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Introduction

The widespread use of artificial intelligence (AI), big data, and the Internet of Things
(IoT), among other technologies emerging from Industry 4.0, has given rise to Soci-
ety 5.0, a societal evolution in which lines between the virtual and physical space are
often blurred as technology is increasingly being used to resolve economic and social
problems [150]. The changing needs of Society 5.0, in terms of product purchase, gave
rise to Marketing 5.0, which has revolutionized the way that products and services are
advertised, offering personalized customer experiences [19]. Society 5.0 consumers are
empowered by digital technologies that enable them to access a great deal of informa-
tion about products and services through online reviews. This makes customers more
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knowledgeable and expects more from sellers than in traditional advertising approaches.
According to Zhang et al. ([175], 2), the cost of acquiring new users is 5 to 10 times
higher than that of retaining existing users, and a 5% increase in customer retention can
increase profits by 25% to as much as 95%.

To retain their customers, businesses are therefore increasingly required to embrace
Marketing 5.0 principles by collecting and analyzing customer data prior to sending
personalized advertisements based on preferences or purchasing history [91]. Driven by
AT and a data-centric approach, Marketing 5.0 practices involve the analysis of previous
buying patterns (predictive analytics) and customer feelings (sentiment) at the time of
purchase to monitor customer purchasing intentions for more targeted and successful
promotion of products and services [156]. In this context, Marketing 5.0 is defined as a
tech-enabled and customer-centric approach, whereby advanced technologies are used
to gather insights and create personalized experiences for customers [91].

Predictive modelling (PM) makes use of different algorithms such as long short-term
memory (LSTM), Bidirectional Encoder Representations from Transformers (BERT),
Support Vector Machine or Naive Bayes) to determine patterns within a dataset and
forecast probabilities of events taking place in the future [61]. As claimed by Taherkh-
aniet al. [147], a prediction model is more sophisticated than current sales approaches,
as it offers a better visualization of best-selling products on a dashboard. This results
in better positioning within the competitive market by providing customers with prod-
ucts of choice that also meet their needs. Marketing 5.0 has been further enhanced with
the integration of sentiment analysis (SA), which is used to determine feelings expressed
through textual content or facial expressions [124]. Wang et al. [159] defined sentiment
analysis as the identification and categorization of sentiments expressed in a text source,
such as comments, product reviews, or news feeds on social media, such as Facebook,
LinkedIn, and Instagram.

Regarding literature reviews within the digital marketing field, Al-Sai et al. [13] con-
ducted a systematic review of the structure of big data and its uses in different types of
data analysis (e.g., sentiment and predictive). Wang et al. [159] analyzed how natural lan-
guage processing (NLP) can be used to improve the accuracy of sentiment-based models
in different contexts. Moher et al. [105] analyzed the various steps involved in Preferred
reporting items for systematic reviews and metaAnalysis protocol (PRISMA-P) in a sys-
tematic review. Busalim and Hussin [28] reviewed different deep learning approaches
that can be used to improve social commerce today. Guha, Dutta and Paul [53] analyzed
different recommender systems available to guide online buyers throughout their pur-
chase journey. For customer-oriented data, textual content, such as customer reviews,
is examined mostly to learn about customers’ beliefs, attitudes, and sentiments [174,
176, 178]. These data, including sentiment and historical information, can be used
for the analysis of product feedback, enabling the business to better manage its repu-
tation by gathering online feedback through regular web extractions [121]. Shah et al.
[134] claimed that reviews help businesses constantly improve their products/services,
thereby strengthening customer loyalty. Moreover, PM can be used for better decision-
making processes by forecasting the quantity of different categories of products that a
business should have on hand[174, 176, 178]. In addition, customer data can be used
for targeted marketing to send specific advertisements to a smaller but more specific
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group of potential customers who might be more interested in a specific product [101].
In their market analysis study, Mehmood et al. [99] claimed that over 54% of small busi-
nesses in the United States (US) used social media to acquire new customers, while 80%
of the respondents claimed that they experienced an increase in their website traffic/
visit when advertisements were posted on social media. Therefore, to understand the
different applications of predictive and sentiment analysis within the field of marketing,
this study conducted a systematic literature review to analyze how previous studies have
used predictive and sentiment models to improve customer experience, business deci-
sions, and any other marketing process that constitutes buyers’ journey.

Contribution of study

This paper highlights areas of improvement in the predictive modelling field and pro-
vides a better understanding of the integration of predictive and sentiment analysis
within the context of Marketing 5.0. Furthermore, the sentiment-based model will shed
greater light on customer preferences, thereby giving businesses insights on customers’
wants and needs by means of customer segmentation [103] and appropriate targeted
marketing campaigns [129]. Moreover, such models can help businesses to strengthen
their competitiveness by analyzing their competitors’ reviews to identify weaknesses that
can be addressed for better business performance [59]. Also, customers could receive
advertisements that may facilitate their decision making and purchasing journey [170].

Paper structure

This paper is structured as follows—Sect. "Digital marketing" explains the evolution
of marketing from traditional to digital. Sect. "Artificial intelligence (Al) for improved
digital marketing" explains the application of Al to enhance digital marketing, while
Sect. "Data preprocessing” covers the application of predictive modelling within the
marketing field. Sect. "Predictive modelling" explains the use of customer reviews as a
means of understanding customers’ feelings (sentiments) during online purchases. The
Prisma-P methodology is explained in Sect. "Research methodology" and the various
steps involved are covered in the sub-sections. The research questions are discussed in
Sect. "Results and findings". Sect. "Conclusion" concludes the paper with an acknowl-
edgement of this study’s limitations and suggestions for future research directions.

Digital marketing

This section explains the digitalization of marketing via the Internet and its impact on
buyers’ purchase journeys by encouraging more online sales. The sub-sections explain
the contribution of Industry 4.0, technologies (predictive and sentiment analysis) in
modernizing marketing processes, and better understanding customer perception dur-
ing a purchase.

Since its creation in 1983, the Internet has been extensively used worldwide. From
16 million in 1995, the number of Internet users has reached 4536 million in 2021
[45], (3). This was further boosted by the Covid19 pandemic where online platforms
flourished because they were an effective way to reach customers during lockdown
periods [108]. Many businesses had to shift to online sales using websites or social

media to promote and sell their products, leading to a worldwide retail e-commerce
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sales rate estimate of more than 5.7 trillion U.S dollars by the end of 2023 (Statista,
“E-Commerce worldwide—statistics and facts). As customers’ day-to-day intercon-
nectivity increases, it is vital for businesses to understand online customer behavior
in an increasingly competitive market [55]. Despite numerous platforms being avail-
able for online buying, Kakalejcik, Bucko, and Vejacka claim that “96% of website visi-
tors do not purchase from an online platform during their first visit” (2019, 47-58)
because of a lack of online guidance. The buyer’s journey, which comprises three main
stages, is illustrated in Fig. 1.

In the awareness stage, customers decide to search for products or services online
based on their needs or wants. This is followed by the decision-making phase (consider-
ation phase), in which customers look for product and/or seller reviews prior to deciding
whether to proceed with their choice or to find another solution. Finally, in the purchas-
ing phase, customers confirm their final choice and finalize their purchases [75]. Not all
businesses can track and guide customers at each stage of a buyer’s journey to ensure
an enjoyable purchase experience and a high level of customer satisfaction [47]. For
instance, businesses often lose customers throughout the journey because of insufficient
online customer assistance and interaction channels at the decision-making stage, where
customers need to be convinced before proceeding to the purchase of the product [71].
Therefore, the availability of automated responses through online services using artificial
intelligence(AI) improves digital marketing [34]. For example, Al chatbots can be used
to assist and provide customers with positive reviews posted by previous customers.
Furthermore, Rivas and Zhao [127] used ChatGPT-powered models for content creation
of advertisements and generated Al posts, claiming that it helped save time so that the
business could concentrate on other tasks.

Buyer's Journey

DECISION-MAKING-

AWARENESS PURCHASE
(CONSIDERATION) STAGE
STAGE STAGE
« What What are the « Ifreviews are

products/services
do I need or want?

product/service/seller
reviews saying about

good, do |
purchase and

the product? come back to
Which the same seller?
product/service/seller

do I choose?

Fig. 1 Buyer's journey (adopted from [149])

Taralik, Kozak and Molnar 2023)
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Digital marketing is less time-consuming, as it uses online tools to advertise and per-
suade online buyers to purchase a specific product or service through business websites
and social platforms such as Facebook, Instagram, and Tik-Tok [74]. Mika and Winc-
zewski [102] suggested that redirecting useful content to consumers based on their
searches, social media views, or browser activity, and displaying related ads on their
screens enables faster and more effective communication with customers through online
channels. Furthermore, utilizing AI techniques to extract social data and analyse them
could be helpful to provide some better insights to businesses.

Artificial intelligence (Al) for improved digital marketing

The emergence of Al in the era of Industry 4.0, and its application to Marketing 5.0,
drove the transition to digital marketing. Al is a game changer for digital marketers who
integrate cutting-edge technologies into their marketing plans to boost product visibility
online [16]. Al-driven tools provide marketers with knowledge obtained from customer
data, such as purchasing history and product reviews, while providing customers with
purchasing flexibility. However, this convenience can pose difficulties for buyers who do
not have the opportunity to physically examine products before purchasing [68]. There-
fore, buyers look for online product reviews and read comments from previous custom-
ers before deciding on a purchase. Thus, online customer reviews comprise critical data
that are also actively sought and closely monitored by businesses [158].

These data are collated and analyzed to extract key information, such as best-selling
products and common purchasing patterns, thereby assisting businesses in stock man-
agement [22]. As a result, buyers’ experiences are improved by providing them with the
products of their choice based on historical data [141]. With evolving consumer behav-
ior, enterprises are progressively embracing a ‘pull marketing strategy. This approach
encourages customers to proactively seek online experiences through channels such as
social media and influencer marketing [174, 176, 178].

For instance, businesses use customer reviews to determine buyers’ emotions during
online purchases. Sentiment polarities are represented by positive, negative, or neutral
feelings towards a product or service, helping to better understand customer satisfac-
tion [67]. Al also provides voice assistants to simplify the purchasing process [96]. How-
ever, customer reviews may also include sarcastic or hateful comments posted by users,
which can negatively influence buyers [130]. Therefore, it is important to clean buyers’
data before monitoring customers’ purchasing intentions and forecasting their tentative
next purchase using machine learning (ML) algorithms through predictive modelling
[42]. The section that follows explains the preprocessing stage before discussing Al tech-
niques used to improve digital marketing namely predictive modelling and sentiment

analysis.

Data preprocessing

Before conducting the PM on the dataset, a data-cleaning process is required. This
helps prepare and transform the data. For instance, outliers, missing rows of data, and
inconsistencies must be identified and handled to avoid affecting the model [24]. Miss-
ing values can be replaced with estimates through the imputation process, whereby new
variables can be derived or calculated from existing variables. For instance, Hassler et al.
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[58] used the values of weight, height, and BMI formula to replace missing BMI values
in their dataset before analysis. Reducing the number of missing values or creating new
ones improves the model’s performance [148].

Furthermore, normalization can also be used to ensure all the feature variables (col-
umns of data) have a specific scale between 0 and 1 (min—-max scaling), thus ensuring
that all features contribute to the training process of a model. This process can be repre-
sented in general using the following formula:

X_normalized = (X — min(X))/(max(X) — min(X))

X is the original feature vector, X_normalized is the final normalized value of the origi-
nal vector, min (X) is the minimum value, and max (X) is the maximum value of the
feature vector [142].

In some situations, data must be transformed or converted to other data types that the
model understands, or into more specific variables. For instance, “time since last pur-
chase” can be obtained if the purchase data and the reference date of a customer pur-
chase are available. Furthermore, if there are skewed data, logarithmic (log (x)) and
square root transformation (sqrt (x)) can be used because they help compress larger
values and expand smaller [44]. Once the data preparation phase is complete, specific
variables (columns of data) must be selected through the feature-engineering process.
Variables can be tested individually or against each other to visualize them through
Python libraries such as matplotlib and pandas [85]. Data preprocessing and feature
engineering phases ensure a good data quality [58]. The next two sections will discuss
two Marketing 5.0 Al strategies: predictive modelling and sentiment analysis.

Predictive modelling

The process of creating mathematical or statistical models that indicate future outcomes
based on past and present data is known as predictive modelling [72]. This area of data
science involves pattern recognition, utilizing data to identify connections and predict
future trends [57], assisting companies in taking appropriate actions. Several strategies
have been adopted to influence customers’ next purchases. These include cross-selling
(CS), which is used to increase the sales volume per customer while maintaining a good
customer relationship. For instance, if customers purchase cereals in bulk, the business
will advertise products that go well with cereals, such as milk or coffee, to encourage
their purchase and reduce the tangible and intangible costs of a customer switching to
a different seller [73]. Another common method used to predict customer purchases
is the analysis of customer data, such as demographics and purchasing history. The
demographic variables age, education, and marital status have an impact on customers’
choices of products and can be used to forecast future purchases [94]. Businesses have
also started identifying loyal customers by tracking click-stream data, including clicks
and impressions from different platforms [54]. Redirecting useful materials to consum-
ers based on their searches, social media views, or browser activity and displaying ads on
their screens enables faster and more effective communication with customers through
online channels [111]. The next section explains the different stages involved when con-
ducting predictive modelling.
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Stages of predictive modelling
Predictive modelling (PM) consists of a three-staged process: data acquisition, model
selection and model testing.

Data acquisition: Firstly, an appropriate experimental design is chosen to generate
the experimental data. This stage ensures that the correct data are acquired for the
study so as to control bias and eliminate inaccurate data [131]. Furthermore, this step
outlines the data collection strategies and establishes whether data for analysis will
be collected from online social platforms or Kaggle.

Model selection: A model is selected to represent the experimental data by com-
paring different models and determining which one is best suited to the dataset to
be tested. This is important because different models have different strengths and
weaknesses, leading to inconsistencies if the chosen model is not fully justified [3].
For instance, choosing machine learning models compared to deep learning models
could require less training time because of the less complex structures [26], but the
accuracy might not be as expected.

Model testing: The model was tested on a dataset [72]. After choosing the model,
the data must be fed to the model to evaluate its performance using different metrics
such as accuracy, precision, and F1 score. This helps to identify the potential prob-
lems of overfitting and underfitting to further optimize the model [135].

The chosen model can be represented by f ;) (x) =wx+b, where w and b represent
the parameters used in the prediction [51]. The cost function (mean squared error MSE),
which is the measurement of how far the prediction is from the actual target, can be
measured as follows:

J(w,b) = %Z; (fwyb (x@) - ym)z

W represents the coefficient of the model, b is the bias term, f ,,},, (x1Y) is the predicted
value for input xV, y actual value corresponding to input x¥ and n is the number of
data points in the dataset [51, 52]. The value of J(w,b) must be decreased to ensure an
accurate analysis.

Various methods can be used to conduct predictive modelling. Nonetheless, the data
preprocessing described above, along with the three-staged predictive modelling stages,
proved to be more systematic when employing pretrained models that required minimal
training time [65, 72].

For instance, several researchers [39, 72, 85, 93, 112, 165] have investigated predic-
tive modelling algorithms and techniques. Wen et al. [164] used customer feedback and
clickstream datasets from a shopping platform in China to develop a prediction model
for customers’ purchasing intentions. They recorded a good predictive Fl-score of
0.9031 with Random Forest for an optimal time window of 2 days. Their study helps busi-
nesses understand that purchase intention is influenced by fashion products and public
reputation established through social media. Khanna and Maheshwari [80] developed
a predictive model based on regression and statistical methods to forecast weld bead
dimensions using welding data. Furthermore, their mathematical models were able to



Gooljar et al. Journal of Big Data (2024) 11:107 Page 8 of 39

make a prediction based on different variables by undergoing some data transformation
through mathematically derived formulas. This process had a 2% error margin because
of the coefficients used during the conformity test. This could have been improved by the
use of deep learning algorithms [80], 4481-4483). Rahmani et al. [122] utilized Random
Forest and AdaBoost modelling techniques to predict steer prices. Their test data had a
confidence interval of 95% [122], 15-16), indicating the effectiveness of the multivariate
approach and the effective use of probabilistic modelling for price variability. This has
helped businesses minimize the wastage of resources, thus making them more sustain-
able. However, to improve the reliability of the results, other external factors that affect
pricing could have been added to the training dataset to determine new coefficients and
relationships between the different variables. Thangeda et al. [152] collected data from
Andhra Pradesh Telecom users and used a nonlinear adaptive approach to predict cus-
tomer churn in the telecom industry. Different trigonometric and linear combinations
were used to train the dataset, and they exhibited promising convergence performances.
However, the dataset comprised information that were too generic and did not have a
structured feature-engineering approach, thus leading to biased results. Therefore, senti-
ment data (polarity, sentiment scores, feelings, word aspects) could be integrated with
purchasing data to provide better insights through a sentiment-based predictive model.
The next section explains sentiment analysis and its applicability in the current Market-
ing 5.0 era.

Sentiment analysis (SA)

Sentiment analysis (SA) is a discipline that studies consumer responses towards goods
and services to assess how customers’ feelings are reflected in their purchasing atti-
tudes and product evaluations [20]. Singh and Singh [139] described SA as a study of
feelings based on textual information published as online evaluations on various social
media platforms. Chan et al. [32] claimed that these evaluations could be used to ana-
lyze people’s attitudes, sentiments, and ideas regarding a certain event to understand
unstructured data (raw data collected from social media). This process is referred to
as the traditional method of conducting sentiment analysis through polarity extraction
and contextualization of sentence structure [87]. SA helps to determine whether textual
content is positive, negative, or neutral by analyzing feelings and opinions using deep
learning (DL) or natural language processing (NLP) techniques [137]. DL is a subset of
machine learning methods that can be used to identify patterns or perform complex
tasks using data [173]. On the other hand, NLP refers to the ability of computer pro-
grams to understand text or spoken language in a similar way to humans through the
constant training of AI models [85].

The basic SA model consists of feature extraction (transforming raw data into statis-
tics), a training set (dataset that will be used to train the model), and a classifier (model
to be used to analyze data), which indicates the polarity of the textual content [137].
Knowledge-based sentiment analytics (KBSA), an improved version of SA, is used to
extract features such as emotions, linguistics, sarcasm, and lexicons from customer
feedback. To manage the different feelings indicated in review comments and fore-
cast consumer opinions of items, multi-sentiment analysis, which uses multiple mod-
els, is applied to customer review data collected from different sources such as blogs,
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Fig. 2 Types of Sentiment Analysis (adopted by the authors from [7, 120, 124])

Facebook, Twitter, or e-commerce websites. KBSA also includes tokenization, where
long sentences are broken down into smaller phrases, to which scores are allocated to
determine their polarity [97]. Breaking down sentences into single words provides a
sophisticated view of the overall sentiment at a granular level to facilitate the evaluation
of emotional tone [60]. A sentence such as “The movie was not only captivating but also
brilliantly directed” was tokenized in emotion analysis by breaking it up into individual
words such as “The” “movie’, “was’, “not’, “only’, “captivating’, “but’, “also’;, “brilliantly”,
and “directed” The emotion associated with each token was then evaluated, enabling the
analysis to identify both positive and negative feelings found in the text.

Contrary to the conventional document and sentence sentiment analysis, ABSA
(Aspect-Based Sentiment Analysis) looks at the viewpoint directly, which is the root of
the sentence, thus making it more relevant to the context. ABSA can also include topic
modelling (TM) abilities used to explore and find patterns automatically from sentences.
TM conducts clustering (grouping of words), finds patterns, and determines the proba-
bilistic distribution of topics. Figure 2 summarizes the types of sentiment analysis, from
traditional to knowledge-based and aspect-based sentiment analysis.

Therefore, it is evident that sentiment analysis has shifted from traditional approach
to one that is more aspect-based approach in order to provide information beyond sen-
tient polarity and sentiment scores [115, 168]. For instance, customer trust and loyalty
can be determined through aspect-based sentiment analysis and these factors could
help a business understand whether a customer has been successfully retained. Further-
more, numerous studies have focussed on ways to improve digital marketing strategies
to increase sales, taking into consideration various purchasing determinants including
competitiveness, pricing strategies, discounts and product ratings [8, 40, 53, 154]. How-
ever, they have not considered merging these purchasing factors with sentiment data
to obtain a better forecast of customers’ future purchasing behaviors. Significant atten-
tion has been directed towards the utilization of artificial intelligence, deep learning

Page 9 of 39
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and natural language processing techniques for the extraction and analysis of sentiment
expressed in customer reviews [109, 117]. However, some studies [43, 89, 163] have
constructed predictive models based solely on sentiment polarities, overlooking crucial
factors obtained from reviews such as customer trust, loyalty and customer retention.
Conversely, others [79, 81] have primarily focussed on trust, neglecting the exploration
of other purchasing factors that could be derived from customer reviews. In the light of
these findings, this study proposes to have a sentiment-based predictive model that uses
sentiment factors (polarity, sentiment score, trust, loyalty and retention) merged with
purchasing history to forecast the subsequent purchase intentions of customers. The
next section explains the research methodology that has been used for the study.

Research methodology

A systematic literature review (SLR) approach was adopted to address the research ques-
tions of this study. SLRs provide clear identification, analysis, and display of data collated
from previous research conducted in the chosen area of study [116]. This strategic evi-
dence is useful to researchers in different fields, such as artificial intelligence (AI). The
use of SLR sometimes lacks flexibility if the guidelines are not followed properly, because
it requires more in-depth research and analysis of sentiment-based predictive modelling
[76]. However, SLR is appropriate for this study, as it provides a more comprehensive
and evidence-based structure because of the various previous studies that are well tab-
ulated with proper identification of trends, patterns, and inconsistencies [25]. Further-
more, the factors that were considered during their proposed framework/model were
also analyzed, enabling a better identification of research gaps.

Review protocol: PRISMA-P

There are many review protocols available that can be used to conduct a systematic liter-
ature review. Two of them are meta-analysis reporting standards (MARS) and preferred
reporting items for systematic reviews and meta-analysis protocols (PRISMA-P). MARS
could have been used for this study. However, it is more suitable for studies involving
statistical methods and quantitative results in their reviews of research topics [76, 128].
On the other hand, Prisma-P is a technique used to review academic journals and arti-
cles prior to formulating the research questions. With this technique, the inclusion and
exclusion criteria are stipulated, and the data extraction and search approach is used
based on the findings of various authors [49]. It helps minimize research bias by care-
fully considering the research background, research questions, search strategy, selection
of studies, quality assessment, and data extraction and synthesis of data [28]. Therefore,
PRISMA-P has been chosen for this study, comprising identification, screening, eligibil-
ity, and inclusion phases.

Identification is also known as the screening phase, and authors search for journals/
articles from specific databases, such as ProQuest/Scopus, based on keywords or paper
titles. Screening refers to a review of the papers that have been gathered based on the
identification phase. Predefined quality assessment (QA) questions were used to filter
journal papers and reduce the number to those that were more relevant to the study
according to their titles and abstracts. In the eligibility phase, papers are further divided
into different categories based on the database filter option to select papers that have
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been used in the field of consumer behavior, purchasing factors, sentiment analysis, and
predictive modelling. For the inclusion phase, a quality assessment plan is used to give
scores to the selected papers that were used to answer the research questions.

Following the steps in the PRISMA diagram (see Fig. 3), 150 journal papers were
considered in this study, comprising 30 journal papers for the analysis section and 120
journal papers for all other sections. The 30 selected papers were suitable for this study
because they covered sentiment and predictive modelling in a marketing context. Fur-
thermore, they were specific to buyers’ journeys, which helped to further improve the
findings of this study with relevant comparison data for the different purchasing factors
and behaviors.

All papers used to answer the research questions were published between 2021 and
2024, thus covering the latest technological developments of the various models avail-
able. Additionally, many of these 30 papers provided sufficient information to address
the research questions of this study. To filter the different studies, the following formula
was used and the number of journals has been shown in Fig. 3:

X =papers in green boxes, indicating the initial number of papers considered.

Y = papers in red boxes, indicating those that were eliminated.

Z = papers still in the green box to be considered in the next phase.

Z=X-Y

The next section explains how these journal papers were sourced (Fig. 3).

Search strategy

In this phase of the systematic review, the ProQuest database was used to search for
relevant papers. These were not limited to specific journals, such as the International
Journal of Data Science and Analytics, Journal of Machine Learning Research, Journal of
Sentiment Analysis and Opinion Mining. Instead, journals were explored based on the
research questions and the main keywords such as “sentiment” and “predictive model-
ling” and search phrases such as “customer purchase prediction model” and “use of sen-
timent analysis for buyers’ reviews”.

However, identifying publications based on keywords and search phrases alone is not
very efficient, as it depends on word similarity using weights of terms and shared refer-
ences (existence of the same citations across multiple papers) only [28]. Citation search
is a good approach for enhancing the search for papers. Backward citation searching,
which involves looking at references cited by a particular work, was also used [48]. All
publications were then stored on Endnote to allow direct citations from search databases
through direct export [30], facilitate the removal of duplicates, and organize papers in a
systematic way under clearly labelled folders.

Inclusion and exclusion criteria for study selection (filtering process)

The inclusion and exclusion criteria were established to ensure that the selected stud-
ies were current and relevant. Abstracts were analyzed using EndNote, and a new
subgroup (SG1) was created on the reference manager to retain only those papers
that were relevant to the research questions [34]. All journal papers addressing cus-
tomer prediction models and using customer data to predict their purchase or analyze
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Fig. 3 PRISMA-P for SLR (Compiled by authors)

trends to forecast their purchasing intentions were saved. Regarding sentiment analy-
sis, studies providing the steps used to analyze customers’ textual reviews using dif-
ferent algorithms were considered. Journal papers exploring purchasing history data
were also included in SG1 and systematically analyzed. Papers older than 2021 were
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excluded from this review because the field of prediction analytics has evolved rap-
idly, and recency for SLR is considered primordial.

Quality assessment

This study aimed to review journals covering sentiment and predictive analytics within
the field of marketing—buyers’ journeys. The limitations of the current models were
determined and presented in a tabular format, along with previous studies that have
addressed various gaps. Furthermore, customer purchasing behaviors obtained from dif-
ferent studies were analyzed to understand the areas that require more focus. Moreover,
a quality assessment of the papers was required to ensure that relevant papers were used
for this study. The Quality Assessment (QA) stage ensures that only quality papers are
selected for the study. As advised by Jadhav, Gaikawad and Bapat [66], three levels of
quality schema, categorized as high, medium, and low, were used.

This study focused on addressing the following research questions:

1. What are the predictive and sentiment analysis models used to improve Marketing
5.0?

a.  What predictive analytics models have been used to improve Marketing 5.0?
b.  What sentiment models have been used by previous studies for analyzing cus-

tomer reviews?

2. What are the factors considered in online purchase predictive models?
3. What are the challenges and limitations of existing sentiment-based predictive mod-
els?

a.  What was missing from previous sentiment-predictive models?
b.  What are the challenges in terms of dataset transformation and model develop-

ment?

Several journal papers were used to answer the RQs, and quality scores (QS) were
applied to filter papers by assigning scores to them based on several quality assessment
questions.

Quality scores were assigned to each SG1 paper based on the following criteria:

+ QA1L: Does the paper address customer purchase predictive analysis?

+ QA2: Was sentiment analysis used to explore customer reviews?

+ QA3: Were algorithms or technologies used to predict customer purchase intention
clearly explained?

+ QA4: Have the factors considered for customer purchase predictions been ade-
quately discussed?

The scores for each paper were calculated based on the quality assessment questions
using a scale of 0 to 2, where 0 meant that the paper did not fulfil the QA being evaluated
(No), 1 meant that it partially addressed it (P), and 2 meant that it fully covered the QA
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being assessed (Y). To avoid assessing papers based only on linguistic terms, scores were
used by converting all Y, N, and P into numerical forms for better interpretability [12].

The total for all four QAs were calculated using the following formula:

E.S (P,)=>7QAi,where ES stands for the final score, P, stands for the paper number,
and i is the value given for the different QAs.

Therefore, when F.S(Pn) = Z?QAi >6, the paper has a high QA, 4>
F.S(Pn) = > 7QAi >5, medium QA is inferred; and when F.S(Pn) = Y 7QA <4, this
implies low QA. Table 1 presents these explanations and helps eliminate any search bias
and increases the validity of the literature review [13].

The different QA questions were used to determine which papers were eligible for the
study and they were filtered accordingly through the eligibility phase shown in Fig. 3.
After this process, 30 journals were selected; and their individual scores and QA assess-
ments are presented in Table 2. All the high and medium QA papers from the remaining
papers were used to answer research questions that were related to SA and PM, while
the low QA were papers which were used to answer purchasing factors related research
questions.

Reporting review

After conducting the QA for all shortlisted papers, the results of the systematic review
were reported [84], contributing to extend research studies on customer predictive ana-
lytics and answering the research questions of this study. This is discussed next.

Results and findings

This section uses the findings from previous studies to answer the research questions
presented in the methodology section. This was achieved by examining research gaps
within previous models, constraints in their study analysis, performance metrics,
and the application contexts (such as marketing, sales, stock pricing, etc.). In order
to broaden the understanding of purchasing patterns this current study focussed on

Table 1 Quality Assessment (QA) Metrics

QA1 QA2 QA3 QA4

1 Quality assessment (QA)  Doesthe  Was Were algorithms or tech- Have the factors considered
paper sentiment nologies used to predict  for customer purchase pre-
address analysis  customer purchase inten-  dictions been adequately
customer  used to tion clearly explained? discussed?

purchase  explore
predictive  customer
analysis?  reviews?

2 Scores Y=2 Y=2 Y=2 Y=2
N=0 N=0 N=0 N=0
P=1 P=1 P=1 P=1
3 QA Assessment A score of 6 and above is considered high QA

A score with range of 4 till 5 is considered medium QA
Any score below 4 is counted as low QA (H. [92])

Legend for the table below is as follows:
Y =VYes, it addresses the QA

N=No, it does not address the QA

P =Partially answers the QA
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Table 2 Quality assessment of academic papers

(2024) 11:107

Research paper QA1 QA2 QA3 QA4 Finalscore Dataset used Performance QA assessment
achieved
1. Abidaretal. 2 0 Online retail XGB classifier High QA
[2] reviews data scored 93%
precision with
training set and
84% for test set
2. Alharbi etal. 2 2 Airbnb price list-  KNN had R? High QA
1] ing and reviews  value of 0.97,
SVR had 0.995
3. Alsayat, [14] 2 2 TripAdvisor data  0.9526 R® score High QA
for reviews and  for hybrid of
hotel booking k-means-SVR-
SMO
4. Al-Sous, Alma- 0 0 Data collected No develop- Low QA
jali, and Alsokkar, through survey — ment of model,
[15] from Facebook ~ SEM was used
users for hypothesis
5. Anas et al. 2 0 Data collected ~ No model Medium QA
7] through surveys development,
SPSS and
SmartPLS used
for analysis
6.Khan et al. 0 0 Data col- Models not Low QA
[77,78] lected through  used for reviews
questionnaires  analysis, only
for food delivery  SEM was used
reviews for hypothesis
7.Busharaetal. 2 0 Restaurant food  Four-dimen- Medium QA
[29] reviews col- sional scale
lected through  of SMMAs
questionnaires  to extract
keywords from
reviews to
evaluate senti-
ments
8.Chen, Paiand 2 0 Data fromTao-  Random forest ~ High QA
Sun, [33] bao shopping highest accu-
platform was racy of 0.8556
extracted F1 score
9.Fangetal. [43] 2 2 West Texas inter-  0.8907 DA for High QA
mediate (WTI) FINBERT-VMD-
crude oil data BiGRU-Att
model
10. Feng et al. 0 0 Google form No develop- Medium QA
[46] questionnaire to  ment of model,
collect reviews  Kurtosis values
for e-retail were used
to evaluate
research ques-
tions
11. Majumder, 0 2 Online reviews  Hypothesis anal- Medium QA
Gupta and Paul, from Amazon ysis using differ-
[53] on 3 types of ent formulas
products: vide-
ogame, digital
music and
grocery
12. Hajek and 0 2 YelpZip restau-  0.830 F-Score for Medium QA
Sahut, [56] rant dataset for  neural network

reviews

merged with
lexicons

Page 15 of 39
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Table 2 (continued)

(2024) 11:107

Research paper QA1 QA2 QA3 QA4 Finalscore Dataset used Performance QA assessment
achieved
13.Hossainetal. 2 2 Customer Logistic High QA
[63] reviews for halal  regression
restaurant from  had 88.559%
Yelp accuracy
14. Mydyti, 2 0 No data collec-  Recommenda- ~ Medium QA
Arbana and tion. Focussed  tion system
Mirjana, [107] onacompany  tested against
as case study different types
of data
15.Khan et al. 2 0 Questionnaire  SEM and Medium QA
[77,78] used to collect  discriminate
reviews from validity used
customers to determine
that design
and purchasing
decision had
85% relationship
16.Sherbazetal. 2 0 No data collec-  No performance Medium QA
[136] tion. Focussed ~ metrics. Only
on reviewing paper reviewing
papers
17.Kumaretal. 0 0 A self-executed  No model per-  Low QA
[88] questionnaire formance. Only
toextractdata  ELMand IAM
from online used to evaluate
platforms and check for
purchasing
factors
18. Kyaw, Sandar 2 2 Customer Research does ~ High QA
and Chanwut, reviews not measure
[89] extracted from  performance
ecommerce of model. It just
websites proposes it
19.LiuandYing 2 2 Online news Average MAPE  High QA
[93] reviews col- of 3.28 fora
lected hybrid of LSTM/
RF
20.Mgibaetal. 2 0 Online ques- SPSSwasused  Medium QA
[101] tionnaire used for descriptive
to measure analysis
purchasing
factors
21.Razalietal. 2 2 Textual dataset  Decision tree High QA
[126] from NST, STAR  had 69% accu-
racy and naive
Bayes 61%
22.Punethaand 0 2 Datasets com-  Accuracy of Medium QA
Jain, [120] prising Zomato,  89.01% for
Swiggy, Yelp aspect-based
and TripAdvisor  ranking model
were used (ABRM)
23.Rapaetal. 2 0 Questionnaire Delphi method ~ Medium QA
[125] was used to col- used and accu-
lect customer racy was not
satisfaction data measured
24.Pop, Hledik 2 0 Questionnaire S-O-R frame- High QA

and Dabija, [118]

used to collect
fashion reviews
and factors
affecting pur-
chase

work was used
for evaluation
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Table 2 (continued)

Research paper QA1 QA2 QA3 QA4 Finalscore Dataset used Performance QA assessment
achieved
25.Singhetal. 0 2 Collection of CNN had High QA
[138], Singh amazon product 99.23% accuracy
etal. [140] reviews for sentiment
analysis
26. Ullah et al. 2 2 Amazon prod-  QLeBERT had High QA
[155] uct reviews was  83% accuracy
use for analysis  for phrase senti-
ment analysis
27.Kim et al. 2 2 Stock price data 04651 R*value  High QA
[82], Kitchen- and summary for gradient
ham, [83] data obtained Boosting model
from The New
York Times
28Wang et al. 2 2 Twitter data was  Econometric High QA
[160], Wang collected model was used
etal. [163] for analysis
29.Wen et al. 0 2 Hotel online ERNIE model High QA
[165] reviews from had 93.2%
hotel in China accuracy
30.Zhangand 2 0 Survey No model analy- Medium QA

Mengxin, [177]

conducted to
collect data in
27 provinces in
China

sis. Research
confirms some
purchasing
factors
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different product types and services to analyze gaps rather than focussing on only one
specific product.. Consequently, although product type is used as a predictive vari-
able to track customer purchase, it is not the only element that can be used. There
are multiple other factors to consider such as customer feeling, the need to purchase,
budget, post-purchase emotion, etc. Therefore, this study proposes a sentiment-based
predictive model to address the existing gaps in the context of customer purchase
behaviors. The reviews are presented in a tabular format to better understand how
different models have been used in different scenarios to assess their impact on mar-
keting outcomes. Studies have demonstrated that predictive analytics can accurately
forecast outcomes based on various factors that contribute to customer purchasing
decisions (satisfaction, rating, reviews, and loyalty). The models were able to iden-
tify the key factors that influence customer behavior and used these factors to make
predictions. The results vary under different circumstances, and are explained in the
following subsections.

Predictive analytics approaches (RQ1-a)

As discussed in Sect. "Data preprocessing”, predictive modelling (PM) is an Al sub-com-
ponent that enhances marketing 5.0, with its ability to forecast customer behaviors and
preferences [19]. PM can also be used to analyze customers’ purchase intentions based
on historical data. Multiple approaches have been used to develop predictive models in
existing research. Figure 4 depicts the four different approaches along with their associ-
ated models which will be explained.



Gooljar et al. Journal of Big Data

(2024) 11:107

Random Forest (RF)

. Support Vector
< Machine (svM)

Long Short Term

LogisticRegression
(LR) Memory (LSTM)
Predictive
Classical Deep Bidirectional
; A Learnin, sl
Maichinie (FM) Learning Modellin }4 e ‘reme’sentctiO(nB'Er:rTr;
ransformers
o -
£ Generative pre-
Dicsonmmeonl ... 0000000999092 JAEGSSEA00 ¢ .. trained Transformer
.................................... 3(GPT3)
Naive Bayes (NB)
B 0000 . . Mixing various
Extreme Gradient ] P e models together for
Boosting (XGBoost)  ****"* : : afinal output
v v
Gradient Boosted Ensemble i
Decision Trees - Fusion
----------- Learnin,
(GBoT) ® g Model
LighteBM

Fig. 4 Mind map for PM approaches and models (prepared by the authors)

Classical machine learning

Classical machine learning (CML) is a traditional approach that uses algorithms such
as support vector machines (SVM), logistic regression (LR), factorization machines
(FM), decision trees (DT), and random forests (RF). These methods use manual fea-
ture engineering, where relevant features are filtered from the input data to be used in

the model for proper analysis.

Ensemble learning

Ensemble learning (EL) involves combining different models to develop a more robust
model that will, in most cases, outperform the individual models when evaluated. The
main characteristics of EL are bagging and stacking concepts [104]. Bagging refers
to the process of training multiple instances of the same algorithm on different sub-
sets of training data. Stacking is a method of combining the predictions of multiple
base models through multiple training sets [180]. Examples include extreme gradi-
ent boosting (XGBoost), gradient boosted decision trees (GBDT), and light GBM
(LGBM).

Deep learning

Deep learning (DL) is a sub-component of machine learning (ML) that involves neural
networks with multiple layers capable of learning patterns from large datasets [130].
It is suitable for natural language processing, such as speech recognition and textual
review analysis [24]. Examples are Long-Short Term Memory (LSTM), bidirectional
encoder representation from transformers (BERT), and generative pre-trained trans-
former 3 (GPT-3). However, the problem of vanishing gradients arises when DL algo-
rithms are used. This occurs when there are multiple layers of data within the data
network, thus causing issues in updating the weight of the predecessor layer when

Page 18 of 39
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moving to a new layer for analysis. Consequently, the weight gradient for the different
layers is not updated properly, thereby producing less efficient results [92]. A tech-
nique used to minimize this effect is batch normalization, which requires the scaling
and centering of data [163].

Fusion model

The fusion model is a combination of the outputs from different models to obtain the
final prediction from a dataset. It can be used at different levels, including the feature
level (combining extracted features), decision level (combining model predictions), and
sensor level (integrating data from various datasets) [1].

Predictive modelling algorithms (RQ1-a)

The approaches adopted for predictive modelling can be different as discussed in
Sect. "Predictive analytics approaches (RQ1-a)". However, data pre-processing and fea-
ture engineering phases are commonly used as explained in Sect. "Data preprocessing".
Table 3 lists and explains the various predictive models used in previous PM studies.

Limitations from previous studies encountered with the different models have been
summarized under the weakness column. The number of papers that addressed the dif-
ferent models have been shown in Fig. 5.

Figure 5 shows the number of studies (x-axis) that use the various models listed
(y-axis). As evident, the papers reviewed in this study did not use (GPT), whereas six
out of the 30 papers used Bi-directional encoder from transformers (BERT) and Support
vector machine (SVM). Seven of the studies used Long Short-term memory (LSTM) and
Decision tree (DT), while five used linear regression. For the remaining studies, Factori-
zation machine (FM), Naive Bayes (NB), Random Forest (RF), Light gradient-boosting
Machine (LightGBM), Extreme gradient boosting (XGBoost), and Gradient boosted
decision tree (GBDT) were used. Many of these algorithms, which have different
strengths, can be used for both sentiment and predictive models. Therefore, hybridizing
two of these models to form a sentiment-based predictive model based on the nature of
a dataset could offer a good solution to issues within the customer purchase field.

Application of sentiment models for customer reviews analysis (RQ1-b)

Some of the weaknesses listed in Table 3 can be mitigated by integrating sentiment
models. For instance, BERT has a complex data architecture and requires an appropri-
ate training phase. Therefore, training a dataset with sentiment and predictive models
of BERT can help minimize complexity by better understanding the data relationships
better [181]. Furthermore, sentiment analysis involves data transformation, classifi-
cation, training, and evaluation. This helps improve the categorization issues faced by
many fusion and ensemble algorithms. The conversion of raw data into labelled data,
followed by the training phase, results in a more scalable and flexible dataset that can be
evaluated and visualized more easily [41]. Chen et al. [33] proposed a scalable DL model
that uses an Apache dataset for analytics. They found that DL algorithms are more effi-
cient when sentiment analysis is conducted in multiple phases of data preparation, fea-
ture extraction and polarity determination. Apart from sentiment models, there are also
several side algorithms, such as the Genetic Algorithm (GA) and Firefly Algorithm (FA),
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Fig. 5 Algorithms vs. papers reviewed (prepared by authors)

that can be used to further enhance the efficiency of SA. The next section explains the
concepts of GA and FA.

Genetic and firefly algorithm

Natural selection serves as a model for optimization algorithms, known as genetic algo-
rithms. GAs can be produced by changing a collection of parameters or characteristics.
They can be used in SA to improve the performance of sentiment classification models
by tuning the data architecture to combine the variables. FA is the process of mimicking
the flashing nature of fireflies, where brighter fireflies have a greater attraction power.
Similarly, FA determines the groups of variables using the feature weight and parameter
values. LSTM-DGWO (long-term memory with differential grey wolf optimization) is
used to improve the optimization phase of the SA. Datasets were divided into different
levels for better training of the models [20]. Furthermore, SA involves a text classifica-
tion phase, thus it is important that models understand the context of the sentence being
evaluated. Latent Dirichlet Allocation (LDA) is a probabilistic model that can be used
for topic modelling to understand words within sentences being evaluated for their sen-
timent polarity [97, 137]. The next section explains how different deep learning models

can be merged to produce better results.

Random multimodal deep learning

Random multimodal deep learning (RMDL) was used to combine diverse deep learning
models to enhance SA performance. Local search with improved binary ant lion opti-
mization (LSIBA-ENN) helps to optimize feature selection for classification tasks [20].
CNBL (convolutional neural network with binary layers) integrates binary layers into
convolutional neural networks for efficient modelling [62]. SLCABG (semi-supervised
learning with class-wise adversarial binary generative models) improve binary genera-
tive models for semi-supervised learning when training models using datasets.
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When performing SA, ensemble learning algorithms, such as XGBoost, can be used.
Therefore, extreme random forest with XGBoost (ERF-XBG) can strengthen the perfor-
mance of SA with a better data classification [109]. The next section explains the findings
and models of different sentiment-based studies.

Sentiment analysis models (RQ1-b)
Table 4 presents the studies, models used and the findings.

Numerous studies have used machine learning and deep learning algorithms to ana-
lyze sentiments, demonstrating the efficacy of random forest, Naive Bayes, and support
vector machine classifiers. A BERT-integrated model using DGSO and LSTM was able
to attain a remarkable 98% accuracy for sentiment categorization. The ensemble Bag-
ging SVM and BERT/CNN showed good accuracies of 96.1% and 99.23% in restaurant
and e-commerce sentiment analysis, respectively. Therefore, depending on the data-
set, the fusion models performed well in terms of the evaluation metrics. Furthermore,
most of the papers mentioned above used secondary data, that is, data extracted from
social media endpoints or open sources, such as Yelp or Kaggle. Therefore, multiple
other factors, such as feelings, emotions, reviews and ratings, and trust can and should
be extracted from textual content since they play an important role in the buyer’s jour-
ney [119], and help to ensure a better customer experience. Therefore, the extraction of
other variables by means of sentiment analysis can help to predict whether customers
will be repurchasing from a specific business [175]. The next section discusses other pur-
chasing factors that can be used to analyse buyers’ journeys.

Factors for online purchase predictive models. (RQ2)
This section discusses the different factors and behaviors that influence customers dur-
ing their online purchasing journey, such as customer service, product brand, customer
ratings and reviews, and attraction to the product.

Purchasing factors

After reviewing the shortlisted papers, several factors were found to have been consid-
ered when determining customers’ purchasing patterns. These include customer behav-
iors and other business-related factors, as presented in Fig. 6 [27].

In the social media era, customer reviews have become a major factor in online pur-
chase decisions. Businesses are increasingly focusing on tracking customer satisfaction
through reviews to improve sales and track purchasing trends. Reviews can be used to
determine customer preferences, attitudes, and loyalty, as well as to optimize marketing
and sales strategies [9]. Customer satisfaction is another factor that drives online pur-
chase decisions. Defined as the extent to which a business can resolve purchasing issues,
high customer satisfaction can lead to better reviews, more online sales, and increased
customer loyalty. The latter occurs when buyers repeatedly purchase from the same
seller, regardless of competitors’ advertisements [146]. Loyalty can be determined by
analyzing the purchasing patterns evident in customers’ purchase histories. Branding,
pricing, and discounts should also be considered when analyzing patterns and retaining
customers [110].
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Table 4 Sentiment Analysis Models

References

Models/algorithms used for
sentiment analysis

Findings

Alghazzawi et al. [10]

Barik and Misra [20]

Jiang et al. [69]

Manikandan, Rama and Chakara-

varthi [97]

Ounaceretal. [114]

Prasad et al. [119]

Rahman, Idrus and Adam [121]

Shini and Srividhya [137]

Singh et al [138, 140]

Comparative study of LSIBA-ENN,
CNBL, BH-GWO, SLCABG and
ERF-XGB

BERT was used for data preproc-
essing, Genetic Algorithm (GA)

for feature extraction and Firefly
algorithm (FA) for feature selec-
tion. LSTM was integrated with
DGSO (Differentially grey swarm
optimization) for sentiment clas-
sification. Final algorithm used was
LSTM-DGWO

PSO algorithm and ANFIS
approach; Fuzzy least square
regression, Fuzzy regression

Weighed topic-aware lexicon
expansion and fuzzy logics were
used during the SA phase

RF, LR, NB, SYM

NB, SVM and DT

Comparative study of SYM and
NB to evaluate performance of
sentiment analysis for banking
customers

LDA was used to extract implicit
and explicit features and an
Ensemble ML technique known as
Ensemble bagging support vector
machine (EBSVM) was used to
determine sentiments

BERT, CNN, LSTM, Fast Text, RMDL
were used to test ecommerce
dataset

ChnSentiCorp dataset and IMDB
dataset were used. Performance
indicators used were accuracy, preci-
sion, recall and F1-Score. ERF-XGB
resulted in an accuracy of 98.7%,
while LSIBA-ENN, CNBL, BH-GWO and
SLCABG had an accuracy of 78%, 86,
83, and 90%. Precision for ERF-XGB
was 98.5%, recall rate 96.8%, and
F1-score 98.1%

Accuracy, Precision, Recall, F1 Score
and AUC (Area under curve) were
used for performance analysis. LSTM-
DGSO had accuracy, precision and
recall of 98% (rounded value) and
96% for F1 score and 99% for AUC
(area under curve)

PSO-based proposed model had bet-
ter mean and average results during
comparative analysis. MAPE and VoE
were used as metrics

Amazon Sales 2023 was used to pre-
pare the dataset. The enhanced fuzzy
lexicon had a better precision of 0.52
compared to existing fuzzy models
(FBPRR, Fuzzy rule, MDH) and Recall
value of 0.52 also

RF had 86% score for classification
and sentiment determination—
standing as the best amongst the
other algorithms with NB as the
second with 77%

SVM had the best accuracy of 81.75%
ahead of NB (72%) and DT (65%)

Linear SYM had the highest accuracy,
precision, recall and F1 scores of
97.17%, 97.21%, 97.17% and 97.18%

Data was derived from 46,660
customer reviews from restaurants in
different cities of India (Delhi, Kolkata,
Chennai, and Mumbai). Accuracy,
Precision, Recall and F1 score were
used to evaluate the model. EBSVM
had an average accuracy of 96.1%,
precision of 96.6%, Recall of 95.6%
and F1 Score of 95.6%

Amazon product review dataset
(34,660 rows) from Kaggle was used
to test the different models. Word
embedding with BERT and model
CNN resulted in 99.23% accuracy
whereas Fast Text and RMDL had
85.24% accuracy, BERT and RMDL
97.07%, and BERT and LSTM 84.51%
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Branding is the process of creating a strong marketing perception that attracts cus-
tomers and influences purchasing intentions [53]. Pricing is another important factor
that customers use to evaluate their purchases and can vary depending on the brand. A
favorable price can attract more customers and increase loyalty and retention probabili-
ties. Additionally, sellers use discounts to attract customers by offering reduced prices
for online sales [110]. Customers often take this opportunity to purchase more products
from their preferred sellers, thus increasing the probability of a subsequent purchase
because of greater customer satisfaction. The interface and web design of a commerce
website also affect online customers. Visual design factors such as interface color, font
type and size, and images have a positive impact on customers’ trust, while ease of navi-
gation improves customers’ journey by helping them find their preferred products more
easily [123]. A good user interface design leads to a better display of products, which
enhances customers’ purchasing pleasure and experience during their purchase journey.
Customers also highly value their personal data protection, and e-commerce websites
with clear buyer data policies can easily attract online buyers and build buyer—seller
trust.

Strong trust between customers and sellers can increase the loyalty factor, which can
be integrated with sentiment and purchasing history to further enhance the predictive
probability of customer repurchasing [40]. The number of papers addressing each of
these factors is shown in Fig. 7.

Previous studies [143, 157, 174, 176, 178] have addressed customer satisfaction, attrac-
tion, customer reviews, pricing, and product ratings more often than factors such as
customer retention, loyalty, and trust. Customer trust plays a fundamental role in cul-
tivating loyalty and ensuring customer retention, as emphasized by studies. This trust
can be established by aligning products and services with customer needs, ultimately
influencing satisfaction levels and fostering long-term relationships. Loyalty manifests
in customers’ repeated purchases and positive word-of-mouth, which significantly
impact business success [98]. Despite its importance, the examination of customer loy-
alty remains limited, particularly in the context of mobile and online shopping, where
customer switching costs are low [169, 174, 176, 178]. Therefore, the integration of
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Fig. 7 Purchasing factors considered (prepared by the authors)

sentiments yielded by customer reviews with purchasing history data enables the behav-
joral patterns to be identified, thereby facilitating the prediction of future purchase
behaviors [113]. Additionally, customer retention efforts focus on understanding cus-
tomer behavior and preferences so as to enhance satisfaction levels and predict future
purchasing needs [50, 138, 140, 153], thus highlighting the need for a sentiment-based
predictive model.

Moreover, a valuable asset of every online business is its faithful customer base with
readily available funds. Therefore, businesses attempt to convert current customers into
loyal ones to ensure repeated purchases from the same seller using different techniques,
including electronic word-of-mouth (eWoM), influencer marketing, and the posting of
online customer reviews and testimonials [132]. Therefore, the extraction of such factors
(trust, loyalty and retention) through aspect-based sentiment analysis could be crucial
to enhancing current marketing strategies, thus highlighting the importance of a senti-
ment-based predictive model.

Since influencer marketing involves the usage of social media, from which reviews can
be obtained, this is explained in the next section.

Influencer marketing

Influencer marketing involves using well-known or less-known opinion leaders with
sizable followings on social media to encourage favorable attitudes and actions from
customers towards the brand, thus retaining them for the business. Any type of digi-
tal media-based positive or negative communication regarding a product or service is
known as electronic word-of-mouth. This can drastically alter how consumers make
judgments about what to buy by serving as the contemporary equivalent of old-fash-
ioned word-of-mouth advertising. eWoM has the power to influence customer decisions
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to remain loyal to a certain business, thus ensuring a favorable evaluation that can boost
revenue. Moreover, consumers can share their opinions about their experiences through
websites, which can be extracted for sentiment analysis. A few studies have considered
factors such as discounts and page interfaces. However, these were not selected for this
study because the focus is on ensuring a smoother buyers’ journey by taking into account
customer trust, loyalty and retention through a sentiment-based predictive model. How-
ever, when developing such a model, there are certain constraints and challenges. These
have been discussed in the next section.

Challenges and limitations of sentiment-based predictive models (RQ3)

This section discusses the challenges that can be faced during the development of a sen-
timent-based predictive model for the marketing field: online customer purchase and
data analysis. Furthermore, previous models have several limitations that have been
explained.

Limitations of previous sentiment-predictive models (RQ3-a)

A total of 150 papers were used for the current SLR and 30 were filtered because they
considered sentiment or predictive models to improve their current marketing service.
Of the 30 papers, only nine addressed both sentiment and predictive modelling from
a marketing perspective. Various models have been used to determine customer feel-
ings about a product, such as SVM, BERT, K-Means, LSTM, and NB. However, ensemble
learning was not used in the study, and there was no hybridization of algorithms, which
would have increased the performance metrics used. Moreover, LSTM is known to have
good predictive metrics when it comes to customer data [61].

Liu and Ying [93] applied SNOWNLP to analyze customer sentiment and used LSTM
for their predictive model. However, there is room for improvement in the preprocessing
phase, particularly in terms of enhancing the data structure and conducting more thor-
ough data cleaning. Furthermore, RF could have been merged with LSTM to increase
the efficiency by mitigating the weakness of each individual model and providing better
data modelling [172]. For the sentiment analysis phase, algorithms such as BERT can be
used to increase the reliability of research [145]. Ullah et al. [155] proposed the use of
the BiLSTM and QLeBERT algorithms for sentiment and predictive modelling. How-
ever, their dataset did not have a resource pool of languages (lexicon), which would have
improved the research. For example, the model was not trained to detect sarcastic con-
texts, and the tokenization phase could have been made more efficient by dividing the
process into sub-processes. Breaking a sentence into two parts and further breaking it
down to single words would improve the performance metrics because of more efficient
classification and analysis of different groups of words [7].

As illustrated in Fig. 8, of the nine papers, only two used LSTM and BERT despite the
limitations of these approaches. The two algorithms can be merged to form a sentiment-
based predictive model. Furthermore, only two of the 30 papers (6.7%) used LSTM and
BERT for the sentiment-based predictive model, indicating that this area requires more
focus. This is supported by the facts presented in Tables 3 and 4, where the evaluation
metrics for LSTM and BERT were among the highest when tested on different types of
datasets. Additionally, when working with Kaggle secondary customer dataset for the
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Fig. 8 Papers using LSTM and BERT (prepared by the authors)

proposed model, LSTM and BERT present viable options due to their capacity to discern
connections among diverse data variables, consequently mitigating evaluation margin
errors [35]. Moreover, during the development of these models, the inclusiveness of a
variety of data variables (columns) can serve as a pivotal factor. Inadequate coverage,
such as lacking emotional data, purchasing history, and product details [100] can lead to
biased or less accurate results. To minimize such possibilities, it is imperative to ensure
a proper balance among pre-existing biases and limitations (sarcasm, low-quality data,
noise, uncleaned data, etc.), thereby ensuring an accurate analysis of customers’ pur-

chasing intentions.

Model development challenges (RQ3-b)

As claimed by Kim et al. [82, 83], deep learning can be used to conduct a sentiment anal-
ysis of customer reviews. However, the main challenge is the sarcasm detection based on
the structure and context of the sentences. A key sign for sarcasm identification is the
sentiment incongruity of words in a phrase; that is, the contrast between positive and
negative concepts. Xiong et al. [166] and Tay et al. [151] proposed a solution to over-
come the sarcasm issue by considering similarity and assigning greater weight ratings
to highly comparable terms. However, this approach cannot efficiently identify incon-
sistent information [60]. Therefore, aspect level sentiment analysis can be used in the
proposed model to enhance the capabilities of LSTM to analyse word by word for better
interpretability.

Dataset transformation challenges (RQ3-b)
Baroiu and Stefan [21] proposed the “MUStARD” multimodal dataset, which can
detect sarcasm by incorporating data from a comedy series. However, this was not
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sufficient to detect sarcasm in customer reviews due to contextual differences. Fur-
thermore, sentiments expressed in words can sometimes differ from what is actually
felt [7]. Data quality can be another challenge if the datasets are not properly cleaned
and are divided into training and test sets [82, 83]. Therefore, the phases involving
strict data preprocessing and feature engineering are important to ensure that a good
quality dataset is available for SA and PM.

Overfitting and underfitting issues (RQ3-b)
When conducting PM, overfitting and underfitting have often been an issue in previ-
ous studies [135]. Overfitting occurs when a dataset is too complex and the model
cannot be trained sufficiently because of time limitations or complex relationships
between variables. Conversely, underfitting occurs when a model is too simple and
cannot capture the patterns required to obtain the proper evaluation metrics [131].
Therefore, the use of scaling and normalization concepts can help to reduce the
chance of having outliers and to decrease the error margin of the proposed model.
After answering all the research questions, the findings are illustrated in Fig. 9
and Fig. 10.

Significance of the study

This section has been divided into theoretical and practical significance.
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Theoretical significance

In terms of theoretical significance, this study highlights areas requiring improvement in
the predictive modelling field and provides a better understanding of the integration of
predictive and sentiment analysis within the context of Marketing 5.0, by placing greater
focus on specific processes in the buyers’ journey. Moreover, this study provides insights
on the limitations and best usages of different models which can be applied in different
contexts of sentiment and predictive analytics.

Practical significance

The proposed sentiment-based model will help businesses better understand customer
purchases, thereby enabling them to provide customers with products chosen to meet
their needs [42]. Furthermore, this novel model serves as an emotional driver by captur-
ing customer attitudes and opinions and merging these with their purchasing history to
help businesses understand customer purchase behaviors [115]. Nowadays, buyers tend
to check product branding before purchasing [23]. Consequently, such a model can help
marketers develop more specific targeted marketing strategies that address negative cus-
tomer reviews and focus on positive ones [61], ultimately enhancing customer experi-
ences [63]. On the other hand, customers can receive advertisements for products that
help them during their journey. By receiving targeted advertisements aligned with their
preferences, customers can make informed choices, fostering a more satisfying and effi-
cient shopping experience [144].

Limitations and future work

This study discussed the various models (LSTM, BERT, XGBoost, SVM, NB) used to
conduct sentiment analysis. However, it does not examine in detail the larger language
models (LLM) such as ChatGPT or Gemini in its analysis section. Therefore, some sug-
gestions for future work in the field of predictive and sentiment analysis include: first,
exploring the use of deep learning and a large language model (LLM) for advanced cus-
tomer-oriented datasets for sentiment analysis; second, developing models that are spe-
cifically tailored to different types of online buyers based on their online behavior; and
lastly, developing robust models that can understand the relationship between customer
sentiments and other e-commerce factors, which could lead to an improvement in cur-
rent predictive models. Moreover, since this study focusses on the customer’s purchas-
ing journey, future studies could analyse the applications of sentiment-based predictive
models in other fields such as healthcare and education. For instance, facial expressions
and textual communication can be used to determine the sentiments of mental patients
to predict their medicine dosage [12]. Such models can be used to analyze the senti-
ments of students in class (frustrated, happy, confused, etc.), thus identifying students
with consistent negative sentiments to determine whether they need extra support. In
terms of comparative parameters, this current work was based on the findings of other
studies. Therefore, in future studies, experiments could be conducted involving a spe-
cific product online and an analysis of textual reviews in order to forecast of the number
of potential buyers. In terms of data extraction, social data and metadata from different
sources can increase the dataset size for better training of models to improve customer
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interaction and sentiment analysis [5]. Additionally, with emerging technologies, such
as GPT4 models and Bard, a comparative study can be conducted to enhance the litera-
ture and improve the technologies used to implement such models. For such tasks, natu-
ral language inference (NLI), which is a natural language processing (NLP) task, can be
useful because it helps models to understand the nuances of human language and make
logical inferences from text, thus understanding customer reviews better to allow appro-
priate product recommendations [6].

Conclusion

Based on the findings of previous studies, it can be determined that businesses need
to transition to the latest technologies from Industry 4.0 (PM, SA, and chatbots, etc.)
to show a strong presence in the Marketing 5.0 era. As it can be analyzed, having such
transition data is key. To obtain a robust predictive model, data need to be thoroughly
cleaned, and new insights such as customers’ emotions, feelings, processes, and others
need to be identified and well-integrated with historical data. Furthermore, it is crucial
to extract data from the various phases of buyers’ journey, such as the awareness, deci-
sion-making, and purchase stages, as it helps to have more variables to train the model,
resulting in a robust model.

Sentiment-based predictive models for online buyers have the potential to revolu-
tionize the way e-commerce businesses operate. By analyzing the sentiments of online
buyers, businesses can better understand their customers’ needs, preferences, and dif-
ficulties. This information can be used to improve products and services, target market-
ing campaigns more effectively, and reduce customer churn. However, as this systematic
review has shown, there is still room for improvement in the development and applica-
tion of sentiment-based predictive models for online buyers by considering more online
purchasing factors and customer behaviors. Furthermore, the lack of an appropriate and
comprehensive dataset containing online purchasing history and sentiment affects the
accuracy of these models. Additionally, many existing models are not sufficiently robust
to handle the diversity of online reviews and the complex relationships between senti-
ment and other variables, such as product features and buyers’ characteristics.

In this study, PRISMA was used to conduct a systematic literature review because it
provides a better structure and clarity to the findings from different studies, thus help-
ing to answer the research questions more efficiently. Journals were identified using key-
words from the ProQuest database. They were then screened to make the search more
accurate in selecting papers eligible for the study. However, this study has several limita-
tions, one of which is that predictive models were explored in the marketing field. Hence,
future studies could extend this research by including a range of different domains.
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