrometer (Hitachi, Japan) 
was employed to create EEMs for the DOM samples 
based on measurement of fluorescence intensity at 
emission wavelengths ranging from 200 to 480 nm and 
excitation wavelengths ranging from 200 to 450  nm. 
The fluorescence spectra were scanned with a slit width 
of 5 nm and a scanning speed of 2400 nm/min. Paral-
lel factor analysis (PARAFAC) was applied using the 
DOMFluor toolbox on MATLAB R2016a (Mathworks, 
USA) to identify outlier and eliminate the Raman scat-
tering effect on the EEM spectra [27]. Residual and 
split-half analyses were further conducted to vali-
date fluorescence components of DOM [28]. Spectral 
indices were calculated from the fluorescence EEMs, 
following the previously reported definitions for fluo-
rescence index (FI) [29], biological index (BIX) [30] 
and humification index (HIX) [31]. In brief, FI and BIX 
were calculated by the ratios of fluorescence intensity at 
emission wavelengths of 470 nm and 520 nm (excitation 
wavelength of 370  nm) and at emission wavelengths 
of 380  nm 430  nm (excitation wavelength of 310  nm), 
respectively [29]. HIX was defined as the inner-filter 
corrected fluorescence intensity in the 435–480-nm 
region divided by the sum of fluorescence intensity in 
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the regions of 300–345 nm and 435–480 nm [31]. HIX 
has been widely employed to indicate the humification 
index in DOM [26, 32]. FI is typically used to distin-
guish the autochthonous (FI > 1.9) and from allochtho-
nous (FI < 1.4) sources of DOM [29], while BIX reflects 
on recently produced autochthonous (biological) DOM 
[33].

Data statistics
One-way analysis of variance (ANOVA) was performed 
using SPSS v24.0 (IBM, USA) to test the significant dif-
ferences in soil physicochemical properties and spectral 
characteristics of DOM under different land-uses and 
soil types. Correlations of soil properties with spectral 
indices and fluorescence components of DOM were 
conducted using SPSS v24.0 (IBM, USA). Two-way 
ANOVA was employed using SPSS v24.0 (IBM, USA) to 
investigate the effects of soil types and land-uses on the 
spectral indices and fluorescence components in the 
DOM. A redundancy analysis (RDA) was performed 
with XLSTAT v2012 software (Addinsoft, USA) to 
detect the multivariate relationships among soil prop-
erties, spectral indices and DOM components.

Results
Soil properties
Soil pH ranged from 4.47 to 9.18 with an average of 
6.52 (Table  1). The cinnamon (7.96 ± 0.89) and cher-
nozem soils (7.82 ± 0.80) had higher pH than the red 
(6.44 ± 1.49) and paddy soils (6.71 ± 1.17). No significant 
difference in soil pH in between natural and cropped 
soils was found. The SOM content was 4.07% ± 1.51% 
with the highest SOM detected in the chernozem soils 
(6.61% ± 3.38%). The SOM content in the natural soils 
was higher than in the cropped soils (Table 1). The CEC 
in the soils was 28.60 cmol/kg on average with a range 
from 6.23 to 49.25 cmol/kg, while the chernozem soils 
had the highest CEC (32.12 ± 8.28 cmol/kg). A range of 
soil TN from 0.04 to 0.58% was detected with higher TN 
in the cropped soils than in the natural soils. TC content 
for all the soils ranged from 0.33% to 7.95% with an aver-
age of 1.86%. No significant differences in TN, TC and 
TC/TN ratio were found in between the four soil types 
(Table  1). The DOC and DON were 0–0.36  mg/g and 
0–0.05 mg/g in all the soils with a DOC/DON ratio rang-
ing from 1.4 to 16.3. The paddy soils had the lowest DOC 
(0.08 ± 0.08 mg/g) and DON (0.01 ± 0.01 mg/g).

UV–Vis and 3D‑EEM spectroscopy
As calculated from UV–Vis spectra for the DOM sam-
ples, SUVA254 values ranged from 0 to 3.1 with an aver-
age of 1.49 (Table  2). The highest and lowest SUVA254 
were found in the DOM of the chernozem (2.03 ± 0.48) 

and paddy soils (1.10 ± 0.54), respectively. HIX index 
was found to be 0.77 ± 0.10 in the DOM samples. 
The DOM of the chernozem (0.92 ± 0.02) and cin-
namon soils (0.86 ± 0.03) possessed the higher HIX 
index than that of the paddy (0.79 ± 0.05) and red soils 
(0.75 ± 0.14). The spectral indices of BIX and FI for all 
the soil DOM were 0.61–1.17 and 1.55–2.10, respec-
tively. The BIX and FI of the DOM in the chernozem 
and cinnamon soils were significantly (P < 0.05) lower 
than in the red and paddy soils. Very few DOM sam-
ples had FI exceeding 1.9 and BIX higher than 1.0. No 
significant differences in spectral indices were found in 
between the natural and the cropped soils (Table 2).

As shown in Fig.  1, five fluorescence components 
(C1–C5) were identified by the PARAFAC of all the 
DOM samples and assigned to be: UVA fulvic-like 
substances (C1, Ex/Em = 265/460  nm) [27, 28], UVC 
fulvic-like substances (C2, Ex/Em = 230/400  nm) [34], 
humic-like substances (C3, Ex/Em = 320 (250)/400 nm) 
[35, 36], tryptophan-like substances (C4, Ex/Em = 230 
(275)/330  nm) [37] and peptide-like compounds (C5, 
Ex/Em = 220/330 nm) [1, 4, 38].

C1 (16.2%–47.9%) and C2 (15.4%–40.5%) were the 
prevailing fluorescence components in the DOM 
(Fig. 2), while C5 was the lowest component accounting 
for 0–24.7%. The chernozem soils had the highest pro-
portion of C1 (36.3%–47.9%) and the lowest proportion 
of C4 (3.7%–14.3%), while the red soils possessed the 
highest and lowest proportions of C3 (13.6%–23.7%) 
and C5 (0–7.5%), respectively. Higher proportion of C4 
and lower proportion of C2 were observed in the red 
and paddy soils than in the chernozem and cinnamon 
soils (Fig. 2). The cropped chernozem and red soils had 
higher proportion of C1 and C3 but lower proportion 
of C4 than the natural soils. As for the cinnamon soils, 
the cropped soils occupied higher shares of C2 (21.6%–
40.5%) and C3 (10.8%–13.6%) in the total DOM than 
the natural soils (28.4%–30.6% for C2 and 8.1%–10.4% 
for C3).

Relationship of DOM composition and spectral indices 
with soil properties
DOC and SOM were significantly positively (P < 0.01) 
correlated with SUVA254 in the soil DOM but negatively 
correlated with the BIX and FI (Fig.  3). No significant 
correlations of the TC, TN and CEC with spectral indi-
ces were found. Among the spectral indices for the DOM 
samples, SUVA254 and HIX possessed significantly nega-
tive correlations with BIX and FI, while SUVA254 had a 
positive relationship with HIX. FI and BIX showed nega-
tive correlations (P < 0.01) with the proportions of C1 
and C2 and positive correlations (P < 0.01) with the pro-
portions of C3 and C4 in the DOM (Fig. 3). Conversely, 
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soil pH and the HIX of DOM were positively correlated 
(P < 0.01) with the proportions of C1 and C2 and nega-
tively correlated (P < 0.01) with the proportion of C4.

The RDA plot reported in Fig.  4 reveals multiple rela-
tionships among soil properties, spectral indices and fluo-
rescence components of the soil DOM. The axes of RD1 
and RD2 explained 60.27% and 32.24% of the total varia-
tion, respectively. Along the RD1, a net differentiation of 
the paddy soils from the cinnamon and chernozem soils 
was detected and ascribed to the different DOM compo-
sitions. Additionally, the natural soils for the chernozem, 
red and cinnamon soils were neatly separated from the 
cropped soils of these three soil types along the RD1. 
Along the RD2, a distinct separation of the red soils from 
the other three types of soils was observed. Two-way 
ANOVA showed a significant effect (P < 0.001) of soil 
types on the spectral indices and the fluorescent com-
ponents of the DOM (Table 3). Land-uses (cropped and 
natural land) and its intercept with soil types did not sig-
nificantly affect (P > 0.05) the spectral indices, but had an 
impact on the fluorescence components of C1, C4 and C5.

Discussion
Effect of soil types on the spectral characteristics of soil 
DOM
Most of the collected chernozem and cinnamon soils 
were alkalic, whereas a majority of the red and paddy 
soil samples showed weak acidity (Table 1). These results 
are in line with previous studies [39, 40]. It has been 
proposed that the chernozem soils had higher SOM 
abundance than the cinnamon, red and paddy soils on 
a countrywide scale [41], which was also observed in 
the present study. Lower input of organic matter and 
stronger decomposition of SOM may contribute to 
the lower SOM in the cropped soils than in the natural 

soils (Table 1) [42]. Higher CEC and TN detected in the 
cropped soils than in the natural soils may be due to fer-
tilization during the cropping management [43, 44]. The 
range of the DOC content in the investigated soils was in 
line with previous studies [1, 45].

Among the four soil types, the DOM extracted from 
the chernozem soils possessed the highest SUVA254 and 
HIX, showing the highest degrees of aromaticity and 
humification (Table  2). By contrast, the lowest SUVA254 
and HIX were detected in the DOM from the paddy and 
red soils and indicated the lowest aromaticity and humi-
fication degrees. A previous study has also reported a 
higher aromaticity in several chernozem soils than in the 
red soils [1]. This may be attributed to the higher SOM 
found in the chernozem soils than in the paddy and red 
soils (Table 1), and the decomposition and humification 
of SOM may induce an accumulation of aromatic com-
pounds in the chernozem soils [46]. Additionally, positive 
correlations of HIX and SUVA254 with DOC (Fig. 3) may 
hint that DOC served as a significant C source for the 
growth of soil microbiome and favored the decomposi-
tion and humification of SOM in soil [6, 47]. FI and BIX 
of the soil DOM were mainly distributed in the ranges of 
1.4 < FI < 1.9 and 0.6 < BIX < 1.0 (Table 2) and suggested a 
joint contribution of DOM from microbial and alloch-
thonous sources [7, 48]. The DOM of the paddy and red 
soils had lower BIX and FI than that of the chernozem 
and cinnamon soils, showing greater autochthonous 
sources which may be due to stronger microbial activ-
ity [49]. BIX had a positive relationship with FI (P < 0.01, 
Fig. 3), which is in line with a previous study of Jiang et al. 
[7]. In general, SUVA254, BIX, HIX and FI of the DOM 
varied with different soil types (Table 2). In addition, the 
two-way ANOVA also suggested a strong effect of soil 
types on the spectral indices of the soil DOM (Table 3).

Table 2  Spectral indices of DOM extracted from 59 soils of four soil types under two land-uses (natural land and cropped 
land) across China

The value was given by mean ± standard error. Different letters represent significant differences in DOM spectral indices between soil types

n number of samples, HIX humification index, FI fluorescence index, BIX biological index

Items n SUVA254 HIX BIX FI

All soils 59 1.49 ± 0.68 0.77 ± 0.10 0.79 ± 0.14 1.73 ± 0.15

Chernozem soils 16 2.03 ± 0.48a 0.92 ± 0.02a 0.60 ± 0.05b 1.60 ± 0.06b

 Natural 7 1.99 ± 0.32 0.91 ± 0.01 0.59 ± 0.05 1.63 ± 0.04

 Cropped 9 2.05 ± 0.60 0.92 ± 0.03 0.61 ± 0.04 1.57 ± 0.07

Cinnamon soils 14 1.52 ± 0.64ab 0.86 ± 0.03a 0.66 ± 0.06b 1.69 ± 0.06b

 Natural 5 1.24 ± 0.14 0.85 ± 0.03 0.70 ± 0.07 1.68 ± 0.06

 Cropped 9 1.67 ± 0.76 0.87 ± 0.03 0.64 ± 0.03 1.71 ± 0.04

Paddy soils 18 1.10 ± 0.54b 0.79 ± 0.05b 0.77 ± 0.11a 1.81 ± 0.14a

Red soils 11 1.29 ± 0.72b 0.75 ± 0.14b 0.88 ± 0.19a 1.88 ± 0.16a

 Natural 4 1.59 ± 0.74 0.70 ± 0.08 0.77 ± 0.08 1.91 ± 0.15

 Cropped 7 1.12 ± 0.71 0.78 ± 0.16 0.84 ± 0.16 1.83 ± 0.17
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Despite a wide range of soil physicochemical proper-
ties (Table  1), fulvic-like substances were the prevailing 
fluorescence components in the soil DOM, which is in 
line with a previous study of Ren et  al. [50]. As shown 
in Fig. 2, various soil types had different distributions of 
DOM fluorescence components in the collected soils. The 
chernozem and cinnamon soils possessed higher propor-
tion of UVA (C1) and UVC (C2) fulvic-like substances, 

which have been proposed to be mainly derived from 
allochthonous sources [34]. Meanwhile, tryptophan-like 
substances (C4) in the DOM were thought to be mainly 
derived from autochthonous sources [36] and were posi-
tively correlated with BIX and FI in the present study 
(Fig. 3). The proportion of tryptophan-like substances in 
the DOM were lower in the chernozem and cinnamon 
soils than in the paddy and red soils (Fig. 2b), therefore 

Fig. 1  Spectra (a) and loading (b) of fluorescence components (C1–C5) of soil dissolved organic matter by EEM spectroscopy and parallel factor 
analysis
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indicating a relatively low DOM contribution from 
autochthonous sources. This is in accord with the lower 
BIX and FI (Table 2) detected in the DOM of the cher-
nozem and cinnamon soils. The red soils exhibited the 
highest relative abundance of humic-like substances (C4, 
Fig. 2b), which may be explained by the fact that the red 
soils were often Fe-rich and the complexation of Fe with 
DOC may suppress the decomposition of humic sub-
stances [51]. The paddy soils had the highest proportion 
of peptide-like substances (C5), which are usually con-
sidered as autochthonous and represent the magnitude 
of the biological and microbial activities [35]. It is worth 
noting that the two-way ANOVA showed a great effect 
of the soil types on the DOM composition (Table 3). The 
RDA plot also revealed that the fluorescence components 
of the DOM were strongly affected by the sources and 
chemical characteristics of the DOM and the soil proper-
ties for different soil types (Fig. 4).

Fig. 2  Intensity and percent of five fluorescence components (C1–C5) of soil dissolved organic matter under different soil types (a, b) and different 
land-uses (c, d)

Fig. 3  Heatmap showing correlation of soil properties with 
fluorescence components and indices. HIX humification index, FI 
fluorescence index, BIX biological index, SOM soil organic matter, 
DOC dissolved organic carbon, DON dissolved organic nitrogen, CEC 
cation-exchange capacity, TN total nitrogen, TC total carbon
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Effect of land‑use on the spectral characteristics of soil 
DOM
For the DOM spectral indices of SUVA254, HIX, FI and 
BIX, no significant (P > 0.05) differences were found in 
between the natural and the cropped soils (Table 2). This 
was confirmed by the two-way ANOVA, which showed 

that no significant (P > 0.05) effect of land-use on the 
spectral indices of the DOM was detected (Table  3). 
However, it has been reported by previous studies [16] 
that the cropped soils exhibited distinct differences in 
humification, aromaticity and sources of the DOM from 
the natural soils. The great spatial variability of chemical 
characteristics and sources of the DOM in a large scale 
may contribute to the discrepant results from the present 
study.

In comparison with the cropped soils, the natural soils 
possessed higher proportion of UVA and UVC fulvic-
like and humic-like substances in the DOM for the cher-
nozem, cinnamon and red soils (Fig.  2c, d). This is in 
line with Zhang et al. [52] showing that more fulvic- and 
humic-like compounds are detected when the land-use is 
changed from natural land to farmland. In contrast, the 
DOM of the natural chernozem soils had higher propor-
tions of tryptophan- and peptide-like substances than 
the cropped chernozem soils. A higher proportion of 
peptide-like substances in the cropped cinnamon soils 
and a higher proportion of tryptophan-like substances 
in the cropped red soils were also found in comparison 
with the corresponding natural soils. This may be due to 
a lower input and a faster decomposition of the SOM in 
the cropped soils [53, 54]. The removal of above-ground 
biomass of crops by harvesting reduced the input of plant 
residues, and therefore, DOM in the cropped soil relied 
more on allochthonous sources [16]. Organic amend-
ments, such as straw application, use of manure and 
organic conditioners, may alter the composition and 
characteristics of DOM [20, 33]. Conversely, more eas-
ily decomposed litter and roots entered the natural soils 
and improved the microbial activity to accelerate SOM 
transformation which could accumulate more micro-
bial metabolites, such as peptide- and tryptophan-like 

Fig. 4  Redundancy analysis for the fluorescence fractions of soil 
dissolved organic matter (DOM) in response to soil properties and 
DOM spectral indices. SOM soil organic matter, TN total nitrogen, TC 
total carbon, DOC dissolved organic carbon, DON dissolved organic 
nitrogen, CEC cation-exchange capacity, FI fluorescence index, HIX 
humification index, BIX biological index. Red circle, paddy soils; 
red square, red soils in croplands; green square, red soils in natural 
lands; red diamond, chernozem soils in croplands; green diamond, 
chernozem soils in natural lands; red triangle, cinnamon soils in 
croplands; green triangle, cinnamon soils in natural lands

Table 3  Effects of soil types and land-uses on the spectral indices and fluorescence components in the DOM as evaluated 
by two-way ANOVA

C1–C5, fluorescence components identified from the DOM samples

HIX humification index, FI fluorescence index, BIX biological index

Soil types (T) Land-uses (L) T × L

F P F P F P

SUVA254 6.17 0.001 0.00 0.974 1.81 0.174

HIX 18.92 < 0.001 3.52 0.066 0.89 0.417

BIX 12.42 < 0.001 0.46 0.502 2.24 0.116

FI 13.69 < 0.001 1.11 0.297 1.08 0.349

C1 66.95 < 0.001 20.88 < 0.001 4.72 0.013

C2 24.87 < 0.001 3.06 0.086 0.04 0.963

C3 53.58 < 0.001 35.91 < 0.001 0.13 0.875

C4 154.16 < 0.001 77.55 < 0.001 43.09 < 0.001

C5 111.40 < 0.001 20.36 < 0.001 9.17 < 0.001
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substances [38]. For the cinnamon, chernozem and 
red soils, the RDA also showed a neat separation of the 
cropped soils from the natural soils, indicating an impor-
tant impact of land-uses on the DOM compositions. 
The two-way ANOVA revealed that most of the soil 
DOM components were affected by land-use and land-
use × soil type.

Conclusions
Here, we conducted spectral analyses of the soil DOM 
extracted from 59 natural and cropped soils across 
China under four different soil types to investigate the 
chemical characteristics, sources and composition of 
DOM. The results showed that DOM of the chernozem 
and cinnamon soils exhibited the highest aromaticity 
and humification degree. Allochthonous and autoch-
thonous sources jointly contributed to the DOM from 
the investigated soils; however, the DOM in the paddy 
and red soils was derived more from autochthonous 
sources. The cropped soils showed no significant dif-
ferences in chemical characteristics and sources from 
the natural soils for the cinnamon, chernozem and red 
soils. UVA and UVC fulvic-like substances were the 
prevailing fluorescence components in the DOM sam-
ples. The DOM of the chernozem soils had the highest 
proportions of UVA and UVC fulvic-like substances, 
while the DOM of red soils possessed the highest 
humic- and tryptophan-like substances. In contrast to 
the natural soils, the cropped soils had higher propor-
tion of humic-like substances but a lower proportion 
of tryptophan-like substances in their DOM. RDA and 
two-way ANOVA showed that soil types and land-use 
strongly affected the chemical characteristics of the soil 
DOM, but soil types had also an impact on the DOM 
composition. The findings of this study prove the heter-
ogenous nature of the corresponding DOM under vari-
ous soil types and land-uses. Only by taking in account 
DOM variability may we deepen our knowledge in 
order to predict the biochemical behavior of soil DOM 
in the terrestrial ecosystems to prevent the losses of soil 
fertility and to avoid soil pollution from spreading.

Additional file
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from natural lands and croplands across China.
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