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Abstract 

The flourishing realm of advanced driver-assistance systems (ADAS) as well as autono-
mous vehicles (AVs) presents exceptional opportunities to enhance safe driving. 
An essential aspect of this transformation involves monitoring driver behavior 
through observable physiological indicators, including the driver’s facial expressions, 
hand placement on the wheels, and the driver’s body postures. An artificial intelligence 
(AI) system under consideration alerts drivers about potentially unsafe behaviors 
using real-time voice notifications. This paper offers an all-embracing survey of neu-
ral network-based methodologies for studying these driver bio-metrics, presenting 
an exhaustive examination of their advantages and drawbacks. The evaluation includes 
two relevant datasets, separately categorizing ten different in-cabinet behaviors, 
providing a systematic classification for driver behaviors detection. The ultimate aim 
is to inform the development of driver behavior monitoring systems. This survey 
is a valuable guide for those dedicated to enhancing vehicle safety and preventing 
accidents caused by careless driving. The paper’s structure encompasses sections 
on autonomous vehicles, neural networks, driver behavior analysis methods, dataset 
utilization, and final findings and future suggestions, ensuring accessibility for audi-
ences with diverse levels of understanding regarding the subject matter.
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Introduction
Recently, an increasing focus has been on creating self-driving or autonomous vehi-
cles - vehicles that can operate without human intervention. This development has 
opened up new ways to increase safety in these vehicles. A key aspect is the capability 
to understand and keep an eye on what is happening inside the vehicle, particularly with 
the driver. A review conducted by researchers from Japan [1] shows that driver inatten-
tion was a leading cause of most traffic accidents. Researchers have extensively studied 
this issue, categorizing driver inattention into two primary types: visual distraction and 
fatigue. Detecting and mitigating driver inattention requires a multifaceted approach, 
incorporating subjective reports, driver biological indicators, physical measurements, 
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driving performance assessments, and hybrid measures that combine multiple indica-
tors. Hybrid measures, in particular, offer more reliable and accurate solutions compared 
to relying solely on a single measure. However, commercial products for driver inatten-
tion monitoring exist, and their effectiveness in actual driving conditions may be limited. 
An ideal driver inattention monitoring system for safety enhancement integrates driver 
physical variables, driving performance metrics, and data from the In-Vehicle Informa-
tion System (IVIS) while considering the driving environment. This research aims to 
develop AI-based monitoring software for autonomous vehicles, contributing to a safer 
and more secure transportation landscape.

In this survey paper, an AI-based driving assistant is proposed that can see and inter-
pret the inside of the vehicle using a branch of artificial intelligence algorithms, which 
allows computers to learn and make decisions from data: an AI-based offline monitor-
ing system to boost the safety of these autonomous vehicles. This system is designed to 
assist the driver and issue warning alerts if the driver seems to be not paying attention 
to the road without any data privacy concerns. By combining three distinct classifica-
tion methods to detect fatigued drivers, a software system that works on an autonomous 
vehicle acts as an intelligent driving assistant. There are various machine learning meth-
ods, known as neural networks, for analyzing these behaviors. These include artificial 
neural networks (ANNs), convolutional neural networks (CNNs), and recurrent neural 
networks (RNNs).

Figure 1 below illustrates the roadmap of driver behavior monitoring systems.
This paper first consists of the basic definitions of complex terms in computer science. 

These include autonomous vehicles, vision systems, machine learning, driver behav-
ior classification, deep learning, convolutional neural networks, recurrent neural net-
works, and artificial neural networks. Then, the paper elaborates upon the idea behind 
the proposed system, including the different step-by-step computational procedures, or 
algorithms, for each function and how they all come together. In the fourth section, the 
operation of this proposed system and how each dataset can contribute meaningfully 
to the training process of this algorithm are illustrated. Lastly, the survey shows how all 
these components come together into a completed product. This research aims to create 
an AI-based monitoring software to enhance the safety of autonomous vehicles, which 
will be a significant step in safer and more secure transportation.

Preliminary materials
This discussion begins by defining key terms crucial for understanding the topics 
explored in this article. These concepts form the bedrock of the ideas presented herein, 
and a detailed explanation of each follows in subsequent sections.

Autonomous vehicle

We should first emphasize that the driver behavior monitoring systems have been used 
in human-driving vehicles for a long time, for instance, by insurance companies through 
mobile apps or small hardware equipment. However, these systems are more critical for 
autonomous vehicles as well as vehicles that utilize advanced driver-assistance systems, 
i.e., using a level of autonomy, because they may face unpredictable situations requiring 
the driver’s intervention.
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An autonomous vehicle with any levels of autonomy revolves around a vehicle 
that can operate without (or with minimum) human intervention. These vehicles are 
designed to navigate and drive themselves, relying on advanced technologies and sys-
tems rather than requiring a human driver. These vehicles contain complex computer 
systems that often utilize artificial intelligence. AI acts similarly to the brain, pro-
cessing information and making decisions. It gathers data from its surroundings via 
sensors, which function as the vehicle’s eyes, then uses it to navigate safely, just as a 
human driver would. Vehicles that drive themselves have the potential to change our 
world. AI technologies could transform how people and goods travel, advance mili-
tary and security operations, and provide a new level of freedom to those unable to 
drive. Furthermore, ADAS and AVs are potentially expected to make roads safer and 

Fig. 1  Roadmap of driver behavior monitoring systems
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save fuel, providing better transportation options, especially for those who have dif-
ficulties in driving, and reshaping society’s transportation approach entirely.

Autonomous vehicles offer potential benefits compared to human drivers, as reported 
in [2]. Firstly, while AVs can enhance safety by reducing accidents, it’s essential to rec-
ognize that both AVs and human drivers share equal responsibility for preventing acci-
dents. The report notes that many traffic accidents result from unsafe driving behaviors 
or drowsy driving. Secondly, they reduce traffic congestion by optimizing traffic flow and 
improving communication among road vehicles through in-between vehicles telecom-
munication, addressing the issue of inefficient traffic management. Additionally, using 
AI technologies, AVs enhance accessibility and mobility for individuals unable to drive, 
thus promoting inclusivity and providing cost savings for those who opt for AV trans-
portation instead of owning a vehicle, addressing economic considerations.

There are also disadvantages to autonomous vehicles. For example, addressing the 
technological challenges of software and hardware systems is essential. This includes 
developing robust algorithms, ensuring effective communication between components, 
and enhancing overall system reliability and safety. Then, adopting AVs raises concerns 
about job displacement in the driving and transportation sectors, potentially resulting 
in unemployment and necessitating retraining or job transition programs. Also, ethical 
and legal considerations arise when adapting laws to accommodate autonomous tech-
nologies. Addressing liability in accidents, decision-making processes in critical situa-
tions, and establishing an ethical framework for AV behavior are crucial for public trust 
and safety. Additionally, cybersecurity threats must be considered, as hackers targeting 
AVs could gain control over operations and endanger passengers and other road users. 
Robust cybersecurity measures should be implemented to prevent such risks. Further-
more, privacy concerns of AV drivers require attention, with clear guidelines and safe-
guards to protect personal information collected by autonomous vehicles. Moreover, the 
reliance on infrastructure and connectivity challenges widespread adoption and effec-
tiveness. Consistent and reliable support, including road markings, traffic signals, and 
communication networks, is vital for successfully integrating autonomous technologies 
on a large scale. Despite these challenges, the overall advantages of AVs outweigh the 
disadvantages. These are in addition to other human–machine interaction (HMI) chal-
lenges such as cross-cultural expectations from self-driving cars [3, 4], passengers’ trust 
[5, 6], social acceptability [7, 8], and customized autonomous driving technologies [9, 
10].

While complete vehicle automation is yet to be commonplace soon, the interpretation 
of driver behavior is crucial for partially and conditionally automated vehicles. These 
vehicles, which require either the driver’s readiness to regain control at any moment or 
their intervention when the vehicle cannot perform certain critical operations, are pre-
dicted to be the dominant form in the market until 2030. Since these systems are auto-
mated, they still heavily rely on human supervision and intervention [11–13].

Machine learning

Machine learning is a sub-field of computer science that gives computers the capacity to 
learn from data and subsequently make informed decisions or predictions. This concept 
embodies the machine equivalent of a human brain, utilizing a variety of algorithms and 
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statistical models to learn and adapt over time. Three primary types of learning exist in 
this context: supervised, unsupervised, and reinforcement learning.

The algorithm assumes a student-like role in supervised learning, with data presented 
as question-and-answer pairs serving as the tutor. Through exposure to this data, the 
algorithm learns the pattern of problem-solving and, over time, acquires the ability to 
solve similar problems independently. Supervised learning is analogous to a learning 
paradigm in which a student learns by being presented with a problem and the corre-
sponding solution.

Unsupervised learning, in contrast, presents the algorithm with a dataset without the 
provision of predefined solutions. The focus falls on the algorithm to identify patterns, 
correlations, and relationships within the data. This method is similar to a student given 
tasks without an explicit solution, necessitating independent pattern recognition and 
problem-solving.

Reinforcement learning takes a different approach, embodying a process of repetitive 
learning through trials and errors, reminiscent of learning to ride a bicycle. Each attempt 
and subsequent failure offers the algorithm new insights, adjusting its future decisions 
based on gathered experiences.

The utility of machine learning pervades a multitude of sectors in contemporary times. 
From facial recognition capabilities on smartphones to stock market trend predictions, 
its applications span sectors including healthcare, finance, retail, and transportation. 
Machine learning equips us with the tools to identify patterns within extensive data sets 
and informs data-driven decision-making processes.

In the following sections, this paper will comprehensively explore different learning 
types, their associated algorithms, and the vast array of applications where machine 
learning is harnessed. This survey aims to present an inclusive examination covering the 
extensive spectrum of machine learning. By examining the diverse algorithms, learning 
models, and machine learning applications, this paper aims to provide a holistic view of 
this rapidly evolving field.

Driver behavior classification

Recognizing and understanding the unique driving behaviors of individuals is crucial 
for enhancing driver awareness. This is where driver behavior classification draws its 
significance, acting as a sophisticated observer that continually monitors and analyzes 
the driver’s actions, including hand movements, facial expressions, and body posture. 
By leveraging advanced technologies including vision systems, machine learning algo-
rithms, and sensor data, driver behavior classification aims to provide real-time feed-
back and promote safer driving practices.

Driver behavior classification encompasses multiple aspects. Firstly, hand classifica-
tion monitors the driver’s hand movements. For instance, if the system detects the driv-
er’s hand off the wheel, including reaching for a coffee cup, it gently reminds them to 
keep their hands on the wheel. Secondly, facial classification focuses on analyzing facial 
expressions that may indicate fatigue or distraction. If the driver’s eyes frequently close, 
indicating drowsiness, the system can trigger an alert or activate the autonomous sys-
tem if necessary. Lastly, body posture classification examines the driver’s posture and 
movements. If the driver starts slouching after extended periods of driving, it suggests 
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the need for a break or seat adjustments to enhance comfort. These driver behavior clas-
sifications serve as indicators of potential safety concerns. Considering the importance 
of transportation safety and the seamless integration of autonomous vehicles, it is essen-
tial to also address the legal perspectives and regulatory challenges associated with these 
advanced systems. As autonomous vehicles become more prevalent, their successful 
integration relies on the ability to identify and adapt to human driving behaviors. This 
adaptability ensures that autonomous vehicles can assimilate naturally into existing traf-
fic flows, promoting safer and more efficient travel.

Artificial neural networks

Artificial neural networks are computational models directly inspired by the structural 
and functional characteristics of the human brain. They embody a network of inter-
linked artificial neurons that collaboratively function to learn from data and generate 
predictions. Similar to the data processing mechanism of the human brain, an ANN 
accepts inputs, performs calculations, and yields outputs. ANNs can be compared to a 
well-coordinated team of professionals, each having a defined role, passing information 
in a relay. Each member takes input, performs a specific calculation, and forwards the 
resulting data to the next member. This process iterates until the final member delivers 
the output. During its training phase, an ANN adjusts its calculations based on provided 
examples, essentially learning through fine-tuning. It aims to find the most effective 
methodology to make accurate predictions or decisions.

A noteworthy aspect of ANNs is their ability to comprehend complex patterns and 
relationships in data, even revealing associations that may not be immediately apparent. 
As a result, ANNs are invaluable in diverse applications including image recognition, 
natural language understanding, and even autonomous driving. Integrating different 
types of ANNs, including recurrent neural networks for sequential data processing and 
convolutional neural networks for image analysis, has made significant advancements in 
domains like natural language processing, image recognition, and autonomous vehicles.

In conclusion, ANNs are potent tools for learning from data and making predictions 
or decisions. They are universally employed across many fields to unravel complex prob-
lems and augment our understanding of and interaction with the world.

Convolutional neural network

A convolutional neural network stands as an essential component in the toolkit of deep 
learning techniques, especially in domains necessitating image understanding and inter-
pretation. For humans, interpreting a picture is an intuitive process; however, for com-
puters, the task is significantly more complex as it perceives the image as an array of tiny 
points or “pixels.” CNNs facilitate computers in comprehending these pixels and their 
interrelationships.

CNN’s operation begins with the input layer. The initial step is where the image data 
comes into the CNN model. In instances of a color image, the input layer receives infor-
mation on the three primary colors: red, green, and blue. Following the input layer is the 
convolutional layer. During this phase, the layer traverses the image in small sections, 
referred to as filters or kernels, to construct a feature map. Feature maps enable CNN to 
recognize fundamental shapes or patterns, including lines or textures. Subsequently, the 
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activation function, typically the ReLU (Rectified Linear Unit), is applied. This function 
enhances the CNN’s learning capabilities by nullifying any negative pixel values, thereby 
increasing the effectiveness of the CNN in identifying complex patterns. The subse-
quent pooling layer condenses the information derived from the convolutional layer 
by downsizing the feature map but preserving the essential features. The pooling pro-
cess increases the efficiency of CNNs. Max pooling is a widespreadly deployed method, 
which retains only the highest value from each section of the feature map. After several 
iterations of these steps, the fully-connected layer is activated. This layer assimilates the 
information collected thus far to arrive at a final decision, categorizing the image appro-
priately. Finally, the Softmax function generates a probability distribution for each cat-
egory, indicating the likelihood of the image belonging to each class. Essentially, a CNN 
transforms the raw pixels of an image into a categorized output, enabling the computer 
to interpret the image. In essence, CNNs can identify complex patterns and objects 
within an image, similar to human visual interpretations.

Figure 2 below provides a visual representation of a CNN sample, as elaborated in ref-
erence [14], offering a graphical insight into the model’s structure and function.

Recurrent neural networks

Recurrent neural networks are powerful tools that allow computers to understand 
sequences of data, similar to a time radar. Sequences can range from sentences in text, 
frames in a video, or a series of numbers. RNNs enable computers to comprehend these 
sequences as a series of data points.

The initial step is the input layer. In the case of a sentence, the input layer receives 
vectors, which are representations of the input data. The next step is the recurrent layer, 
where RNNs pass information from one point to the next in the sequence. The sequen-
tial information exchange aids in understanding the order with the context of previous 
information. Sequentially, RNNs apply a comprehending function, including “ReLU”, to 
the output of the previous layer, in order to understand the contextual meaning of the 
data by identifying intricate patterns within the sentence. Next, RNNs progress to the 
fully-connected layer, consolidating the knowledge into the decision-making process 

Fig. 2  Visualization of CNN sample based on the reference of [14]
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which involves tasks including prediction and classification. Finally, RNNs employ the 
Softmax function, which assigns a probability score to each possible outcome.

The potential of RNNs extends even further as researchers continually explore ways 
to enhance their capabilities. One notable advancement is integrating spatiotemporal 
graphs into RNNs, enabling the capture of intricate, high-level structures involving both 
space and time. The results obtained from this novel technique have surpassed exist-
ing methods, whether in understanding human movements or interpreting interactions 
among objects. This significant progress represents a substantial leap forward, providing 
a potent tool to augment machine learning models and laying the foundation for more 
precise predictions and analyses in complex scenarios [15].

Long short‑term memory (LSTM)

Long short-term memory (LSTM) units, a form of artificial intelligence, embody a neu-
ral network capable of storing, learning, and recalling patterns over prolonged periods. 
LSTMs use their data inputs to predict sequences, a mechanism that could bring sig-
nificant advancements in speech recognition, natural language processing, and time 
series prediction. A groundbreaking use of LSTMs lies in vehicle safety, where real-time 
driver distraction detection becomes possible through analyzing long-term patterns in 
driving and head tracking data. With an impressive accuracy rate of up to 96.6 percent, 
LSTM-based approaches outdo traditional methods like support vector machines and 
show remarkable utility in handling time-series data. This notable application can lead to 
advanced vehicle safety systems development, improving road safety and further reflect-
ing LSTM units’ potential in enhancing AI applications [16].

Classifying drivers’ behaviors in autonomous vehicles
Research conducted by scholars from leading universities broadly focuses on hand, 
facial, and body posture classifications to understand driver behaviors in autonomous 
vehicles. These classifications play a pivotal role in recognizing distracted or fatigued 
driving actions-like texting, yawning, or slouching-which could lead to accidents. Sev-
eral machine learning techniques are repurposing the ways in which autonomous vehi-
cle cabins can be monitored. Some involve video data to model human movements while 
others utilize a sensor network for improved hazard identification. Cost-effective, vision-
based systems that detect driver inattention further endorse road safety. Collectively, 
these methods offer an encompassing understanding of driver behavior, contributing 
decisively to the evolution of safer autonomous driving systems [17–20].

Introduction to driver behavior classification

According to the World Health Organization (WHO) data for 2023, road traffic injuries 
emerge as a substantial global concern, accounting for approximately 1.3 million fatali-
ties annually, with an additional 20 to 50 percent of cases resulting in non-fatal injuries 
that often lead to disabilities. It is noteworthy that over half of these road traffic deaths 
occur in low-income and middle-income countries, primarily affecting individuals with 
lower socioeconomic statuses who are more susceptible to being involved in such acci-
dents [21].
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In response to these alarming statistics, the National Highway Traffic Safety Admin-
istration (NHTSA) is actively addressing unsafe driving behaviors that are significant 
contributors to road accidents, injuries, and fatalities. These behaviors encompass drug-
impaired driving, involving both alcohol and drugs; distracted driving, which includes 
activities like texting while driving; aggressive driving, characterized by behaviors such 
as tailgating and excessive speeding; drowsy driving; and the failure to use seat belts. 
These risky driving behaviors not only pose a grave threat to passenger safety but can 
also result in severe injuries and tragic fatalities [22].

Driver behavior classification is a pivotal aspect of studying human interaction with 
autonomous vehicles; it aims to distinguish the safe and risky driving behaviors. These 
behaviors are typically classified into two states in the datasets: safe and unsafe. “1” rep-
resents safe behaviors, and “0” denotes unsafe behaviors. This system utilizes binary clas-
sification. Safe behaviors include maintaining a steady speed, maintaining an appropriate 
gap from the vehicle in front, and regularly checking rear-view mirrors. In contrast, 
unsafe behaviors can involve texting, talking on the phone, operating the radio, drinking, 
reaching in back, doing hair and makeup, and talking to passengers. The causes of unsafe 
driving behavior are multifarious, ranging from driver fatigue and drowsiness to distrac-
tion and impairment due to substance use. Under specific circumstances, hostile driving 
or vehicular aggression could also lead to unsafe behaviors. Identifying the causes for 
unsafe driving is crucial to developing effective interventions and preventive measures. 
The classification of driver behaviors has the potential to indisputably enhance the pro-
tection of the driver. The classification can facilitate real-time monitoring and feedback, 
alerting drivers to potentially dangerous behaviors, and prompting corrective action. 
This classification additionally maintains the potential for long-term benefits, includ-
ing providing driver education and training programs, as well as the ability to contrib-
ute to the design and development of enhanced, intuitive, and safer autonomous vehicle 
interfaces. Further, this classification also has the ability to feed into the development of 
advanced driver-assistance systems, thereby enabling these systems to better understand 
and predict human behavior; this may also serve to prevent accidents.

In this context, the review presented in [23] offers an inclusive framework that 
addresses the regulation of autonomous vehicles and associated challenges, both in the 
United States and Europe. Regulatory issues, particularly those pertaining to the legal 
interpretation of driver behavior, present complex problems. However, the potential for 
autonomous vehicles to impressively enhance road safety in developed countries justi-
fies these efforts. In anticipation of this emerging technology, countries in the European 
Union are being primed to adjust their legal structures, and they are collaborating with 
lawmakers and technical experts to establish unambiguous guidelines and practical solu-
tions for optimization of the AVs on the road.

Despite the challenges posed by regulatory issues, driver behavior technology is mak-
ing significant strides in understanding and improving the interaction between drivers 
and autonomous vehicles. Research in driver behavior technology now focuses on dis-
traction and fatigue issues. Driver state-of-mind analysis involves a blend of self-reports, 
biological metrics, driving performance indicators, and hybrid methods. The latter com-
bines multiple data sources for a clearer picture and shows more accurate results by cut-
ting down on false alerts and keeping high-performance ratings [24].
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While deep learning excels in interpreting complex data for self-driving cars, it’s cru-
cial not to overlook the importance of traditional machine learning techniques like SVM, 
Decision Trees, and KNN. These methods play a vital role due to their computational 
efficiency, easy comprehensibility, and minimal data requirements. They form the back-
bone of strengthening the robustness and reliability of AI-powered monitoring systems 
in diverse driving situations [25–27].

Researchers have developed a new vision system using “vehicle dynamics data”, which 
eliminates the need for cumbersome eye-tracking hardware. This approach with “sup-
port vector machines” (a machine learning model) has shown promising high classifica-
tion rates, boosting the development of the next generation of autonomous driving aid 
systems. On another front, Kinect V2 sensors, commonly used in video gaming, have 
created a database of standard upper limb movements in healthy individuals. Initially 
proposed for rehabilitation, this method might help understand how drivers interact 
with vehicle controls. Understanding driving behavior has evolved with machine learn-
ing and deep learning models that draw on large-scale vehicle data. Deep learning meth-
ods, including neural networks, have shown high accuracy levels, signaling they may 
soon dominate driving behavior analysis as the technology progresses [28–30].

Hand classification

In 2018, a recent incident involving a Tesla Model S striking a fire truck in “Autopilot 
mode,” which is a system in vehicles that automates certain aspects of control, includ-
ing maintaining speed and staying within lanes, with human supervision, highlights the 
danger of keeping hands off the wheel, even in autonomous vehicles. According to the 
National Transportation Safety Board (NTSB), the driver had his hands off the wheel for 
most of the trip, receiving multiple alerts to place his hands back on the wheel. The vehi-
cle accelerated towards the driver-set cruise control speed and collided with the parked 
fire truck while the Autopilot system failed to detect the driver’s hands on the wheel. 
This incident, along with previous fatal crashes involving Tesla vehicles, emphasizes the 
potential importance in hand classification in autonomous vehicles for drivers’ safety 
[31, 32].

Hand classification in driver monitoring systems involves monitoring and analyzing a 
driver’s hand movements while operating a vehicle. It holds a pivotal position in evaluat-
ing the driver’s behavior and ensuring their safety on the road. The classification system 
of hands provides valuable insights into the driver’s actions and level of engagement by 
detecting whether the driver is holding the steering wheel properly, using turn signals 
appropriately, or reaching for objects within the vehicle. Deep learning models have 
emerged as promising approaches for recognizing specific hand actions and movements. 
In [42], with remarkable accuracy, a “pre-trained Keras Neural Network” was employed 
to classify hand presence: a pre-trained Keras Neural Network model was an already 
trained model on a large dataset; Keras, a Python Programming Language library, allows 
for the quickly building and testing these networks; Pre- trained, in this instance, means 
the model’s initial weights come from an earlier training run, often from an embracing 
dataset like ImageNet. These pre-trained models already recognize common patterns, 
which can be adapted to new tasks, reducing training time and computational resources; 
Keras provides various pre-trained models, especially beneficial when the dataset is not 
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large enough to train a whole network from the beginning. This model is able to dis-
tinguish between one hand on the wheel, two hands on the wheel, or no hands on the 
wheel. By utilizing this deep learning model and a carefully selected hand- classifying 
dataset comprising data from 30 volunteers, the system achieved an impressive 100 per-
cent accuracy. Despite reaching 100% accuracy with a limited dataset, the experiment 
showcases the promise of transfer learning for visual tasks. Its successful predictions for 
consecutive images suggest broader applicability beyond controlled conditions.

Another area of exploration involves using a multi-camera framework complemented 
by contact sensors for hand classification in driver monitoring systems. This approach 
enables a fusion of visual and sensory data for more precise and thorough hand detec-
tion and tracking by utilizing multiple cameras mounted at different locations inside 
the cabinet strategically placed within the vehicle cabin. It enhances the system’s abil-
ity to accurately classify hand movements and gestures, thereby seriously improving 
traffic safety and reducing accidents caused by distracted driving. In [43], the recent 
development in hand classification using contact sensors has demonstrated high accu-
racy, with the Adaptive Least-Squares Support Vector Machine model achieving up to 
92.9% accuracy in gesture recognition. Multi-camera framework along with contact 
sensor data aligns with the broader objective of vision systems and machine learning 
analysis within autonomous vehicle cabins, ensuring a complete understanding of the 
hand classification and facilitating a more accurate hand classification. Furthermore, 
another paper [44] demonstrates that the new method of multi-modal fatigue detec-
tion, RPPMT-CNN-BiLSTM, is able to combine improved feature extraction and 1D 
neural networks for enhanced accuracy, achieving 98.2% accuracy on the Multi-Modal 
Driver Alertness Dataset (MDAD), showing significant development in the accuracy of 
fusion approaches. In summary, hand classification in driver monitoring systems ben-
efiting from both contact sensors and multi-model deep learning approaches is critical 
for assessing driver behavior and promoting safe driving practices. Deep learning mod-
els, including the pre-trained Keras Neural Network and RestNet CNN, demonstrate the 
potential for accurate hand presence classification when integrated with contact sensor 
technology [40].

Table 1 offers an organized summary of key research studies focusing on hand classifi-
cation, presenting an overview of significant contributions in this area.

A powerful approach to enhance on-wheel hand action recognition and prioritize 
driver safety is utilizing feature trajectories, which is the technique to track the path 
or progression of specific features or characteristics over time. Wang et  al. propose a 
method that analyzes video actions using dense trajectories, which is a method in com-
puter vision and video analysis that densely samples key points in a video sequence to 
capture motion information and track object movements. This approach efficiently 
evaluates hand motions and quick movements in hazardous circumstances, determining 
potential risks. Additionally, the implementation of convolutional neural network mod-
els, including spatio-temporal multiplier networks (STMNs) introduced by Zolfaghari 
et  al., emphasizes the importance of hand classification for driver safety. By combin-
ing temporal convolution with spatial convolution, STMNs offer an inclusive approach 
to analyzing spatiotemporal patterns in driver behavior, enabling the identification of 
unsafe driving actions hands-off-the-wheel [33, 35].
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Moreover, advancements in efficient CNNs like EfficientNet and lightweight deep 
neural networks like MobileNets reinforce the significance of hand classification for in-
cabin analysis and real-time monitoring, enhancing autonomous vehicles’ safety and 
efficiency. The utilization of complex attention networks, as presented in Driver Action 
Recognition (DAR), further underscores the importance of hand classification for driver 
safety. By focusing exclusively on vital behavioral elements including the hand and head, 
this approach aligns perfectly with the analysis of data inside of the cabinet, ensuring an 
exhaustive understanding of driver behavior. The studies above indicate that more than 

Table 1  Summary of research on hand classification

Refs. Summary Methodology Relevance

[33] Enhances action recognition 
using dense trajectories, improv-
ing understanding of physical 
actions in videos.

Dense trajectories Enhances action recognition mod-
els for accurate action detection, 
relevant to driver behavior analysis 
in autonomous vehicles.

[34] Combines temporal and spatial 
convolution in a new CNN model 
to learn spatiotemporal features 
from videos.

Spatiotemporal Multiplier 
Networks

Proposes Spatiotemporal Multiplier 
Networks (STMNs) for video data 
analysis within autonomous vehi-
cle cabins, extracting important 
features for in-cabin analysis.

[35] Uses EfficientNet, a highly effi-
cient ConvNet family, to achieve 
state-of-the-art accuracy through 
systematic model scaling.

EfficientNet EfficientNet’s superior accuracy 
and efficiency are relevant for 
developing robust vision systems 
within autonomous vehicle cabins.

[36] Utilizes MobileNets for efficient 
and lightweight deep neural 
networks design, suited for 
mobile and embedded vision 
applications.

MobileNets MobileNets’ efficient, lightweight 
architecture is suitable for real-time 
vision systems in autonomous 
vehicle cabins, minimizing compu-
tational resources.

[37] Combines GoogLeNet and LSTM 
models to classify self-efficacy 
levels through human body ges-
ture and movement recognition, 
achieving high accuracy.

CNN (GoogLeNet) and LSTM Provides an effective approach 
to monitor and analyze driver 
behaviors, enhancing safety and 
efficiency within autonomous 
vehicles.

[38] Uses a pre-trained Keras neural 
network to classify hand pres-
ence in a controlled hand-wash-
ing dataset, achieving perfect 
accuracy.

Neural Network using Keras Demonstrates an effective 
approach for hand presence clas-
sification, potentially enhancing 
safety and efficiency by monitor-
ing driver actions in autonomous 
vehicles.

[39] Introduces a novel hard atten-
tion network for Driver Action 
Recognition (DAR), effectively 
recognizing driver behaviors in 
real-world conditions and reduc-
ing computational complexity.

Bidirectional LSTM (Bi-LSTM) Investigates deep learning for 
driver behavior monitoring and 
action recognition, aligning with 
the goal of in-cabin analysis in 
autonomous vehicle cabins.

[40] Uses a multi-camera framework 
for hand classification in driver 
monitoring systems, potentially 
enhancing traffic safety and 
reducing distracted driving.

RestNet CNN Discusses a multi-camera frame-
work for hand classification in 
driver monitoring systems, aligning 
with the topic of vision systems 
and machine learning analysis in 
autonomous vehicle cabins.

[41] TPresents a CNN-based system 
for abnormal driving behavior 
recognition, emphasizing the 
importance of monitoring and 
preventing potential accidents 
caused by distractions.

CNN Detects abnormal driving 
behaviors through physiologi-
cal character classification using 
deep learning, contributing to 
understanding of vision systems 
for driver behavior analysis in 
autonomous vehicle cabins.
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relying solely on hand classification for driver behavior detection is required as it fails 
to capture the full spectrum of driver behavior and intention. While hand movements 
provide valuable insights into driver actions, an all-inclusive understanding requires 
considering factors including head position, eye gaze, and body posture. Incorporating 
multiple factors leads to a better understanding of a driver’s cognitive state, attention 
level, emotional response, and fatigue level [36, 45].

As technology advances, the focus on comprehending the holistic range of driver 
behavior has led to integrating these multiple factors into driver assessment models. 
Notably, the area of “Hand Classification” has seen significant breakthroughs, revolu-
tionizing our grasp of driver interactions. Recent developments in the field of hand clas-
sification present intriguing innovations using machine learning and computer vision for 
understanding hand gestures and driver behavior. One study created an algorithm that 
tracks a driver’s right hand and ear in real-time, processing video frame images to iden-
tify if the driver is distracted. With an impressive accuracy score of 74 percent, this algo-
rithm can classify various actions, including everyday driving, touch screen interaction, 
and phone conversations. Another study formulated an algorithm that identifies hand 
gestures using three specific characteristics of a hand’s shape, achieving 91 percent clas-
sification from a test set of 200 images [46–48].

Researchers in the realm of sign language innovated a system that interprets gestures 
by thinning a segmented image resulting in a communication breakthrough for sign lan-
guage users. Further studies rolled out an Urdu Alphabet translation recognition sys-
tem with an accuracy rate of 97.4 percent, proving extremely helpful for individuals with 
vocal and hearing disabilities. To improve human-computer interaction, a trailblaz-
ing system recognizes hand gestures as an alternative to classical mouse and keyboard 
inputs. This system uses the AdaBoost algorithm to identify the hand in a video feed and 
then applies multi-class support vector machines to understand the gesture [49–51].

In a similar vein, an approach for recognizing moving hand shapes was developed. 
Keeping the focus on real-time image processing, researchers first extracted the hand 
region and then identified the hand’s shape. In an effort to boost secure access, a hand 
image-based identification system was developed, achieving confident recognition 
in groups of about 500 people. Finally, the creation of a detailed video-based dataset 
stands as a pioneering venture for hand detection in varied driving settings. This dataset, 
encompassing various backgrounds, lighting conditions, users, and viewpoints, serves 
as a potent tool for fine-tuning machine learning algorithm performance. Notably, it 
also features annotations that offer detailed hand related insights, marking significant 
advancements in the field of hand classification [52–54].

Facial classification

In the vision system, cameras and sensors function as the eyes of the computer, with 
sophisticated software algorithms acting like a human brain to interpret the data they 
capture. These systems analyze images, breaking them down to understand each ele-
ment, enabling the recognition of faces, objects, and navigation paths. Such vision sys-
tems empower machines to “envision” and “understand” their surroundings, playing a 
pivotal role in diverse applications such as robotics, security systems, autonomous vehi-
cles, and mobile phones.
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Driver distraction, a major contributor to vehicular accidents, is well-documented and 
can be effectively monitored by these vision systems. However, it’s important to note 
that while these systems have achieved impressive performance levels, there are ongoing 
concerns about their evaluation methodologies. Often, AI-based models in vision sys-
tems are assessed using datasets involving drivers who were part of the training set. This 
practice can lead to a potential ’memory’ effect, where the models are fine-tuned to the 
characteristics of these specific drivers, raising questions about their ability to generalize 
to new, unseen drivers [23, 55–58].

To counter this, it is crucial to incorporate evaluation strategies that ensure these 
models can effectively adapt to diverse driving behaviors not represented in the training 
data. This involves using more heterogeneous datasets and applying rigorous cross-vali-
dation techniques. Such approaches are essential to evaluate the real-world applicability 
and robustness of these vision systems, ensuring they remain effective across a broader 
range of scenarios and driver behaviors. Recent reviews, like Ji’s panoramic study, have 
highlighted various non-invasive approaches for detecting signs of fatigue using vision 
systems. These methods leverage video analysis of a driver’s visual characteristics to 
identify fatigue levels. However, the success of these techniques hinges on the models’ 
ability to generalize their learning to a wide array of drivers. The development of adapt-
able and broad-based AI models remains a key area of research in enhancing the effec-
tiveness of vision systems in real-world applications [59].

Visual perception, fundamental to driving, relies heavily on visual sensors for data 
capture. However, this data contains abundant indirect information that machine vision 
and image understanding techniques handle. Smart vehicles, from advanced assistance 
systems to autonomous vehicles, leverage machine vision to distill and categorize video 
data, making it useful for driving. Techniques like convolutional neural networks play a 
crucial role in identifying specific objects in traffic and aiding in the mapping and posi-
tioning of self-driving cars. They also incorporate the discussion of real-time comput-
ing architectures backed by real-world experiments. However, the field of vision systems 
is witnessing an inventive shift where, instead of trying to identify objects universally, 
the system should adapt its method based on the size and context of the object under 
observation. It requires the system to be adaptable enough to modify its strategy accord-
ing to the target, using different techniques for smaller or less transparent objects than 
for larger, more detailed ones. More than just theoretical, this concept has been tested 
and has outperformed other methods on popular benchmarks. The adaptable vision sys-
tem reinforces that there is always room for innovation and performance enhancement, 
especially as vision systems tackle various real-world situations [60, 61].

The integration of vision systems with facial classification technologies represents a 
paramount advancement in addressing critical challenges within the transportation 
sector. However, as discussed, concerns arise regarding the generalization of AI mod-
els in these systems, particularly in the context of driver distraction. The development 
of driver fatigue monitoring systems, paired with facial detection, emerges as a pivotal 
solution for detecting drowsy and inattentive driving. By combining the adaptability of 
vision systems with facial indicators, these integrated technologies enhance real-time 
monitoring, ensuring road safety by adeptly assessing drivers’ drowsiness levels and mit-
igating risks associated with such accidents.
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As the global economy rapidly expands, the transportation sector is also swiftly 
advancing. Specifically, heavy trucks stand out for their impressive cargo capacity and 
have become crucial in logistics and road transportation. In China, with 2022 sales pro-
jected at 1.2 million units, the country’s total heavy truck ownership will reach 11.7 
million by 2025. However, this growth has resulted in a corresponding rise in traffic 
incidents, often due to drowsy driving. Fatigue is notably prevalent among these driv-
ers who undertake extensive drives to make ends meet, leading to exhaustion, decreased 
attention, and potential accidents. Data from the US National Highway Traffic Safety 
Administration (NHTSA) indicates that 91,000 crashes involved drowsy driving, leading 
to approximately 50,000 injuries and nearly 800 deaths. The traffic safety, sleep science, 
and public health communities generally agree that these figures underestimate the true 
impact of drowsy driving. Additionally, a Chinese study highlighted the propensity for 
such incidents to occur at any time, especially during early morning or mid-afternoon 
hours. These statistics underscore the serious threat posed by drowsy driving, particu-
larly with heavy trucks, marking it as a significant factor in critical traffic accidents. In 
recent years, there have been driver fatigue monitoring systems with facial detection 
technology and precise infrared sensors developed to effectively identify signs of driver 
drowsiness. The system monitors facial movements and detects subtle fatigue indica-
tors, including increased blinking, drooping eyelids, or prolonged eye closures, often 
unnoticed by the drivers. The detection system remains unaffected by external variables, 
including the time of day, the presence of glasses, or reflective light. Enhanced by inte-
grated pre-trained artificial intelligence with advanced facial recognition capabilities, the 
system operates even without a WiFi connection due to its inbuilt algorithms. The AI 
system is programmed to recognize and audibly alert drivers about signs of drowsiness, 
providing real-time and reliable monitoring. This deployment of facial detection tech-
nology significantly boosts road safety by adeptly assessing drivers’ drowsiness levels and 
reducing the risks associated with drowsy driving [62–64].

Table 2 provides a comprehensive summary of various studies centered on facial clas-
sification research, offering a detailed overview of this specific area.

Facial Classification entails detecting and analyzing a driver’s facial features and 
expressions, including yawning, blinking, or looking away from the road. Such analy-
sis can offer insights into the driver’s level of attention and alertness, which are vital 
for ensuring responsible driving. One facial classification approach employs the Face-
Net system to efficiently carry out facial recognition, clustering, and verification. 
The Euclidean Embedding method simplifies complex data by representing it more 
linearly while keeping the critical relationships intact through a convolutional neu-
ral network to tackle facial recognition challenges. By examining feature vectors, the 
FaceNet system can provide solutions that enhance facial recognition accuracy under 
various conditions. Another multiple-resolution cascade network method combines 
different layers with varying levels of detail to efficiently process and extract features 
from complex data, with high differentiating capabilities. This CNN Cascade tech-
nique uses a sequence of convolutional neural networks to progressively filter and 
refine object detection. The result addresses challenges associated with pose, expres-
sion, and lighting. This cascade system uses a sequence of classifiers to progressively 
refine and improve the classification accuracy of an object or pattern recognition task. 
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In addition to these approaches, appearance-based gaze estimations further augment 
facial recognition in everyday situations. By concentrating on real-world scenarios, 
this method enhances the recognition of facial features and contributes to a more 
accurate evaluation of a driver’s attention and alertness levels. Moreover, driver emo-
tion detection systems have been explored by analyzing different types of information 
or characteristics surrounding a particular subject or situation, which are considered 
together to gain a more comprehensive understanding. One research experiment uti-
lizes advanced machine learning models, including YOLO (You Only Look Once)v5, 
Microsoft Face Recognition API classifier, VGG13-based image classifier, DeepLabV3 
semantic segmentation, and OpenCV. The innovative unobtrusive sensor feed pipe-
line (USFP) developed in this research provides a less intrusive method for analyzing 
driver emotions inside an autonomous vehicle’s cabin, contributing significantly to 
developing vision systems for autonomous vehicles [74–76].

A hazardous driving classification system based on a modified ShuffleNet light-
weight model has been proposed. This system effectively reduces model complexity 
and increases operational speed without compromising classification accuracy, mak-
ing it a potential solution for real-time monitoring of dangerous driving. Similarly, a 
deep-learning-based drowsiness detection system has been proposed using a novel 
CNN model to classify eye states. The HyMobLSTM model presents a non-intrusive 
method putting emphasis on analyzing facial features and eye localization in order to 
yield a more comprehensive interpretation. This model determines a driver’s alert-
ness by categorizing it into five levels based on head orientation and the eye position 
relative to the eyelids. Transfer learning extracts additional features from the driver’s 
eyes, serving as input vectors for the LSTM network [39, 40].

Another real-time driver inattention and fatigue detection system, Hypo-Driver, 
utilizes multi-view cameras and biosignal sensors to extract hybrid features. The 
Hypo-Driver system uses a combination of CNNs, RNNs, and deep residual neural 
networks (DRNN). This system achieves a high accuracy rate of 96.5 percent and 
outperforms other top-rated driver fatigue detection systems. This is achieved by 
extracting multimodal features and using deep learning models for driver’s decreased 
alertness levels in individuals, often through the analysis of behavioral or physiologi-
cal indicators. In addition to the above, another project uses OpenCV, an open-source 
computer vision library that provides tools and functions for image and video pro-
cessing, as well as support vector machine (SVM), a machine learning algorithm used 
for the classification and regression tasks. The described systems above contribute to 
understanding how computer vision and machine learning techniques can enhance 
safety and behavior analysis in drivers, thereby improving the overall safety measures 
within autonomous vehicles [73, 77].

Building on the use of machine learning and computer vision for driver monitor-
ing through hand classification, researchers have expanded into the realm of facial 
classification. This advancement is opening new avenues for improving driver safety 
through cutting-edge recognition and emotion perception technologies. One study 
explored how blocking facial features affects emotion perception, while another 
mapped facial features to emotional recognition. Significant strides were made in 
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real-time driver distraction detection by analyzing visual cues from the face and 
tracking eye and head positions [78–80].

Furthermore, an AdaBoost algorithm-based system calculates gaze direction to assess 
if drivers maintain eye contact with the road. Another study improved distraction detec-
tion accuracy to 81.1 percent by analyzing eye activities and driving performance data. 
In contrast, others employed facial cues to develop highly precise classifiers for visual 
and cognitive distractions [81–83].

Researchers also optimized convolutional neural networks and introduced an unified 
face detection system through the wearable face recognition system, a notable develop-
ment for blind and visually impaired individuals. The rapidly advancing field of facial 
classification is creating breakthroughs in autonomous driving, human-computer inter-
action, and communication aids for the visually impaired [84].

In summary, these Facial Classification methodologies have been put into practice to 
advance facial classification tasks. These strategies provide a comprehensive approach to 
monitoring and analyzing driver behavior inside autonomous vehicle cabins, enhancing 
safety measures and contributing to the development of autonomous vehicles.

Body posture classification

Driving a vehicle demands prolonged periods of intense focus and repeated sitting pos-
ture and movements. These factors inevitably cause fatigue. When the driver experi-
ences fatigue, their ability to maintain focus diminishes, and their reaction times may 
suffer, posing potential safety risks. Therefore, it is crucial to devise methods that can 
promptly and accurately assess the level of vehicle drivers’ fatigue. This assessment 
should be conducted to ensure operational safety and efficiency without interfering with 
the driver’s routine tasks. Body posture classification involves analyzing a driver’s body 
posture and movements, including slouching, leaning, or sudden jerky movements. The 
result can provide insights into the driver’s fatigue, distraction, or impairment level.

Table 3 provides a consolidated overview of various studies focused on the classifica-
tion of body posture, summarizing key research in this area.

Firstly, in [92], researchers from China have found a deep learning technique: by 
extracting features related to upper body posture, including the head, neck, chest, shoul-
ders, and arms, from images captured of train drivers to detect drivers’ fatigue level. In 
[93], the researchers from Beijing Jiaoton University introduced a method for detecting 
the fatigue state of drivers by analyzing their upper body postures extracted by Open-
Pose framework and a Deep Belief Network - Back Propagation Neural Network (“DBN-
BPNN”) model. The model takes a “9-dimensional principal eigenvector” of the driver’s 
upper body posture as input: the 9-dimensional principal eigenvector is like the main 
road on a map with nine different directions, which provides the most efficient route to 
capture the essential features in a dataset or system.

Next, the model applies a forward Restricted Boltzmann Machine (RBM) learning 
algorithm to reconstruct the eigenvector and extract high-level distribution features. The 
DBN-BPNN model includes four levels for classifying fatigue states. Results from the 
experiment demonstrate an average detection accuracy of 92.7 percent using the DBN-
BPNN model, indicating the method’s high accuracy in detecting fatigue among drivers. 
MoveNet, furthermore, is a deep neural network designed to predict subject-specific 
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joint angle profiles for various walking speeds and slopes, minimizing input data require-
ments. MoveNet’s ability to predict highly user-specific profiles from minimal input data 
shows the potential for using similar approaches in vision systems analyzing the interior 
of autonomous vehicle cabins. By understanding and adapting to individual passengers’ 
needs and preferences, MoveNet can contribute to a more personalized and comfortable 
ride in autonomous vehicles.

In fact, Beijing Institute of Technology researchers introduced D3-Guard, a system 
that detects driver drowsiness in real-time using the audio capabilities of a smartphone. 
It identifies unique sound patterns from behaviors like yawning and steering and uses 
long short-term memory (LSTM) networks for efficient detection. With an average 
accuracy of over 93 percent in real-world testing, D3-Guard suggests that sound-based 
detection can complement or even replace vision-based systems in self-driving cars. 
The scaling method of the system preserves the original aspect ratio of images or vid-
eos during resizing, ensuring high-quality output. Furthermore, another study proposes 
the Residual Swin-Transformer (BiRSwinT), a network that recognizes ten fine-grained 
driver behaviors. BiRSwinT employs a dual-stream structure to process and analyze 
various data types, performing exceptionally well on the AUC V1 and V2 datasets. This 
dual-stream design allows for the simultaneous processing of global and local cues of 
driver actions, enhancing the detection of subtle behaviors and improving the overall 
safety of autonomous vehicles [69, 89, 91].

Another highly accurate system for detecting driver distraction consists of a blend of 
deep learning and machine learning models, fine-tuned by a genetic algorithm. This sys-
tem adapts to new datasets in real-time, aiming to enhance traffic precautions through 
the Hybrid Genetic Deep Network. This model uses principles from genetic algorithms 
and deep neural networks. It utilizes evolutionary techniques to optimize the architec-
ture and processes of deep learning networks. This approach aims to enhance perfor-
mance or efficiency when studying driver behavior within self-driving vehicle cabins 
[76].

Furthermore, the research from National Tsing Hua University (NTHU) [39] under-
scores the proficiency of the MobileNetV2 model in categorizing driver activities, 
achieving an impressive blend of speed and precision while preserving low compu-
tational demands – an essential characteristic for mobile system implementation. The 
research leveraged two distinct datasets for their experiment: a 10-class dataset from 
State Farm and a 2-class dataset. The clearly defined features in the State Farm dataset 
allowed the model to successfully differentiate between two classes, resulting in superior 
predictive accuracy. However, the NTHU drowsiness dataset, in its realistic depiction 
of driver behavior, offered a more authentic training environment, fostering progress 
toward real-world applications. In the context of mounting traffic fatalities worldwide, 
specifically in areas like Malaysia where distraction-induced accidents are prevalent, the 
application of deep learning techniques, specifically convolutional neural networks pre-
sents a promising avenue for efficient identification and classification of distracted driv-
ing behavior. Therefore, it contributes to the broader objective of promoting safety in 
autonomous vehicles [71].

While machine learning techniques, particularly convolutional neural networks, 
promise swift identification and classification of distracted driving behavior, innovations 
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extend beyond this realm to improve driver safety. These advanced systems now con-
sider other vital parameters, including head and body movements, to gauge a driver’s 
alertness, paving the way for comprehensive driver behavior assessment. In the pursuit 
of creating safer roads, advanced systems are analyzing drivers’ alertness, including their 
head and body movements, to prevent accidents due to fatigue or distraction.

Procedures including the integration of the Microsoft Kinect range camera’s capabili-
ties of capturing and analyzing 3D shapes of drivers, and fitting a human skeleton model 
to this data have been beneficial in evaluating nuanced driving behaviors across varying 
demographics. When combined with machine learning techniques like K-means clus-
tering, SVMs, and HMMs, the result is a highly accurate recognition of driving-related 
actions and postures [94, 95].

Algorithms like Part Affinity Fields (PAFs) have proven efficient in detecting 2-dimen-
sional poses of multiple individuals in images, setting a benchmark for pose detection. 
The use of tools like head trackers and vision-based foot behavior analysis, along with 
video sequence trajectories, is enhancing the accuracy in action recognition and predic-
tion of drivers’ foot behavior. This data contributes to body posture classification as a 
significant component of autonomous vehicle safety. By detecting diversions or measur-
ing the driver’s head orientation, these advancements promise a safer future for autono-
mous driving [96, 97].

In summary, these body posture classification methodologies contribute to the 
advancement of safer driving. These strategies collectively provide a comprehensive 
approach for monitoring and analyzing driver behavior inside autonomous vehicle cab-
ins, contributing to the development thereof and safer roads worldwide.

Integration of physiological indicators classification

Incorporating physiological indicators, including hand gestures, facial expressions, and 
body postures, is essential for developing an all-in-one driver monitoring system. This 
section outlines strategies for the physiological classification approaches to establish a 
cohesive driver monitoring system. To further elaborate on the integration of the classifi-
cations, it is important to note that driver behavior classification serves as a key compo-
nent in predicting and preventing risky driving scenarios. Not only can driver behavior 
classification provide real-time assistance to human drivers, but it is also instrumental 
in shaping the development of autonomous vehicles. It is worthwhile to recognize that 
human interaction with self-driving cars is an emerging research area with profound 
implications for road safety, traffic efficiency, and overall driving experience. The clas-
sification schema that divides driving behaviors into safe and unsafe categories offers a 
practical and simplified representation of the complexities involved in everyday driv-
ing. This classification system is the basis for analyzing and predicting driver behavior. 
By assigning a binary value of “1” for safe driving behaviors, and “0” for unsafe driving 
behaviors, researchers can create a streamlined and consistent method of collecting and 
analyzing data. This data, in turn, provides valuable insights that can help develop vari-
ous interventions to enhance road safety.

In [98], researchers shed light on the significance of different body parts, in the per-
ception of emotions. While not directly addressing the process of integrating hand, 
facial, and body posture classifications, the research provides valuable insights for 
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developing an emotion detection system. The study highlights the importance of dif-
ferent body parts in accurately perceiving emotions, suggesting that emotion classifica-
tion is an essential component in a multi-modal system for a comprehensive analysis. By 
incorporating these insights, a unified framework can be developed that accounts for the 
importance of hands, employs a multi-modal approach, harnesses shared mechanisms, 
and addresses challenges including the body inversion effect, leading to the creation of a 
robust and accurate system for emotion recognition.

Figure 3 demonstrates the representational similarity analysis of confusions between 
isolated body parts and full body from [98], providing a visual understanding of the 
complexity in emotion recognition related to different body parts.

Another study [99], conducted by Chinese researchers, emphasizes the integration of 
deep learning-based segmentation to isolate the driver’s body parts, including the head 
and hands, which play critical roles in identifying distraction. Two segmentation archi-
tectures, Human Body Parts Segmentation (HBPS) and Cross-Domain Complementary 
Learning (CDCL), were investigated. Despite similar performance on the Pascal VOC 
dataset, the CDCL model performed significantly better under low light conditions in 
the study’s specific dataset, efficiently segmenting critical body parts even in challenging 
lighting scenarios. This model facilitated the elimination of irrelevant image regions and 
concentrated on hands and head-related regions essential for safe driving. The system 
achieved an impressive average accuracy of over 96 percent on the authors’ dataset and 
95 percent on the public AUC dataset, indicating its substantial potential in develop-
ing comprehensive driver assistance systems by integrating physiological indicators for 
driver behavior classification.

Initiated in the early 2000s, the AWAKE project marked the European Union’s pio-
neering effort in integrating driver state and performance metrics for effective fatigue 
detection, using measures like eyelid movement and steering grip changes. Building on 
AWAKE’s foundational work, modern projects like Hi-Drive and Programmable Systems 
for Intelligence in Automobiles (PRYSTINE) have emerged, showing significant advance-
ment in the field. Hi-Drive, focusing on integrating automated vehicles in mixed traffic, 

Fig. 3  Representational similarity analysis of confusions between isolated body parts and full body from [98]
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emphasizes understanding user interactions with AVs, employing a multi-disciplinary 
approach with diverse studies to analyze user behavior, expectations, and limitations. 
PRYSTINE, notable in the Electronic Components and Systems for European Leader-
ship (ECSEL) initiative, advances autonomous driving technology, aiming to enhance 
safe, clean, and efficient mobility through fail-operational behavior in AVs, achieved by 
integrating advanced Radar and Li-ght Detection And Ranging (LiDAR) sensor fusion. 
Both projects signify the evolution of vehicular technology and user interaction, enhanc-
ing road safety and the reliability of systems detecting driver fatigue and ensuring opera-
tional safety in automated driving [100–102].

The proposed method in [103] integrates detection and tracking algorithms to moni-
tor distracted driving behavior based on facial and hand movements. The facial detec-
tion and tracking involve using the Viola-Jones algorithm to detect the driver’s face and 
an algorithm described in reference [104] to detect key facial features like eyes, lips, and 
forehead. The center point of the forehead and lips are tracked using the KLT tracker 
algorithm. Hand detection focuses on a localized search region, typically the lower-right 
or lower-left quarter of the frame, and employs a hand detection algorithm from refer-
ence [105]. The center point of the hand is tracked using the KLT tracker as well. The 
tracking algorithms continuously estimate the displacement between consecutive center 
point and calculate the tracking error based on feature differences. If the tracking error 
exceeds certain thresholds, reinitialization is performed by redetecting the respective 
body part. The method emphasizes the significance of simultaneous tracking of these 
body parts in capturing distracted driving behaviors. By analyzing the trajectories and 
patterns of facial and hand movements, specific distracted driving behaviors including 
talking on the phone, eating, or texting can be recognized. This proposed method lev-
erages the simplicity and effectiveness of the algorithms, taking into account the con-
strained setting of driving and marginal deformations of body parts. The integration of 
two physiological indicators together, hand gestures and facial expressions, enhances the 
understanding of distracted driving behaviors and contributes to the development of 
comprehensive driver monitoring systems.

This study [107] investigates how a driver’s body and head characteristics can influ-
ence the categorization of driving tasks, beginning with evaluating depth information 
from facial landmarks and joints. The precision of task classification demonstrated sub-
stantial differences when relying exclusively on either head or body signals. The model, 
trained only with two-dimensional information like head rotation and joint coordinates, 
showed accuracy levels comparable to those trained with complete features. However, 
the classification accuracy decreased when only using head pose information. While 
the distracted driving behaviors were successfully detected, it was challenging to dif-
ferentiate safe driving behaviors with similar head positions. In other words, using only 
body features (the coordinates of the hand, wrist, elbow, and shoulder joints) resulted 
in weaker detection of mirror-checking behaviors but a higher degree of accuracy for 
detecting distraction behaviors. So, the head and body characteristics are vital for com-
prehensively classifying driving tasks. Though there was a slight dip in the overall detec-
tion accuracy, the selection of 18 features, which includes yaw, pitch, roll, nose, hand, 
and shoulder coordinates, provided a reasonable balance between accuracy and compu-
tational speed. The final result demonstrates the potential of such a system in effectively 
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combining physiological indicators together for the classification of driver behaviors 
using the unification of various body part classifications.

In the study referenced as [106], the researchers built a model of the driver’s posture 
classification consisting of nine key points – left/right shoulders, left/right elbows, left/
right hands, left/right hips, and the right knee. They selected a combination of various 
body parts for their detectability in denoting driving behaviors. The team trained fully 
convolutional neural networks using their dataset to calculate the pivotal points for 
each frame of the body independently. Then, they transposed the data into three-dimen-
sional camera coordinates using depth imagery, resulting in a real-time 3D rendering 
of the driver’s physical stance. The focus is shifted from individual actions to the real-
time tracking of a combination of various body parts, thereby enhancing the depth and 
precision of physiological indicator-based classification of driver behaviors. To provide 
a clearer comparison of these diverse methodologies, Table  4 presents a comparative 
analysis of combined classifying models, outlining the differences in datasets, features, 
algorithms, and accuracy across various studies.

While research like [106] illustrates how real-time 3D imaging and tracking of vari-
ous body parts can enhance driver behavior analysis, the potential benefits of autono-
mous vehicles extend beyond improved safety measures. These breakthroughs not only 
revolutionize transportation policies and systems but also necessitate a thorough under-
standing of the legal regulations governing autonomous vehicles. This understanding 
is crucial to adapt the existing road traffic laws and navigate the regional differences in 
these regulations. Autonomous vehicle technologies potentially lower transportation 
costs and increase accessibility, particularly for those with mobility limitations. With a 
focus on the communication between autonomous vehicles and infrastructure, oppor-
tunities arise to develop efficient routing systems. Such technologies can revolutionize 
transportation policies. Meanwhile, in the U.K., connected and autonomous vehicles are 
triggering a transformative change in the economy, promising benefits like improved 
safety, reduced congestion, and increased productivity. Vital innovation and research 
capabilities in the U.K. automotive sector help leverage these benefits efficiently. From a 
legal perspective, a professional understanding of autonomous vehicles’ legal regulations 
is crucial because it aids the discussions related to modifying existing road traffic laws 
and the navigation of the variations in the regulations across different regions, includ-
ing the U.S. and Europe. In vision-based human action recognition or labeling image 

Table 4  Comparison of combined classifying models

Methods Year Dataset Feature Algorithm Accuracy %

[98] 2023 Bochum Emotional Stimulus Set Full body, 
particularly the 
hand

Isolated Body Part 
Emotion Recogni-
tion algorithm

64.7

[104] 2022 ORL Face Database from ATT and FEI 
dataset

Face and Hand SVM 98.03

[99] 2021 Driver Monitoring Dataset and AUC​ Full body Two different 
pre-trained CNNs, 
VGG-19 and 
Inception-v3

96

[106] 2019 QVGA ToF image sequences Body Key Points 3D CNN-LSTM 85
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sequences, varied advancements focus on image representation and the subsequent 
classification process. Despite current challenges and limitations, these advancements 
uncover potential areas for further exploration and improvement. Finally, the accuracy 
in recognizing subtle driver behaviors can improve significantly by using a network like 
BiRSwinT. This network combines global shape appearances and local discriminative 
cues of driver actions in its structure, effectively identifying multi-scale, local lines and 
can help drive future research in recognizing driver behaviors [108, 109].

Developing a proficient and effective driver monitoring system requires the concur-
rent examination and integration of numerous physiological indicators. The singular 
analysis of distinct body parts, including facial expressions, hand movements, and over-
all postures, can indeed yield meaningful insights into a driver’s actions. However, this 
individualized focus might need to look into the larger, more complex picture of driving 
behavior due to the multifaceted nature of human actions and responses. By integrat-
ing the findings from the analysis of various body parts, researchers can achieve a more 
complete understanding of a driver’s behavior. This comprehensive view enables them to 
design more precise, well-rounded interventions and assistance systems. The full-body 
analysis holds the potential to uncover nuanced and complex driving behaviors, enhanc-
ing the capability to predict and prevent risky scenarios that might otherwise remain 
undetected. In summary, the core of driving behavior is not encapsulated solely in the 
isolated movements of the hands or the face. Instead, it is embodied in the complex 
interactions among all body parts. As the future is approaching, marked by autonomous 
vehicles and sophisticated driver-assist systems, a comprehensive, full-body analysis 
becomes increasingly significant in promoting safer and more efficient roads. In the light 
of this, focusing on the interplay of full-body indicators becomes a crucial step toward a 
future characterized by increasing safety and efficiency in driving.

Deep learning framework for distracted driver classification

Present research efforts are specifically centered on detecting distracted driver pos-
tures, as opposed to fatigue or drowsiness, predominantly employing the analysis of 
image-based spatial characteristics using convolutional neural networks. However, con-
volutional neural networks alone must improve their ability to systematically analyze 
location-based objects, which has spurred the demand for more advanced techniques. 
The challenge centers on effectively incorporating the full-body indicators of a distracted 
driver [110].

In [112], the researchers from the University of Nottingham focused solely on dis-
tracted driver postures, distinct from fatigue or drowsiness indicators, presenting a rev-
olutionary methodology using CNNs and stacked bidirectional long short-term memory 
(BiLSTM) Networks. The presented technique efficiently utilizes both location-based 
and time-based attributes inherent in the images. The process begins with extracting 
location-based posture characteristics using pre-configured CNNs, succeeded by imple-
menting the BiLSTM architecture to discern time-based features from the stacked fea-
ture maps obtained from the CNNs. An example of Long-term Recurrent Convolutional 
Networks for Visual Recognition, which supports such a methodology, is illustrated in 
Fig. 4. The potency of the proposed methodology has been put through rigorous tests 
using the Distracted Driver Dataset from the American University in Cairo (AUC). 
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Compared with existing advanced CNN models, combining CNN and BiLSTM method 
is superior, yielding an impressive average classification accuracy of 92.7 percent [113].

To verify the effectiveness of CNN with LSTM stack, another study from the Univer-
sity of Nottingham evaluated ten different deep learning methods for their effectiveness 
in classifying driver distraction postures. The methods incorporated in this study are 
AlexNet, Inception-V3, ResNet-50, VGG-19 networks, and DenseNet-201. Additionally, 
the researchers used Inception-V3 in conjunction with different versions of recurrent 
neural networks, namely RNNs, GRU, LSTM, BiGRU, and BiLSTM. Among all these 
models, Inception-V3 coupled with BiLSTM, denoted as CNN-BiLSTM emerged as the 
top performer. It achieved an average loss of 0.292, an average accuracy of 91.7 percent, 
and an average F1 score of 93.1 percent, highlighting its superior ability in image clas-
sification tasks. The success of CNN-BiLSTM comes from its capability to extract pat-
terns from which elements or patterns change over time or follow a specific sequence, 
which typical CNN architectures might miss. It was more effective than unidirectional 
RNN architectures due to its ability to capture additional sequential pattern features 
by processing data in both forward and backward directions. Moreover, it was the best 
model for identifying challenging postures, including “drivers reaching behind.” Despite 
being on par with CNN-BiGRU (InceptionV3 coupled with bidirectional gated recur-
rent unit) in terms of performance, CNN-BiLSTM had a longer average training time 
due to the LSTM’s three-gate mechanism, making GRU models a potential choice for 
real-time distraction detection systems seeking computational efficiency. In  situations 
where the emphasis lies on fast computation and training times, particularly in real-time 
scenarios, CNN-BiGRU may be favored. However, if the ultimate goal is to achieve the 
highest possible accuracy, with less regard for computation time, CNN-BiLSTM would 
be the more appropriate choice. Overall, the CNN-BiLSTM model exhibited remarkable 
performance in detecting distracted driver behaviors. Future research intends to apply 
these methods to video streams to capture the temporal dynamics of driving and extend 
them to anomaly detection techniques to recognize new types of distracted behaviors 
[114, 115].

Another recent study presented at the 14th International Conference brought 
to light the utilization of CNNs and LSTM algorithms in an intelligent real-time 
video surveillance system. This advanced model integrates the strengths of CNN for 

Fig. 4  Long-term recurrent convolutional networks for visual recognition [111]
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extracting spatial information and LSTM for quick and accurate sequential track-
ing of detected objects. Implementing this combined CNN-LSTM methodology 
minimizes model complexity, enhances accuracy, and facilitates real-time operation. 
Feature extraction is the first step in this process using various CNN architectures, 
including VGG16 and MobileNetV2. Given the constraints of our dataset size, the 
researchers opted for transfer learning and trained our model on the MobileNet V2 
CNN architecture. This choice was motivated by MobileNet V2’s excellent fit for real-
time applications and its ability to handle any input image more significant than 32 x 
32 pixels. The researchers used an input image shape of 128 x 128 pixels in this study. 
Video segments were standardized for feature extraction, with 20 frames uniformly 
selected and resized from each video to match the input requirements of our chosen 
architecture. Following feature extraction, the next stage is classification, which uses 
LSTM. The LSTM’s inherent capabilities for recognizing patterns in time-sequence 
data make it ideal for activity detection. LSTM, explicitly designed to handle long-
term dependencies, distinguishes itself from typical feedforward neural networks, 
including DenseNet, through its feedback connections [116–118].

These two key components, CNN for feature extraction and LSTM for classifica-
tion, operate together to deliver a real-time surveillance solution. The CNN, specifi-
cally MobileNet V2 in this study, is responsible for extracting spatial features from 
input images. The partial features are how pixels are arranged and related to each 
other in a two-dimensional layout. The extraction process ensures that the essential 
visual information is drawn from each video frame. Then, the extracted features are 
sequenced and passed to the LSTM network for classification. Equipped with the 
ability to manage sequential data and long-term dependencies, the LSTM can process 
image features over time. Using its gates to control how information flows, the LSTM 
can learn patterns across the sequence of frames. Thus, combining feature extraction 
via CNN and sequence pattern learning through LSTM enables the system to rec-
ognize and classify activities effectively in real-time video streams. The CNN-LSTM 
approach has shown promising results in real-world applications, detecting suspi-
cious activities at 10–13 frames-per-second in real-time under various conditions. 
This study combined CNN and LSTM on a Raspberry Pi, demonstrating the possibil-
ity of a self-contained system using these two technologies. The study also includes 
a human action recognition (HAR) methodology that combines CNN and LSTM for 
optimal speed and precision, demonstrating the significant potential for real-time 
applications. The HAR approach achieved remarkable accuracy, reaching up to 98 
percent on the Peliculas dataset and 91 percent on complex real-life datasets with 
variable backgrounds, thus showcasing improvements over earlier techniques. This 
study’s findings are particularly relevant for the research into vision systems within 
autonomous vehicle cabins using machine learning, highlighting the practicality and 
real-time capability of a combined CNN-LSTM model in recognizing and classifying 
driver behaviors [119, 120].

Building on CNN-LSTM algorithms in real-time video surveillance, similar strate-
gies surface in studies analyzing driver behavior in autonomous vehicles. From cap-
turing smooth spatial patterns and fine-grained motion details to addressing scene 
and representation bias, these methods continue to enrich autonomous vehicle safety 
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systems, demonstrating the innovative use of machine learning models in detecting 
driver behavior [121].

Various studies have explored methods to analyze driver behavior in autonomous 
vehicles, particularly focusing on identifying driver distractions. Some used a dual pro-
cessing system called ConvNets, which works with both still images and motion in vid-
eos to perform high-level action recognition, even with limited datasets. Others have 
evaluated CNNs for video classification, leveraging spatial-temporal information to 
amplify training and performance. Furthermore, the concept of SlowFast networks uses 
a dual-pathway system to capture both detailed images and videos, providing a unique 
perspective for a better understanding of behavior within a vehicle’s cabin. Simultane-
ously, representation bias, where datasets are not fully representative, can be mitigated 
through the RESOUND method, which quantifies and minimizes bias [122–124].

Weight distribution optimization, known as REPAIR, has also been employed to 
penalize examples that are easy for specific classifiers, increasing the accuracy and 
transferability in classifying driver behaviors by not overly relying on specific patterns. 
Scene bias in video representation learning is tackled by introducing adversarial loss for 
scene types and human mask confusion loss for masked videos. This approach guides 
the model to concentrate more on ongoing activities, optimizing its ability to differenti-
ate distinct actions. Unitedly, these diverse methods enhance autonomous vehicle safety 
systems and create more accurate and reliable datasets, improving the precision and 
effectiveness of machine learning models for detecting distracted driving behavior [125, 
126].

Continuing the discussion on autonomic vehicles’ safety systems, research into Con-
vNets and CNNs uncovers fascinating pathways. By weaving in more spatial-temporal 
data, mitigating bias, and incorporating changes like human pose data and complex sys-
tems like SlowFast networks, these studies significantly advance AI-based vision systems 
to improve autonomous vehicle safety. By integrating spatial and temporal data and com-
bating bias, this research is further refining AI-based vision systems and safety measures 
in autonomous vehicles. Next, Research into deep ConvNets and CNNs provides critical 
insights for utilizing machine learning for cabin analysis in autonomous vehicles. Nota-
bly, a two-stream ConvNet architecture that integrates spatial and temporal networks 
successfully analyzes images and videos. The employment of multi-frame dense optical 
flow as training data and multi-task learning optimizes datasets and enhances perfor-
mance, while evaluations of CNNs highlight the crucial role of spatio-temporal data and 
multi-resolution architecture in bolstering training efficiency [127, 128].

Enhancements to driver behavior analysis are also evident in initiatives integrating 
human pose data into models and implementing complex systems like SlowFast net-
works to capture spatial patterns and motion details, progressing driver safety in auton-
omous vehicles. Furthermore, strategies including RESOUND and REPAIR are adopted 
to combat representation bias and model over-reliance on specific patterns, substantially 
improving the accuracy of driver behavior detection. Simultaneously, the examination 
of scene bias places focus on activities, thereby enhancing nuanced behavior differen-
tiation. These collective insights significantly contribute to advancements in AI-based 
vision systems, improving safety, and driving performance within autonomous vehicles 
[34, 129, 130].
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In conclusion, integrating advanced machine learning models, including CNN-LSTM 
algorithms, is making noteworthy strides toward improving real-time video surveillance 
and safety systems in autonomous vehicles. The combination of spatial and temporal 
data, integration of human pose data, and implementation of complex network systems 
including SlowFast networks are emphatically contributing to detecting and classifying 
activities and driver behavior. At the same time, measures to counter representation and 
scene bias are enhancing the performance and precision of these models. This combina-
tion of distinct strategies and methods enables unprecedented advancements in autono-
mous vehicle safety systems and surveillance technology. Continued research in these 
areas is paramount to the further enhancement of AI-based vision systems and safety 
measures, driving us toward an increasingly autonomous future.

Proposed AI application and datasets for driver behavior classification 
in autonomous vehicles
To address reliability and privacy concerns in driver behavior tracking systems, an offline 
AI application that operates in autonomous vehicles is proposed. This system is based 
on the open-source Pose-Monitor AI Application, and it does not necessitate an inter-
net connection, thus providing uninterrupted monitoring and privacy safeguarding for 
the driver. An “open-source Pose-Monitor AI Application” denotes a class of software 
utilities that leverage artificial intelligence methodologies to track and examine human 
postures and movements. Its underlying source code is accessible for inspection, modi-
fication, and distribution by any interested party. Such an application can be a digital 
animation to monitor drivers in automotive environments for safety considerations: the 
term “open-source” implies that the software’s database is transparent online, promoting 
collaborative practice and allowing enhancement by a worldwide network of develop-
ers. The term “pose” relates to the spatial orientation and position of an object, with a 
focus on human body parts in this context. “Pose-Monitor” is an aspect of computer 
vision that aims to ascertain an object’s spatial orientation and position, particularly a 
person, in a given visual medium; “AI Application” points towards a software solution 
that integrates artificial intelligence functionalities, such as computer vision, to execute 
tasks typically associated with human intelligence, including pattern recognition, experi-
ential learning, and predictive decision-making. Thus, an open-source Pose-Monitor AI 
Application employs artificial intelligence technologies to analyze and monitor human 
poses. At the same time, its source code remains freely accessible for assessment and 
customization. Lastly, the offline software application protects the users’ online privacy 
and blocks potential cyber-attacks.

Expanding on the concept of AI-driven monitoring and behavior classification within 
autonomous vehicles, several essential studies have taken this research further. These 
investigations underscore the unrealized potential of an offline AI application grounded 
in the open-source Pose-Monitor AI application. Such integration can further enhance 
safety measures within autonomous machines and address pressing concerns about pri-
vacy, while also making notable strides in improving road safety. Attention now turns to 
the specifics of these critical studies, exploring a broad spectrum of applications from 
detecting unconventional driving behaviors to anticipating pedestrian movements. 
These studies all contribute substantially to the development of artificial intelligence 
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applications for driver behavior classification in autonomous vehicles. One study pro-
poses an AI system using real-time data to detect unusual driving behaviors, including 
drunk or reckless driving. Another focuses on identifying driver distractions utilizing 
vehicle movement data and machine learning models, helping tackle the growing prob-
lem of in-vehicle distractions [28, 131, 132].

A third study introduces a system that monitors both driver drowsiness and distrac-
tion simultaneously, markedly enhancing detection capabilities and accuracy. The 
researchers developed a new eye-detection algorithm and enhanced its accuracy with a 
support vector machine. Another project brings forward a novel 3D hand pose estima-
tion method using 3D CNNs, which could provide a new way to interpret driver hand 
movements. Lastly, a study introduces a new predictive pedestrian path model, helping 
autonomous vehicles better anticipate pedestrian movements, and therefore improving 
overall road safety [20, 133, 134].

Pose monitor AI program

The Pose-Monitor AI Application is an open-source project that evaluates the user’s 
body posture and provides real-time feedback to improve posture. The system utilizes 
image processing techniques to distinguish between proper and improper postures, gen-
erating a score based on the evaluation. If the rating falls beneath a pre-established limit 
after 30fps, the system warns the user; if the score remains below the threshold after 
another 30fps, it alerts the user to adjust their posture, using either a familiar voice or 
a more severe tone if necessary. Incorporating the Pose-Monitor AI Application into 
the Proposed AI system allows for adequate assessment of a driver’s posture and behav-
iors in an autonomous vehicle. This integration enables the AI system to leverage exist-
ing image processing techniques and real-time feedback mechanisms to understand 
the driver’s overall condition better. Consequently, the Proposed AI system can detect 
potential indications of fatigue, distraction, or impairment, ultimately improving safety 
in autonomous vehicles. Additionally, the open-source nature of the Pose-Monitor AI 
Application ensures that the AI system remains customizable and adaptable, permitting 
developers to continuously refine the algorithms and techniques used to analyze a driv-
er’s body posture. This adaptability is crucial for tailoring the AI system to address the 
specific needs of various autonomous vehicle manufacturers and user groups.

With the potential to be added based on the hand classification and facial classifica-
tion algorithms [103], the Pose-Monitor AI Application emerges as a practical solution, 
leveraging real-time feedback of the driver’s driving state. The technology’s continuous 
monitoring at a rate of 30 frames per second ensures rapid detection of any shifts in the 
driver’s physiological states or overall behavior. These changes could indicate the onset 
of fatigue or distractions, triggering the system to alert the driver or activate autono-
mous controls for enhanced safety.

The functionality of the Pose-Monitor AI Application extends beyond simple 
posture monitoring. It uncovers insightful behavioral indicators tied to the driver’s 
physical disposition. For instance, drivers’ subtle body adjustments can signal anxi-
ety or unease with the autonomous vehicle’s decisions. This understanding of driv-
ers’ behavior empowers the system to respond to drivers’ needs proactively. When 
integrated with other AI modules, like emotion detection [135], the Pose-Monitor 
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AI-based Application contributes to a sweeping human behavior classification sys-
tem. This integrated system can offer a more accurate and in-depth understanding 
of the driver’s state, considerably improving the autonomous vehicle’s interaction 
with its human occupants.

The performance of the Pose-Monitor AI Applications in driver behavior analysis sets 
the stage for exploring cutting-edge machine learning and AI systems aiming to fos-
ter road safety. Distinct research approaches form an intriguing landscape of advanced 
tools; these range from real-time warning systems and neural network-based activity 
recognition to novel hand pose estimation using 3D Convolutional Neural Networks. 
Delving into the individual contributions of these unique studies reveals their remark-
able potential in expanding the scope of AI and machine learning in understanding 
driver behavior and thus enhancing autonomous vehicle safety. The proposed AI Moni-
tor Program makes extensive use of machine learning and AI systems to enhance road 
safety. An activity recognition system based on deep CNNs successfully identifies seven 
common driver activities. Four of these activities are classified as normal driving tasks 
and the rest as distractions, achieving an impressive 91.4 percent accuracy rate. Another 
approach uses CNN to develop a real-time warning system for driver distraction detec-
tion. A unique approach inhabits the use of cellular neural networks and electrostatic 
sensors on the steering wheel for real-time stress level monitoring, improving detection 
accuracy by up to 92 percent [136–138].

Understanding driving behaviors like car-following, lane-changing, and risky driv-
ing can be improved using sensor data, onboard vehicle computer data, and fea-
ture extraction methods. Deep-learning models have shown exceptional accuracy 
in identifying these behaviors, hence, implying their potential as a primary tool for 
understanding driver behavior. There also exists a new approach for real-time hand 
pose estimation using 3D CNNs, which enhances real-time monitoring of human 
activity. An open-source tool, VGG Image Annotator (VIA), which operates in any 
web browser, provides an efficient way to manage labeled data required for AI sys-
tems. Finally, a unique application tracks gaze direction to guide an automated sur-
veillance system and represents a novel approach in AI surveillance. Each research 
study offers unique insights and significant contributions to autonomous vehicle 
safety, extending the potential use of AI and machine learning in understanding 
driver behavior [133, 139, 140].

In conclusion, the open-source nature of the Pose-Monitor AI Application opens 
up avenues for customization. Developers can adapt and enhance the system to cater 
to specific requirements, creating a versatile AI that fits various vehicle models, 
driving conditions, and user preferences. This ability to customize is pivotal in a rap-
idly evolving landscape of autonomous vehicle technology. Furthermore, the Pose-
Monitor AI Application supports data-driven adjustments. Over time, accumulated 
posture data can guide refinements in AI algorithms, fostering a more nuanced 
understanding of human behavior patterns. This continuous learning process boosts 
the system’s overall performance and safety measures. Incorporating the Pose-Moni-
tor AI Application into a vision system for autonomous vehicles, as part of a broader 
machine learning-based approach, can yield safer and more interactive autonomous 
driving experiences.
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Data collection for the proposed AI system

Our proposed AI system employs two datasets: the dataset from the State Farm Dis-
tracted Driver Detection contest hosted on Kaggle and the Distracted Driver Dataset, 
developed by researchers at the American University in Cairo, the Technical University 
of Munich, and Valeo Egypt. Both datasets consist of images depicting drivers engaging 
in various distracting activities, which can be used to train and validate our AI model to 
recognize driver behaviors. The dataset consists of images depicting drivers engaging in 
various distracting activities, which can be used to train and validate our AI model to 
recognize driver behaviors [113, 141].

Examples of the State Farm dataset can be seen in Fig. 5, while examples from the Dis-
tracted Driver Dataset are illustrated in Fig. 6.

The State Farm dataset encompasses:

•	 22,424 annotated training images
•	 79,726 unannotated testing images

The driver distraction dataset composes:

•	 12,555 annotated training images
•	 1923 unannotated testing images

Both datasets contain 10 behaviors organized into 2 broad categories: 

1.	 Safe driving
•	 Attentive driving (as shown below ’C0’)

2.	 Unsafe driving

•	 Phones using

–	 Right-handed texting (as shown below ’C1’)
–	 Right-handed phone conversation (as shown below ’C2’)
–	 Left-handed texting (as shown below ’C3’)
–	 Left-handed phone conversation (as shown below ’C4’)

•	 Entertainment system

–	 Using the radio (as shown below ’C5’)

Fig. 5  State farm dataset’s example

Fig. 6  Driver Distraction dataset’s example
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•	 Personal Matter

–	 Consuming beverages (as shown below ’C6’)
–	 Reaching for objects in the back (as shown below ’C7’)
–	 Adjusting hair or applying makeup (as shown below ’C8’)
–	 Conversing with passengers (as shown below ’C9’)

Both datasets contain 10 behaviors organized into 2 broad categories, as illustrated in 
Fig. 7, which shows the various classes included in the training dataset.

The diverse classes of driver behaviors contribute remarkably to the analysis and 
identification of distracted driving, each functioning as unique data classes that pro-
vide a multidimensional perspective on driver distraction: attentive driving serves as a 
comparative benchmark, characterizing the optimum driver behavior and facilitating 
the identification of anomalous, distracting actions; texting and phone conversation, 
both right and left-handed, typify manual distractions, where the hand’s displace-
ment affects vehicular control Usage data like hand position and device interaction 
frequency can infer such behavior; radio usage, another form of manual and cognitive 
distraction, can be inferred from irregular vehicle behavior concurrent with sound 
system activation data; consuming beverages, a manual and visual distraction, may 
be identified via motion data showing repeated hand-to-mouth movements; reaching 
for objects in the back seat signifies a severe distraction, identifiable via significant 
body and head movement data away from the driving orientation; adjusting hair or 
applying makeup exemplifies manual, visual, and cognitive distractions; the proposed 
detection can be achieved through vision system.

Each data class contributes to creating a total distraction model, enabling realistic 
driver behavior analysis. Each image is linked to one of the ten classes mentioned 
above. The images are in JPEG format and have a resolution of 1080x1920 or 640x480 
pixels. The combined dataset becomes a powerful resource for extracting full-body 
features. With its extensive range of behaviors, this datasets offer a multi-faceted 
view of driver posture, allowing our AI system to monitor and analyze beyond mere 
hand or head movements. Actions including reaching for objects in the back seat or 
abrupt postural changes, which necessitate whole-body analysis, are accounted for in 
this dataset. Consequently, the dataset enables a better understanding of the driver’s 
state. This dataset’s richness in image count and behavioral variety facilitates train-
ing advanced machine learning models. Utilizing these two datasets, such models can 

Fig. 7  Driver distraction dataset’s training example
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be trained to discern and categorize various driver behaviors, enhancing autonomous 
driving safety.

Despite being predominantly image-based, the datasets’ high frame rate provides a 
basis for time-series analysis, particularly relevant to the foundational Pose AI moni-
tor system. Analyzing a series of images can reveal patterns over time, including a 
gradual attention drift or fatigue onset. This aspect is crucial since it enables the cap-
ture of behavioral alterations that might be overlooked in individual frames. Given its 
broad spectrum of driver behaviors, the Pose-Monitor-AI-based Application can lever-
age these datasets for training and validation. By integrating real-world image data, the 
application’s capabilities in real-time assessment of driver posture and behavior can be 
enhanced, thus augmenting the overall safety quotient of autonomous driving. While 
these two datasets include invaluable asset for model development and initial testing, 
the robustness and reliability of the developed AI system necessitate validation in real-
world scenarios. Field testing under varied conditions and scenarios and a range of 
driver behaviors complement the initial validation performed using these two datasets. 
Such a thorough approach to validation ensures that the AI system accurately classifies 
driver behavior, thus reinforcing better autonomous driving.

Challenges and future directions
Artificial Intelligence plays a crucial role in analyzing and monitoring driver behavior 
in autonomous driving. These advanced systems must be agile, robust, and capable of 
evolving based on new datasets without compromising detection speed or accuracy.

One technological approach that holds promise in addressing these requirements is 
the use of Deep Neural Networks (DNNs). DNNs eliminate the need for handcrafted 
features, leading to improved recognition accuracy. However, they also come with their 
own set of limitations. They require a substantial amount of data for training, and insuf-
ficient data can result in over fitting. There are also computational uncertainties, such as 
the feasibility of training and updating DNNs effectively in a smartphone environment. 
Furthermore, these networks have to function in real-time, adding another layer of com-
plexity to the system [142].

Ensuring coordination between multiple elements, such as facial analysis and the mon-
itoring of hand movements, is also essential for providing a comprehensive assessment. 
Despite significant progress, there are still key issues to be addressed. For example, the 
acquisition of behavioral data presents certain barriers and unknown complexities when 
dealing with the security and privacy of the driver. Protecting sensitive information 
while maintaining data quality over time can pose its own set of challenges. Further-
more, most existing literature and technology have primarily focused on passenger vehi-
cles, neglecting other forms of transportation such as heavy trucks and cargo transport 
vehicles. Operational constraints, such as inadequate performance under varying light 
conditions, difficulties in identifying individuals wearing eye-wear, and potential biases 
in facial recognition, continue to pose challenges [143].

After addressing the challenges of light conditions, biases in facial recognition, and 
ensuring robustness and transparency, future research should also consider the detec-
tion of moods and emotions. This aspect can be crucial in further personalizing and 
securing the in-cabin experience. By understanding the driver’s or passengers’ emotional 
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state, AI systems can offer more responsive and adaptive support, enhancing safety and 
comfort. This can lead to more sophisticated and user-centered autonomous mobility 
solutions, expanding the capabilities of AI beyond mere operational efficiency to encom-
pass a more comprehensive understanding of human factors in the context of autono-
mous transportation [144].

As AI-driven systems penetrate the intimate environment of a vehicle, earning user 
trust becomes non-negotiable. These systems must be reliable and robust, especially 
against unexpected sensor failures or road conditions, and they must also be designed 
for transparency. Users and regulators must be equipped to understand and trust the 
AI’s decision-making processes. In-built verification mechanisms are critical to ensure 
safety and effectiveness [145].

The adoption of autonomous mobility solutions is gaining remarkable traction glob-
ally, especially in dominant markets like China, the United States, and Europe. Future 
research should endeavor to advance guidance technologies and fine-tune AI algo-
rithms, opening unprecedented opportunities in the logistics, retail, security, mainte-
nance, and agriculture sectors. By addressing these multifaceted challenges, the research 
community can pave the way for more efficient, transparent, and universally applicable 
in-cabin AI systems. Whether it is making AI more explainable, the challenges are steep 
but surmountable, promising a future where AI not only coexists but thrives in synergis-
tic harmony with human needs and safety concerns [146].

Significance of our paper
The field of driver behavior monitoring, essential for the advancement of autonomous 
vehicles and intelligent transportation systems, is rapidly evolving with diverse meth-
odologies and focuses. Our paper contributes significantly to this domain by offering an 
in-depth analysis of neural network-based methodologies, specifically ANNs, CNNs, 
RNNs, and LSTMs, for monitoring driver behavior. It is distinctively focused on com-
puter vision and machine learning technologies, emphasizing practical applications in 
autonomous driving and advanced driver assistance systems. We hope this paper can 
serve as a valuable resource for future researchers interested in learning more about the 
influence of neural networks in driver behavior monitoring systems and autonomous 
vehicles.

In contrast, other survey papers present a wider range of methodologies and appli-
cations not inherently focused on neural network methodologies and computer vision 
applications. Papers including ”A Survey on Driver Behavior Detection Techniques for 
Intelligent Transportation Systems” and ”Driver Behavior Analysis for Safe Driving: A 
Survey” offer broader surveys of technologies and techniques, covering ADAS, mobile 
phone sensors, and various detection techniques, including the use of smartphones and 
wearable devices. These papers provide comprehensive overviews of driver safety tech-
nologies and the role of various methodologies in intelligent transportation systems, but 
with less depth in machine learning specifics compared to our paper. Others, includ-
ing ”Toward Vehicle Occupant-Invariant Models for Activity Characterization” and ”A 
Comprehensive Review of Driver Behavior Analysis Utilizing Smartphones,” explore 
niche aspects including the development of occupant-invariant models and the use of 
smartphone technologies in driver behavior analysis, respectively. These studies address 
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specific challenges, including actor bias in activity characterization and highlighting the 
non-intrusive nature of smartphones in driver behavior analysis.

Overall, our paper stands out for its focused approach to advanced machine learn-
ing techniques and their practical application in autonomous vehicle systems, offering 
detailed insights into recent techniques as well as known approaches. For a compre-
hensive and structured comparison of our work with other significant researches in this 
domain, refer to Table 5, which presents a comparative analysis of our paper with other 
current driver behavior monitoring research.

Concluding remarks
This survey paper initiates a thorough exploration of safety concerns related to auton-
omous vehicles and highlights the critical necessity of an AI-based system for driver 
behavior classification. It provides a detailed explanation of each key term to ensure 
complete understanding. This exploration induces the development of a unified AI sys-
tem. As a result of studying three primary classification methodologies, this new system 
can exceed current classification techniques in depth and breadth. Two primary compo-
nents, the core program, and the primary database, make up the base of the proposed 
system. The study delves deep into the strategies for classifying and evaluating driver 
behavior in autonomous vehicles and provides a detailed record of these techniques. 
Lastly, it anticipates a growing focus on safety within autonomous vehicles and suggests 
that this research could steer the development of more advanced, nuanced systems for 
driver behavior detection. This foresight lays the groundwork for ongoing and future 
research in this rapidly evolving field.
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