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Abstract 

Using the wrong metrics to gauge classification of highly imbalanced Big Data may 
hide important information in experimental results. However, we find that analysis of 
metrics for performance evaluation and what they can hide or reveal is rarely covered 
in related works. Therefore, we address that gap by analyzing multiple popular per-
formance metrics on three Big Data classification tasks. To the best of our knowledge, 
we are the first to utilize three new Medicare insurance claims datasets which became 
publicly available in 2021. These datasets are all highly imbalanced. Furthermore, the 
datasets are comprised of completely different data. We evaluate the performance of 
five ensemble learners in the Machine Learning task of Medicare fraud detection. Ran-
dom Undersampling (RUS) is applied to induce five class ratios. The classifiers are evalu-
ated with both the Area Under the Receiver Operating Characteristic Curve (AUC), and 
Area Under the Precision Recall Curve (AUPRC) metrics. We show that AUPRC provides 
a better insight into classification performance. Our findings reveal that the AUC metric 
hides the performance impact of RUS. However, classification results in terms of AUPRC 
show RUS has a detrimental effect. We show that, for highly imbalanced Big Data, the 
AUC metric fails to capture information about precision scores and false positive counts 
that the AUPRC metric reveals. Our contribution is to show AUPRC is a more effective 
metric for evaluating the performance of classifiers when working with highly imbal-
anced Big Data.

Keywords:  Extremely randomized trees, XGBoost, Class imbalance, Big Data, 
Undersampling, AUC​, AUPRC

Introduction
The use of a single metric to draw conclusions on the impact of a factor in classification 
experiments may lead to mistakes that we wish to help our fellow researchers avoid. Ran-
dom Undersampling (RUS) is an appealing strategy for mitigating class imbalance in Big 
Data. It can drastically reduce the size of the training data used during the model train-
ing phase of Machine Learning. Less training data translates into faster training times 
for many Machine Learning algorithms. Therefore, applying RUS may save a researcher 
time when conducting experiments. Our contribution is to reveal that there is a trade-
off for applying RUS that one should consider before concluding that applying RUS is the 
best choice. We show that RUS may have a positive impact on Area Under the Receiver 
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Operating Characteristic Curve (AUC) [1] scores. At the same time, we show RUS may 
have a clear negative impact on Area Under the Precision Recall Curve (AUPRC) [2] 
scores.

This underscores the importance of evaluating results in terms of more than one met-
ric. Therefore, if performance in terms of AUPRC is important, applying RUS may not be 
a viable option. We validate these findings using three distinct data sets and five popular 
ensemble learners in the task of Medicare fraud detection. In our experiments, we apply 
RUS to induce five different levels of minority:majority class ratios, and classify data-
sets of varying sizes. The smallest dataset we work with has approximately 12 million 
instances. We also perform experiments with a dataset that has approximately 68 million 
instances, and another dataset that has approximately 175 million instances. For each 
dataset we find the same pattern holds: AUC scores are either not affected, or improved 
by RUS, and AUPRC scores are degraded.

The application domain of our study is automated Medicare insurance fraud detection. 
Medicare is the United States public health insurance program, primarily dedicated to 
individuals aged 65 and over. The organization responsible for the Medicare program 
is the Centers for Medicare and Medicaid Services (CMS). To foster research, the CMS 
maintains a repository of publicly available Medicare insurance claims data. We use 
data from three different sources in this study. Data from each source has unique attrib-
utes. The smallest dataset we use is from a section of the CMS website titled “Medicare 
Durable Medical Equipment, Devices & Supplies—by Referring Provider and Service” 
(DMEPOS) [3]. We construct a dataset of approximately 12 million instances from this 
data. The next largest data we use is from a section of the CMS website “Medicare Physi-
cian & Other Practitioners—by Provider and Service” (Part B) [4]. We derive a dataset 
with approximately 68 million instances from the Part B data. Finally, the largest data we 
use is from a section of the CMS website titled “Medicare Provider Utilization and Pay-
ment Data: Part D Prescriber” (Part D) [5]. We compile a dataset of nearly 175 million 
instances from the Part D data. The CMS regularly adds to each of these data sources, 
which lends them the aspects of volume and velocity that characterizes Big Data [6].

The volume and velocity of the Part B, Part D, and DMEPOS data also reflects the 
quantity and speed at which the CMS receives insurance claims from healthcare pro-
viders. Currently, it is possible for some dishonest providers to get away with sub-
mitting fraudulent claims to Medicare and avoid detection. The volume of claims 
submitted is large enough that a small fraction of undetected fraudulent claims still 
translates to large dollar amounts. It is a fact that, in 2019, the Department of Jus-
tice was able to recover approximately three billion dollars in fraudulently obtained 
funds by prosecuting rogue healthcare providers [7]. Nevertheless, there is a degree 
of uncertainty surrounding how much money the CMS loses due to fraud. The CMS 
does not report an estimate of funds paid on fraudulent claims. Rather, it reports an 
estimate of “improper payments.” For 2019, the CMS reported it made approximately 
$100 billion dollars in improper payments [8]. The CMS defines improper payments 
to include payments due to fraud, as well as payments due to mistakes on the CMS’s 
part. Reliable, automated fraud detection would provide a means for the CMS to give 
an estimate of the percentage of improper payments due to fraud. This would in turn 
provide a stronger justification for law enforcement to pursue the recovery of money 
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stolen by fraudsters. Our application domain is Machine Learning for Medicare fraud 
detection. Therefore, our work is a contribution towards the ultimate goal of auto-
mated Medicare fraud detection. The benefit of better fraud detection is that govern-
ment can put funds to better use, or lower taxes due to a reduced cost of the program.

There are valid concerns to be raised on the subject of automated fraud detection. 
Chief among them is the possibility of accusing legitimate providers of fraud when 
they are innocent. Since we refer to the population of fraudulent providers as the pos-
itive class in our classification framework, accusation of innocent healthcare provid-
ers is equivalent to a false positive. Clearly, numerous false positives would mean that 
automated fraud detection would be doing more harm than good. This is why the key 
finding in our work is important in the field of automated Medicare fraud detection, 
since it reveals a better way to detect when a classifier that is applied to classify highly 
imbalanced Big Data yields many false positives. AUC is a popular metric for evalu-
ating highly imbalanced Big Data, for example [9, 10]. However, our research shows 
AUC might not always provide a complete picture of classification results. Our exper-
imental results show how the AUPRC metric can provide a clearer signal that a model 
is generating false positives, when compared to AUC. A look at the definitions of the 
components of AUC and AUPRC reveals why AUPRC is a better herald of false posi-
tives. On one hand, AUPRC is calculated by plotting the precision and recall scores a 
model yields as we vary the output probability threshold for the classification decision 
from zero to one. Precision is defined as

and the definition of recall is

On the other hand, AUC is calculated by plotting true positive rate and false positive 
rate as the output probability threshold varies from zero to one. The true positive rate is

and false positive rate equivalent to

Since true positive rate and recall are actually the same quantity, the difference in AUC 
and AUPRC must come from the difference between precision and the false positive rate. 
We see that the false positive rate involves true negatives, whereas precision does not. In 
highly imbalanced Big Data, where the positive class is the minority class, the true posi-
tives in the formula for precision should be small numbers, so that when the number of 
false positives starts to grow, it can quickly dominate the value of precision. Hence, pre-
cision can easily reflect the number of false positives in classifying imbalanced Big Data. 

true positives

true positives+ false positives,

true positives

true positives+ false negatives.

true positives

true positives+ false negatives

false positives

true negatives+ false positives
.
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A similar analysis of the terms involved in calculating the false positive rate shows that 
false positives get drowned out due to the size of the negative class. Since the denomi-
nator in the definition of the false positive rate is the size of the negative class, and the 
size of the negative class is large in imbalanced Big Data, a change in the number of false 
positives may be difficult to perceive.

To solidify the argument, we give an example with some hypothetical numbers. Let 
us assume we have a dataset where the size of the negative class is two million. Further-
more, let us assume we have done a classification of the data for some output probabil-
ity threshold, and we have 1800 true positives and 2000 false positives. Moreover, the 
sample has 2000 positive instances. From these numbers, we can calculate precision and 
false positive rate. The precision is

and the false positive rate is

Now let us assume that for a different output probability threshold the number of false 
positives has increased to 4000. Then the new value of precision is

and the false positive rate is

In this example, doubling the total number of false positives decreases the precision 
score by 0.16, but only increases the false positive rate by 0.001. Since both values are 
used directly as values of coordinates on curves that occupy the same square with area 
1× 1 in the x–y coordinate plane, we can compare them directly. Therefore, for this 
example, we conclude that the increase in false positives has a bigger impact on preci-
sion and AUPRC, than on the false positive rate and AUC. Therefore, it is possible that 
if a factor in some experiments causes a larger number of false positives, AUC will not 
reflect the impact, but AUPRC will.

We perform a collection of experiments that provides an example of how AUC will 
not reflect the impact of a factor on classification results, but AUPRC will. One factor 
tested in this collection of experiments is the minority:majority class ratio in the training 
data. We apply RUS to induce five different class ratios. The second factor in our experi-
ments is the type of classifier used. We use five popular, open source ensemble learn-
ers: CatBoost [11], XGBoost [12], LightGBM [13], Random Forest [14], and Extremely 
Randomized Trees (ET) [15]. Our results show that, regardless of learner and dataset, 
AUPRC scores are diminished as the class ratio gets closer to 1:1. The AUC scores for 
the same experiments do not reflect the relationship RUS has with AUPRC. This leads 
us to the conclusion that AUPRC scores reveal more about the impact of RUS than AUC 
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scores. Our goal is to provide a thorough justification for this conclusion. Along the 
way to providing this justification, to the best of our knowledge, we make several novel 
contributions:

•	 we are the first to use the Part B, Part D, and DMEPOS data, which became available 
in 2021, in a peer-reviewed study;

•	 we are the first to show that classification of this new Big Data should be evaluated in 
terms of AUPRC,

•	 we are the first to use five ensemble learners to do Medicare fraud detection,
•	 we are the first to employ a Random Forest implementation that runs on Graphics 

Processing units (GPUs) do to Medicare fraud detection, and
•	 we are the first to use ET to do Medicare fraud detection.

The remainder of this study is organized into the following sections: Related Works, 
Algorithms, Data Description and Preparation, Methodology, Results, Statistical Analy-
sis, and Conclusions.

Related work
“Data sampling approaches with severely imbalanced big data for medicare fraud detec-
tion” is a 2018 study by Bauder et al. [9]. In their study, the authors combine Part B, Part 
D, and DMEPOS Medicare claims data to form a dataset for Medicare fraud detection 
via classification. Hence, their study is in the same application domain as ours, albeit 
with less data than we use, since we use data was not available at the time their study 
was written. The data they work with has under one million instances. Bauder et  al. 
employ six data sampling techniques in their experiments. The six techniques are RUS, 
Random Oversampling (ROS), Synthetic Minority Oversampling Technique (SMOTE) 
[16], two variations of Borderline SMOTE (also covered in [16], and Adaptive Syn-
thetic (ADASYN) [17]. The sampling techniques are used to induce minority:majority 
class ratios of 1:99, 10:90, 25:75, 65:35, and 50:50. Experiments with the original class 
ratio of 473:759,267 (approximately 0.00062) are performed as well. For classification 
experiments, they use Apache Spark [18] implementations of Random Forest, Logistic 
Regression [19] and Gradient Boosted Trees [20]. To evaluate the performance of the 
combinations of classifiers and data sampling techniques, the authors use AUC. Bauder 
et al. conclude that classifiers trained on data with RUS applied to it yield significantly 
better performance, in terms of AUC, than classifiers trained on data with the original 
class ratio. Since Bauder et al. prefer RUS to other sampling techniques, we employ only 
RUS. However, we measure classification results in terms of the AUPRC metric as well. 
Our results are unique and meaningful, since, on one hand we duplicate Bauder et al.’s 
results that show an improvement in AUC scores when RUS is applied, but on the other 
hand, we show that AUPRC scores decline when RUS is used.

Hasanin et al. [21] study the effect of RUS on Geometric Mean [22] and AUC scores. 
They find RUS has a positive impact on AUC and Geometric Mean scores in the clas-
sification of imbalanced Big Data. Here, we investigate the performance of RUS on AUC 
and AUPRC scores. One advantage AUC and AUPRC have over the Geometric Mean is 
that they reflect performance over a range of model output probability threshold values, 
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whereas in order to calculate Geometric Mean, one must select a specific output prob-
ability threshold. Therefore, a model’s Geometric Mean score can only tell us about the 
performance of the model for one particular threshold value. Another issue that sets our 
study apart from Hasanin et al. is that the largest dataset used in their study has under 
1.7 million instances. The data we work with here is orders of magnitude larger. Hasa-
nin et al. report that they use one-hot encoding for all categorical features. Here we use 
CatBoost encoding [11], a technique that is more scalable than one-hot encoding since it 
does not require the introduction of additional attributes to the dataset. For example, to 
one-hot encode a categorical value that has thousands of possible values, we would need 
to add thousands of attributes to our dataset. However, CatBoost encoding requires no 
additional space consumption.

Another study where the authors choose to use Geometric mean as a performance 
metric is by Del Río et al. In this 2014 study, the authors investigate the impact of RUS 
on Big Data classification. A second performance metric they use is βf-measure [23]. As 
a part of their study, experiments are performed as applications of Random Forest to 
classify various datasets, which are treated with undersampling. The largest dataset they 
employ in their experiments has less than six million instances. Apart from the size of 
the dataset, another aspect of our work that sets it apart from Del Río et al. is how they 
treat their data with RUS. Del Río et al. apply RUS to induce a 1:1 class ratio. We apply 
RUS to induce five different class ratios, which enables us to report the effect of varying 
levels of RUS. This is important since we aim to show the effects of RUS on AUC and 
AUPRC.

Research into the impact of RUS on the classification of Big Data often involves the 
Apache Spark framework since it is well suited to Big Data. One such study is by Slee-
man and Krawczyk [24]. In their experiments, they work with datasets that have at most 
three million instances. Sleeman and Krawczyk do a thorough job of reporting perfor-
mance metrics in their study, however, they do not report performance for the AUC or 
AUPRC metrics. The focus of our study is on the impact of RUS on two well-known 
metrics, AUC and AUPRC. A separate aspect of our study that differentiates it from 
Sleeman and Krawczyk’s is that we investigate the effect of RUS at different levels. Slee-
man and Krawczyk investigate RUS to induce a 1:1 class ratio. We use RUS to induce five 
class ratios, thus we can treat RUS more thoroughly as a factor in our experiments. The 
differences between Sleeman and Krawczyk’s study and our own imply that our results 
serve different purposes.

In “Threshold based optimization of performance metrics with severely imbalanced 
big security data” Calvert and Khoshgoftaar use multiple metrics to evaluate multiple 
classifiers [25]. The application domain for their study is information systems network 
security. Hence, their results reveal the ability of Machine Learning algorithms to detect 
malicious network traffic. Since most of the traffic in their dataset is benign, the clas-
sification task is an exercise in the classification of imbalanced data. The data they use 
in their experiments has approximately 1.7 million instances. To give a sense of the level 
of class imbalance, the dataset Calvert and Khoshgoftaar use has a minority to majority 
class ratio of approximately 0.0014. Therefore, their data resembles ours, however we 
find our dataset is more realistic, since Calvert and Khoshgoftaar generate the malicious 
traffic in the raw network traffic data they use in their experiments. In a sense our raw 
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data is more natural, since we do not play a role in generating it. Their key finding is that 
one classifier yields the best performance in terms of AUC, but significantly worse in 
terms of other metrics. Furthermore, they find one classifier yields the best performance 
in multiple metrics other than AUC. They claim this result indicates AUC alone can-
not identify the best performing model. The principal item that differentiates our study 
from Calvert and Khoshgoftaar’s is that they do not use RUS as a factor in any of their 
experiments.

One type of classifier we have not discussed yet is Neural Network classifiers. John-
son and Khoshgoftaar document experiments with Neural Network-based classifiers 
and RUS in [26]. The performance metrics they use to evaluate classification results are 
AUC, Geometric Mean, True Positive Rate, and True Negative Rate. The application 
domain for their study is Medicare fraud detection. One thing that sets our study apart 
from Johnson and Khoshgoftaar’s is our use of the AUPRC metric. Our studies have use 
of the AUC metric in common. Johnson and Khoshgoftaar find that when RUS is applied 
to their data to induce a class ratio with the minority class occupying more than 20% 
of the data, AUC scores begin to deteriorate. In a further demonstration on the effect 
the RUS technique, they show that all metrics reflect worsening performance as RUS 
is used to grow the proportion of the minority class in the training data. Johnson and 
Khoshgoftaar work with data similar to ours, however, they apply an aggregation step 
to prepare their data for experiments. The aggregation reduces the size of their dataset 
to under five million instances. The aggregation also eliminates the highest cardinality 
categorical features. They use one-hot encoding for the remainder of the categorical fea-
tures. For a study on many available options for encoding categorical features, please 
see [27]. For this study, we selected CatBoost encoding, which has the advantage of sup-
porting much higher cardinality categorical features than can be practical with one-hot 
encoding. Due to the differences we have listed here, our study represents a contribution 
that is separate from what Johnson and Khoshgoftaar have to offer.

In a later work, Johnson and Khoshgoftaar use Geometric Mean and AUC to evalu-
ate the performance of Deep Learning algorithms to classify imbalanced Big Data Medi-
care [28]. They apply RUS to have the minority class constitute larger percentages of 
the training data. The dataset used in their experiments has approximately five million 
instances. Results in this study show metrics are even more sensitive to RUS than their 
previous study. In this study, they find performance, in terms of both metrics, begins 
to suffer when the minority class becomes more than one percent of the training data. 
One major difference between our study and Johnson and Khoshgoftaar’s is that we use 
AUPRC, whereas they use Geometric Mean. Also, as in their previous study, Johnson 
and Khoshgoftaar use an aggregation technique which eliminates high-cardinality cat-
egorical features, and then use one-hot encoding to encode remaining categorical fea-
tures. For reasons mentioned previously, we prefer to apply CatBoost encoding to our 
categorical features. Hence, our study also differs significantly from this second study by 
Johnson and Khoshgoftaar.

In “An insight into imbalanced big data classification: outcomes and challenges”, Fer-
nandez et al. report on the effects of RUS in the classification of imbalanced Big Data 
with the Apache Hadoop [29] and Spark distributed computing frameworks. The largest 
dataset used in their experiments contains approximately 12 million instances. While 
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Fernandez et al. apply RUS to their data, they induce only the 1:1 class ratio. As stated 
previously, our experiments involve five different levels of RUS, which enables a more 
thorough review of the impact of RUS. Fernandez et al. find RUS improves classification 
performance, in terms of Geometric Mean. Our aim is to compare the impact of RUS 
on two different performance metrics, AUC and AUPRC, hence to provide results in a 
domain separate from those of Fernandez et  al. Although Fernandez et  al. use imbal-
anced data in their experiments, the data we use is more imbalanced. Their data has an 
initial minority to majority class ratio of 1:50, whereas ours has an initial ratio of 1:256. 
Therefore, our study involves a larger, more imbalanced dataset.

In the aptly named “The Precision-Recall Plot Is More Informative than the ROC 
Plot When Evaluating Binary Classifiers on Imbalanced Datasets”, Saito and Rehms-
meier compare classification results in terms of AUC and AUPRC [30]. They perform 
experiments in the microRNA gene discovery application domain with multiple classi-
fiers and datasets. Their results are similar to ours in that they demonstrate, for varying 
levels of class imbalance, that AUC curves show good performance. However, for the 
same experiments, the AUPRC curves reveal stark differences in performance. Saito and 
Rehmsmeier do not discuss whether their results apply to datasets with high cardinal-
ity, categorical features. We show our results apply to datasets, with categorical features 
that have thousands of possible values. The datasets Saito and Rehmsmeier use are small, 
all with less than 15,000 instances each. We show the merits of AUPRC as a metric for 
classifying highly imbalanced Big Data. In addition, we show that as the size of the data-
set grows, AUPRC is the more informative metric to assess the impact of experimental 
factors.

Related works cover concepts that overlap with our study. We find research where RUS 
is a factor in experiments with highly imbalanced Big Data. However, we do not find a 
study that reveals insights into the divergent effect of RUS on AUC and AUPRC scores 
in the classification of highly imbalanced Big Data. We feel our contribution is an impor-
tant one since it shows that focus on AUC alone can cause one to overlook the negative 
impact of RUS, and therefore possibly other factors, on classification performance.

Classification algorithms
As a means of ensuring reproducible results, we employ five publicly available, open-
source ensemble learners as the classifiers in our experiments. As mentioned previously 
the learners are: LightGBM, XGBoost, ET, CatBoost, and Random Forest. The learners 
fall into two distinct families of algorithms. ET and Random Forest are members of the 
Bagging family of learners. CatBoost, XGBoost, and LightGBM hail from the Gradient 
Boosted Decision Tree family of Machine Learning algorithms. The advantage to using 
algorithms that exploit different general techniques is that we can show our results apply 
to more than just one type of algorithm. Bagging and Gradient Boosted Decision Trees 
take two different approaches to using a collection of learners to perform classification.

Breiman introduces the Bagging technique for Machine Learning in a 1996 study, [31]. 
Breiman explains that Bagging can be used in classification and regression problems. 
Our study involves experiments in binary classification, so we focus on Breiman’s treat-
ment of Bagging as it pertains to binary classification. The Bagging technique is based 
on applying a Machine Learning algorithm (learner) to bootstrap samples of the training 
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data to train a collection (ensemble) of instances of the algorithm. A bootstrap sample is 
a sample, with replacement, from the training data [32]. After the learners are fit to the 
bootstrap samples, each learner classifies instances of the test data. The classification 
result is taken as the classification returned by the majority of learners in the ensemble. 
A probabilistic argument explains how Bagging may improve classification results.

Assume there is a chance that a poorly performing (weak) learner makes a correct 
classification more often than not. Then, the chance of a majority of weak learners in an 
ensemble making the correct classification increases as we increase the number of weak 
learners. In that case if we treat the ensemble as a classifier it will perform better than 
one of the constituent learners by itself.

Random Forest relies on the Bagging principle, and adds an enhancement to it. Brei-
man is also credited with the seminal implementation of Random Forest [14]. Random 
Forest is an application of the Bagging technique to decision trees, with an addition. In 
order to explain the enhancement to the Bagging technique, we must first define the 
term “split” in the context of decision trees. The internal nodes of a decision tree con-
sist of rules that specify which edge to traverse next. The rule is based on a compari-
son of one numeric value, the split, versus the current value of one of the independent 
variables in the dataset. Hence, fitting a decision tree to a dataset heavily involves deter-
mining the optimal values for splits. The enhancement Random Forest makes to the Bag-
ging approach is to randomly sample a subset of the attributes to use in determining 
the optimal value for a split. We include Random Forest, since it has been applied suc-
cessfully to the classification of highly, or severely imbalanced Big Data [33]. As men-
tioned previously, to the best of our knowledge, this is the first study on Medicare fraud 
detection where an implementation of Random Forest that runs on Graphics Processing 
Units (GPUs)1 is used. In preliminary experiments we found this GPU implementation 
of Random Forest to have a much faster running time when compared to the CPU based 
implementation we used previously.

The second classifier from the Bagging family of Machine Learning algorithms we 
employ is the ET classifier [15]. ET is an extension of Random Forest where we choose 
the values for splits in the decision tree randomly. In Random Forest, and other deci-
sion-tree based learners, splits are usually calculated systematically. For example, one 
may calculate the optimal value for a split in a decision tree based on some metric that 
gauges how well the splitting rule divides the training data into subsets that all have the 
same label. ET does away with systematic ways of determining the values for splits and 
chooses them randomly. Perhaps surprisingly, our results show ET’s random selection 
of splits can turn out to yield the best performance in classifying highly imbalanced Big 
Data for Medicare fraud detection.

The remaining classifiers used in our study are descended from the Gradient Boosted 
Machine algorithm discovered by Friedman [34]. The Gradient Boosting Machine tech-
nique is an ensemble technique, but the way in which the constituent learners are com-
bined is different from how it is accomplished with the Bagging technique. The Gradient 
Boosting Machine technique begins with a single learner that makes an initial set of esti-
mates ŷ of the dependent variable y . The differences (residuals) in the estimates ŷ and 

1  https://​docs.​rapids.​ai/​api/​cuml/​stable/​api.​html#​random-​forest

https://docs.rapids.ai/api/cuml/stable/api.html#random-forest
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y forms a vector y − ŷ that we can think of as a new dependent variable that we can 
estimate with the original independent variables and a second learner. Then, the sum 
of the output values of the two models will be a more accurate estimate of the depend-
ent variable than the output values of the first model. We can continue to add learners 
to the ensemble similarly, where each new learner is trained to predict the residuals of 
the current ensemble. Therefore, each learner we add to the ensemble provides a better 
estimate of the dependent variable. The Gradient Boosting Machine implementations 
we use are all enhancements to Friedman’s initial proposal. They all involve a specific 
type of learner, Decision Tree, so we refer to them as Gradient Boosted Decision Trees 
(GBDTs).

Of the three GBDT implementations we use, XGBoost was the first to be released. 
Chen and Guestrin released XGBoost in 2016. XGBoost offers several enhancements to 
the GBDT technique. The first enhancement is an improved loss function used during 
the training phase. The loss function contains an additional term for regularization to 
prevent overfitting. Another enhancement XGBoost makes to GBDTs is one that has to 
do with calculating splits in the constituent decision trees of the GBDT ensemble. Chen 
and Guestrin introduce the so called “approximate algorithm” which is a technique for 
estimating optimal values of splits. The approximate algorithm is suitable for distributed 
environments, as well as applications where the entire dataset does not fit in main mem-
ory. A third enhancement in XGBoost is another algorithm for finding splits that works 
well with sparse data. Sparse data is the type of data that is nearly constant in value with 
infrequently occurring aberrations. XGBoost can take advantage of sparse data with its 
“sparsity aware split finding” feature.

Ke et al. released the seminal paper on LightGBM in 2017 [13]. Their goal was to offer 
a GBDT implementation that yields performance equivalent to XGBoost, while consum-
ing fewer resources. In order to achieve their goal, Ke et al. make two key enhancements 
to the GBDT technique. The first is Exclusive Feature Bundling (EFB). EFB is a tech-
nique for reducing the dimensions of a dataset by combining two features (attributes) 
of a dataset into a single feature. EFB is an effective technique for sparse data. When 
two attributes of a dataset exhibit sparsity, and the infrequently occurring values of both 
attributes are mutually exclusive, they may be safely combined into a single feature with-
out the loss of information. EFB reduces the number of dimensions of a dataset, which 
helps reduce training time. LightGBM’s second enhancement to the GBDT technique 
is called Gradient-based One-Side Sampling (GOSS). GOSS is a technique for intelli-
gently reducing the number training instances used. GOSS selects instances for training 
based on their contribution to the loss function that is calculated as part of fitting the 
GBDT ensemble to the training data. If the instance contributes more than a configur-
able threshold value to the loss of the model, then it is retained for further iterations of 
the fitting process. Likewise, instances that contribute less than the threshold amount 
are set aside. Via GOSS and EFB Ke et al. deliver a GBDT implementation that consumes 
fewer computing resources.

The third GBDT implementation we use is CatBoost [11]. Prokhorenkova et al. intro-
duced CatBoost in 2018. One may find more information on applications of CatBoost in 
various domains in [35]. Their motivation for developing CatBoost was to prevent over-
fitting. The first protection against overfitting that CatBoost makes is Ordered Boosting. 
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Ordered Boosting is a technique for selecting training instances. There are two steps for 
adding a decision tree to the GBDT ensemble. The first is to fit the decision tree to the 
dependent variable in the training data. Multiple decision trees are fit to different sam-
ples of the training data. After the trees have been fit, they must be evaluated in order 
to select the tree that best enhances the overall performance of the ensemble. Under 
Ordered Boosting one can be sure that training instances used to fit the decision tree will 
not be used to evaluate it for inclusion into the ensemble. This helps prevent the ensem-
ble from being overfit to the training data. The second kind of overfitting CatBoost offers 
protections against is through its Ordered Target Statistics method of encoding categor-
ical features. In simple target encoding, a categorical feature is assigned the mean value 
of the dependent variable that the feature is observed to co-occur with. This strategy for 
encoding may lead to information leakage in the sense that if the encoded feature co-
occurs with different values of the dependent variable in the test data the encoded fea-
ture will not be a useful predictor of the dependent variable. To avoid this issue, Ordered 
Target Statistics is a technique for ensuring that the encoded value for a categorical fea-
ture of a given instance is derived from other instances. Put another way, the encoded 
value of a categorical feature is not allowed to be calculated from the label it appears 
with. This makes it impossible for the encoded feature value of the instance to be directly 
related to the value of the dependent variable. This is a protection against what Prok-
horenkova et al. call “target leakage”.

The five ensemble techniques we employ here lend robustness to our experimen-
tal design. Using different learners allows us to rule out the possibility that patterns we 
see in the results are due to the peculiarities of one model. ET and Random Forest are 
enhancements to Breiman’s Bagging technique. XGBoost, LightGBM, and CatBoost 
are enhancements to Freidman’s Gradient Boosting technique. In the next section we 
explain how we prepare the data we use as input to these learners.

Data description and preparation
As mentioned in the introduction, the CMS provides the data used in this study. The 
most recent CMS data we use in constructing all three datasets first became available in 
2021. The latest Part B, Part D, and DMEPOS data all spans the years 2013 through 2019. 
Previous studies on Medicare fraud detection use data that covers fewer years. Moreo-
ver, some of the attributes of the latest data are not available in previous studies where 
older versions of the Part B, Part D, and DMEPOS are used. For example, in “Leveraging 
lightgbm for categorical big data” [36] we report our DMEPOS data has nine features, 
whereas one can see in Table 1 our current version of the DMEPOS data has 18 features. 
Furthermore, in [36], Part B data is reported to have eight features, and Part D data is 
reported to have seven features. In Table  2 we show that the Part B data we use has 
16 features, and in Table 3, we show our Part D Data has 9 features. To the best of our 
knowledge, we are the first to employ the most recently available data from CMS in a 
study.

We use the same process for labeling each of the three datasets with data from the List 
of Excluded Individuals and Entities (LEIE) [37]. The United Sates Office of the Inspec-
tor General publishes the LEIE on a monthly basis. If a healthcare provider appears in 
the LEIE, this means the provider has been convicted of some activity which prevents 
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the provider from submitting insurance claims to Medicare. Records in the LEIE, Part 
B, Part D, and DEMEPOS data sources have a National Provider ID (NPI) in common. 
There are different types of exclusions that a provider may fall under. The types of exclu-
sions we consider to be indicative of fraud are those identified by Bauder and Khosh-
goftaar [38]. When a provider appears in the LEIE under any of these exclusions, we 
label all records belonging to that provider in the Part B, Part D, and DMEPOS data as 
fraudulent.

Exclusions have start and end dates. We label all of a provider’s claims data pertaining 
to dates prior to the end of the exclusion period as fraudulent. Since the Part B, Part D, 
and DMEPOS data consists of records pertaining to entire years, and exclusion periods 
end at specific months, we round the end of the exclusion period to the nearest year. 
Once a provider’s exclusion period is over, the provider is removed from the LEIE. The 
provider may once again submit claims to Medicare, so data that pertains to claims the 
provider submits after the end of the exclusion period is labeled as not fraudulent. If one 

Table 1  Features of the DMEPOS Dataset

Feature name Description

Rfrg_Prvdr_Crdntls The referring provider’s credentials [example: MD]; categorical, 7,315 distinct 
values

Rfrg_Prvdr_Gndr The referring provider’s gender; categorical, three distinct values

Rfrg_Prvdr_Ent_Cd Type of entity [individual or organization] reported in NPPES; categorical, 2 
distinct values

Rfrg_Prvdr_Type Derived from the Medicare provider/supplier specialty code reported on all of 
the NPI’s Part B non-institutional claims (DMEPOS and non-DMEPOS); categorical, 
204 distinct values

Rfrg_Prvdr_Type_Flag A flag variable that indicates the source of the Referring Provider Type; categori-
cal two distinct values

BETOS_Lvl High level grouping of the Berenson-Eggers Type of Service (Berenson-Eggers 
Type of Service) Classifications into three groups including Durable Medical 
Equipment, Prosthetic and Orthotic Devices, and Drugs and Nutritional Products; 
categorical three distinct values

BETOS_Cd The BETOS classification code assigned to the HCPCS Healthcare Common 
Procedure Coding System code; categorical, 12 distinct values

BETOS_Desc Description of the HCPCS code for the specific product or service furnished by 
the DMEPOS supplier; categorical, 12 distinct values

HCPCS_Cd HCPCS code for the specific product or service furnished by the DMEPOS sup-
plier; categorical, 1337 distinct values

HCPCS_Desc Description of the HCPCS code for the specific product or service furnished by 
the DMEPOS supplier; categorical, 1,618 distinct values

Suplr_Rentl_Ind Identifies whether the DMEPOS product/service submitted on the supplier’s 
claim is rental or non-rental; categorical 2 distinct values

Tot_Suplrs Number of suppliers rendering DMEPOS products/services ordered by the refer-
ring provider

Tot_Suplr_Benes Number of beneficiaries associated with the supplier DMEPOS products/services 
ordered by the referring provider

Tot_Suplr_Clms Number of DMEPOS claims submitted by the supplier, reflecting products/ser-
vices ordered by the referring provider

Tot_Suplr_Srvcs Number of DMEPOS products/services rendered by the supplier

Avg_Suplr_Sbmtd_Chrg Average of the charges that suppliers submit for DMEPOS products/services

Avg_Suplr_Mdcr_Alowd_Amt Average Medicare allowed amounts for the DMEPOS product/service rendered 
by suppliers

Avg_Suplr_Mdcr_Pymt_Amt Average amount that Medicare paid suppliers after deductible and coinsurance 
amounts have been deducted for the line item DMEPOS product/service
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is compiling a dataset that spans all the available years, the current LEIE will not contain 
records of providers that were in the LEIE previously. Therefore, one should use a utility 
such as Internet Archive Tool2 to retrieve previous versions of the LEIE to label older 
records of the CMS data.

Table 2  Features of the Part B Dataset

Feature name Description

Rndrng_Prvdr_Crdntls The referring provider’s credentials [example: MD]; categorical, 23,672 distinct 
values

Rndrng_Prvdr_Gndr The referring provider’s gender; categorical, three distinct values

Rndrng_Prvdr_Ent_Cd Type of entity [individual or organization] reported in NPPES; categorical, 2 
distinct values

Rndrng_Prvdr_Type Derived from the Medicare provider/supplier specialty code reported on 
all of the NPI’s Part B non-institutional claims (DMEPOS and non-DMEPOS); 
categorical, 204 distinct values

Rndrng_Prvdr_Mdcr_Prtcptg_Ind Identifies whether the provider participates in Medicare and/or accepts 
assignment of Medicare allowed amounts; categorical two distinct values

HCPCS_Cd HCPCS code used to identify the specific medical service furnished by the 
provider; categorical 7,738 distinct values

HCPCS_Desc Description of the HCPCS code for the specific medical service furnished by 
the provider; categorical, 8,252 distinct values

HCPCS_Drug_Ind Identifies whether the HCPCS code for the specific service furnished by the 
provider is a HCPCS listed on the Medicare Part B Drug Average Sales Price 
(ASP) File; categorical, two distinct values

Place_Of_Srvc Identifies whether the place of service submitted on the claims is a facility 
(value of ‘F’) or non-facility (value of ‘O’); categorical two distinct values

Tot_Benes Number of distinct Medicare beneficiaries receiving the service for each 
Rndrng_NPI, HCPCS_Cd, and Place_Of_Srvc

Tot_Srvcs Number of services provided; note that the metrics used to count the num-
ber provided can vary from service to service

Tot_Bene_Day_Srvcs Number of distinct Medicare beneficiary/per day services

Avg_Sbmtd_Chrg Average of the charges that the provider submitted for the service

Avg_Mdcr_Alowd_Amt Average of the Medicare allowed amount for the service

Avg_Mdcr_Pymt_Amt Average amount that Medicare paid after deductible and coinsurance 
amounts have been deducted for the line item service

Avg_Mdcr_Stdzd_Amt Average amount that Medicare paid after beneficiary deductible and 
coinsurance amounts have been deducted for the line item service and after 
standardization of the Medicare payment has been applied

Table 3  Features of the Part D Dataset

Feature name Description

Prscrbr_Type Derived from the Medicare provider/supplier specialty code; categorical, 249 distinct values

Prscrbr_Type_Src Source of the Medicare provider/supplier specialty code; categorical, 2 distinct values

Brnd_Name Brand name (trademarked name) of the drug filled; categorical, 3,907 distinct values

Gnrc_Name A term referring to the chemical ingredient of a drug rather than the trademarked brand 
name under which the drug is sold; categorical, 22,72 distinct values

Tot_Clms The number of Medicare Part D claims

Tot_30day_Fills The aggregate number of Medicare Part D standardized 30-day fills

Tot_Day_Suply The aggregate number of day’s supply for which this drug was dispensed

Tot_Drug_Cst The aggregate drug cost paid for all associated claims

Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one claim for the drug

2  http://​archi​ve.​org/​web.

http://archive.org/web
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The dataset we derive from the DMEPOS data is the smallest, containing 12,215,370 
instances. The original fraction of minority instances in the DMEPOS data is 0.0044. 
The data pertains to three classes of healthcare expenditures: durable medical equip-
ment, prosthetics orthotics and supplies, and drugs and nutrition-related products. The 
DMEPOS data has a HCPCS code feature that identifies the expenditure item precisely. 
Each record in the DMEPOS data is a summary of insurance claims the provider sent to 
Medicare for the item identified by the HCPCS code for the year. Please see Table 1 for 
descriptions of the elements of the DMEPOS data we use. The descriptions of the fea-
tures are copied from the DMEPOS data dictionary [39]. We augment the descriptions 
with information on the categorical features in the DMEPOS data. Any feature that we 
document as categorical is encoded with CatBoost encoding during experiments. In the 
DMEPOS data, as well as data for other parts of the program, there are several attributes 
that are not suitable for Machine Learning. These are attributes that pertain to the iden-
tity of providers, but provide no description of their activities or practices. These are the 
National Provider ID and other attributes related to the providers’ address.

The next largest dataset we use is compiled from the Part B data. The Part B data 
describes treatments and procedures that a provider performs for patients. One record 
of the Part B data represents a summary of all the times a provider rendered a particu-
lar treatment or procedure for their patients for the year. The treatment or procedure is 
identified by the HCPCS code listed in the record. Table 2 contains names and descrip-
tions of elements of the Part B data we use in this study. We copy the definitions from 
the Part B data dictionary [40], and add additional information about the number of pos-
sible values for categorical features. Our strategy for adopting elements of the Part B 
data is similar to the one we employ for the DMEPOS data. We discard the NPI and 
location data that would serve as the equivalent of a unique identifier for the provider. 
The final number of instances we obtain for the Part B data is 67,856,547. The fraction of 
instances of the minority class in the Part B data is 0.0019.

The Part D data comprises the largest of the three datasets that we work with. The 
Part D data pertains to medications that providers prescribe for their patients. A record 
of the Part D data relates to one particular medication that a provider prescribed for 
patients for 1 year. As with the DMEPOS and Part B data, we discard the NPI and loca-
tion data that could interfere with a Machine Learning Model’s ability to generalize. 
Table 3 summarizes all the Part D data elements we use in this study. Similar to Tables 1 
and 2, we copy data definitions from the Part D data dictionary [41], and augment them 
with information on distinct values of categorical features. Our finalized version of the 
Part D data contains 173,677,665 records. The fraction of instances in the minority class 
in the Part D data is 0.0039.

Methodology
To perform experiments, we run programs that train Machine Learning models. Then 
we employ the trained models to classify the DMEPOS, Part B, or Part D data. The pro-
grams are implemented in the Python language [42]. We rely on publicly available, open 
source libraries to provide implementations of the all classifiers used in this study. One 
may install any one of them using the standard Python package manager. This lends to 
the reproducibility of our work.
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Due to the stochastic nature of Machine Learning algorithms (learners), in our exper-
iments we do ten iterations of five-fold cross validation. We use unique seeds for the 
random number generators involved in the experiments to ensure unique initial condi-
tions for every experiment. One round of fivefold cross validation produces one experi-
mental outcome, consisting of an AUC value and an AUPRC value. We average these 
values across the five rounds and ten iterations. Therefore, Scikit-learn [43] is another 
library that is vital to the success of our work. It provides functions for performing five-
fold cross validation and calculating the AUC and AUPRC metrics after classification is 
completed.

We use CatBoost encoding [44] for all learners except LightGBM since LightGBM has 
a built-in function for encoding categorical data. The CatBoost Encoder is another pub-
licly available, open source library one can easily install with a Python package manager. 
We opted for a general purpose encoding method, since the focus of our study is on 
RUS and performance metrics. For a study on special purpose encoding techniques in 
the Medicare fraud detection application domain, please see [45]. The function of the 
CatBoost Encoder is to convert categorical features to floating point numbers, so they 
are suitable for use with the learners. The CatBoost encoder must be fit to data before it 
can be used to encode features. One must take care to fit the encoder to the training data 
only. Otherwise, the encoded features will contain information about the test data that 
may cause learners to overfit to the dataset, and yield unrealistically high performance 
metrics. This is commonly known as target leakage.

After encoding categorical features, before starting classification, we apply RUS to 
change the class ratio to induce one of the five minority:majority class ratios, 1:1, 1:3, 
1:9, 1:27 and 1:81. During our literature review, we found most studies where RUS is 
applied utilize the 1:1 class ratio. This is our motivation for selecting it. We arrive at the 
remaining class ratios by iteratively tripling the size of the majority class. As a baseline 
for determining the effect of RUS, we also perform experiments where we leave the class 
ratio unchanged. We apply RUS to the training data only. Class ratios of the test data are 
left unchanged.

We use GPU implementations of Random Forest, XGBoost and CatBoost. In pre-
liminary experiments we found the GPU implementations of these learners to be much 
faster than their CPU implementations. We attempted to use the GPU implementation 
of LightGBM, but we found the built-in encoding for Categorical features when run on 
GPUs is not compatible with high-cardinality categorical data. To the best of our knowl-
edge, we are the first to apply a GPU implementation of Random Forest to the task of 
Medicare fraud detection in a study. The version Random Forest we use is part of the 
CuML library.3

Also, to the best of our knowledge, we are the first to apply the ET classifier to the 
task of automated Medicare fraud detection in a peer-reviewed study. ET is available 
as a component of the Scikit-learn library. Due to the robustness of results ET yields, 
we recommend it for use in future studies involving imbalanced Big Data. We did not 
find a GPU implementation of ET that is suitable for working with datasets as large 
as the ones we work with here. Since ET is based on Random Forest, one avenue for 

3  https://​docs.​rapids.​ai/​api/​cuml/​stable/​api.​html#​random-​forest.

https://docs.rapids.ai/api/cuml/stable/api.html#random-forest
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future research is to modify the CuML implementation of Random Forest to produce 
a GPU implementation of ET. Therefore, for our experiments we use a CPU imple-
mentation of ET.

In preliminary experiments, we found maximum tree depth to be an important 
hyperparameter to optimize in order to obtain the best results. The Scikit-learn 
implementations of Random Forest and ET have unlimited maximum tree depth 
as a default setting. We saw that these classifiers were initially outperforming Cat-
Boost and XGBoost. According to their current on-line documentation, CatBoost and 
XGBoost both have a default maximum tree depth of 6 [46, 47]. We found it neces-
sary to raise the maximum tree depth of CatBoost to 16 and the maximum tree depth 
of XGBoost to 24 in order to obtain the best results. The largest value for maximum 
tree depth that CatBoost will currently permit is 16. Due to resource limitations, we 
were not able to successfully execute experiments with XGBoost where the maximum 
tree depth was set to a value greater than 24. Table  4 contains the values of all the 
changed hyperparameter settings we use in our experiments. Hyperparameter values 
listed were discovered after doing tuning experiments. Hence, they represent the best 
settings we discovered for each classifier. We did not find it necessary to modify any 
hyperparameter settings for ET.

Our experiments are all executed in a distributed computing platform as batch pro-
cesses. The nodes available to us on the platform have Intel Xeon Central Processing 
Units (CPUs) with 16 cores, 256 GB RAM per CPU and Nvidia V100 GPUs. A single 
node has sufficient resources to run any experiment covered here.

Table 4  Changed hyperparameter settings

Classifier/

Hyperparameter Setting Description

CatBoost

task_type GPU Use GPU(s) for execution

devices 0 GPU device ID

max_ctr_complexity 1 Maximum number of features to combine

max_depth 16 Maximum tree depth

n_estimators 100 Number of trees in ensemble

XGBoost

tree_method gpu_hist Use GPU(s) for execution

gpu_id 0 GPU device ID

n_estimators 100 Number of trees in ensemble

max_depth 24 Maximum tree depth

LightGBM

num_threads 64 Maximum number of execution threads

Random Forest

max_depth 32 Maximum tree depth

n_streams 8 Number of simultaneous GPU streams 
active during the fit phase
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Results
We report AUC and AUPRC scores for classification results. The values for AUC and 
AUPRC reported here are mean values computed by averaging 50 experimental out-
comes. One round of fivefold cross validation yields one experimental outcome consist-
ing of one AUC and AUPRC score. Since we do 10 iterations of five-fold cross validation, 
we obtain 50 instances of each metric. We report the same data in graphical and tabular 
form. The graphical form shows relative performance and the trend in results as the size 
of the majority class is increased. In addition, we provide the data in tabular form along 
with standard deviations to give a sense of the spread of AUC and AUPRC scores over 
the ten iterations of five-fold cross validation.

As stated previously in the section on methodology, we apply RUS to induce a class 
ratio in the training data. We do not alter the class ratio in the test data. Therefore, 
scores one sees reported in this section are results for classifying data sampled from its 
original class ratio. Put another way, models are trained on data with RUS applied, and 
only evaluated on test data with the original class ratio.

The first results we report are the AUC and AUPRC scores the five classifiers yield for 
classifying the DMEPOS data. We provide plots of AUC and AUPRC scores in Fig. 1. 

Fig. 1  DMEPOS Data: AUC Scores (left) and AUPRC scores (right)

Table 5  DMEPOS mean and standard deviation of AUC with varying levels of RUS (10 iterations of 
fivefold cross-validation)

Standard deviations are below AUC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.87070 0.91952 0.98862 0.97944 0.96163

(0.00145) (0.00134) (0.00059) (0.00077) (0.00082)

1:3 0.87610 0.92829 0.98874 0.98732 0.97472

(0.00161) (0.00108) (0.00072) (0.00067) (0.00082)

1:9 0.87922 0.92575 0.98774 0.98933 0.98175

(0.00169) (0.00152) (0.00095) (0.00069) (0.00060)

1:27 0.88011 0.91607 0.98536 0.98992 0.98511

(0.00165) (0.00174) (0.00111) (0.00069) (0.00066)

1:81 0.87140 0.90471 0.98207 0.98977 0.98549

(0.00241) (0.00192) (0.00124) (0.00063) (0.00074)

Unchanged 0.85223 0.89143 0.97917 0.98959 0.98453

(0.00492) (0.00207) (0.00113) (0.00069) (0.00104)
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Table 6  DMEPOS mean and standard deviation of AUPRC with varying levels of RUS (10 iterations of 
fivefold cross-validation)

Standard deviations are below AUPRC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.06233 0.08935 0.92987 0.21863 0.32763

(0.00319) (0.00453) (0.00267) (0.00823) (0.01293)

1:3 0.07842 0.13984 0.93779 0.49056 0.47900

(0.00294) (0.00422) (0.00258) (0.00875) (0.01033)

1:9 0.09192 0.17826 0.94208 0.74880 0.60368

(0.00305) (0.00497) (0.00265) (0.00968) (0.00678)

1:27 0.09788 0.19499 0.94493 0.87928 0.72180

(0.00404) (0.00510) (0.00267) (0.00534) (0.00474)

1:81 0.08387 0.19489 0.94710 0.91788 0.80715

(0.00566) (0.00508) (0.00301) (0.00324) (0.00387)

Unchanged 0.07531 0.17815 0.94866 0.92811 0.83319

(0.00752) (0.00474) (0.00213) (0.00316) (0.00547)

Fig. 2  Part B Data: AUC scores (left) and AUPRC scores (right)

Table 7  Part-B mean and standard deviation of AUC with varying levels of RUS (10 iterations of 
fivefold cross-validation)

Standard deviations are below AUC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.90846 0.93072 0.99316 0.98621 0.97534

(0.00086) (0.00087) (0.00039) (0.00039) (0.00039)

1:3 0.91054 0.93427 0.99323 0.99219 0.98404

(0.00078) (0.00089) (0.00037) (0.00028) (0.00038)

1:9 0.91087 0.93028 0.99259 0.99394 0.98849

(0.00102) (0.00101) (0.00041) (0.00025) (0.00043)

1:27 0.90664 0.92148 0.99085 0.99443 0.99050

(0.00241) (0.00127) (0.00041) (0.00032) (0.00041)

1:81 0.89803 0.91200 0.98764 0.99458 0.99069

(0.00530) (0.00104) (0.00051) (0.00028) (0.00048)

Unchanged 0.88554 0.89698 0.98118 0.99436 0.98862

(0.00542) (0.00121) (0.00080) (0.00033) (0.00051)
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Table 8  Part-B mean and standard deviation of AUPRC with varying levels of RUS (10 iterations of 
fivefold cross-validation)

Standard deviations are below AUPRC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.04621 0.05853 0.93517 0.15584 0.26342

(0.00253) (0.00238) (0.00209) (0.00419) (0.01037)

1:3 0.06426 0.08606 0.94335 0.38531 0.42815

(0.00217) (0.00236) (0.00160) (0.00786) (0.00815)

1:9 0.07818 0.11695 0.94563 0.67304 0.56271

(0.00513) (0.00224) (0.00129) (0.00795) (0.00532)

1:27 0.06664 0.14166 0.94682 0.85988 0.70862

(0.00761) (0.00309) (0.00155) (0.00376) (0.00746)

1:81 0.06128 0.15084 0.94758 0.92030 0.80848

(0.01261) (0.00299) (0.00150) (0.00167) (0.00270)

Unchanged 0.06768 0.13607 0.94990 0.93947 0.90510

(0.01071) (0.00254) (0.00162) (0.00156) (0.00182)

Fig. 3  Part D Data: AUC scores (left) and AUPRC scores (right)

Table 9  Part-D mean and standard deviation of AUC with varying levels of RUS (10 iterations of 
fivefold cross-validation)

Standard deviations are below AUC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.76230 0.77169 0.97625 0.95292 0.93523

(0.00067) (0.00075) (0.00033) (0.00059) (0.00046)

1:3 0.76326 0.77125 0.97586 0.96809 0.95465

(0.00060) (0.00074) (0.00038) (0.00045) (0.00024)

1:9 0.76317 0.76571 0.97464 0.97256 0.96476

(0.00055) (0.00080) (0.00038) (0.00037) (0.00040)

1:27 0.76279 0.75888 0.97244 0.97363 0.96868

(0.00060) (0.00062) (0.00037) (0.00037) (0.00030)

1:81 0.76212 0.75329 0.96966 0.97348 0.96963

(0.00064) (0.00089) (0.00035) (0.00039) (0.00037)

Unchanged 0.76085 0.74847 0.96746 0.97273 0.96996

(0.00081) (0.00076) (0.00038) (0.00042) (0.00031)
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Due to space limitations, we use the following abbreviations for classifier names in 
Tables 5, 6, 7, 8, 9, 10 and figures in this section. Classifier names are abbreviated as fol-
lows: CatBoost with maximum tree depth set to 16: CB-16, LightGBM: LGB, Extremely 
Randomized Trees: ET, and the GPU implementation of Random Forest with maximum 
tree depth set to 32 RF-GPU-32. In Fig. 1 one may notice some facts that hold for other 
data as well. Mean AUC scores are high, and show little impact of RUS as the size of the 
majority class increases. However, there is more variance in results in terms of the mean 
AUPRC metric. ET yields consistently strong performance as RUS is applied to make the 
majority class larger in the training data. Random Forest and XGBoost yield better per-
formance in terms of AUPRC when we apply RUS to make the size of the majority class 
larger. CatBoost and LightGBM yield relatively poor performance in terms of AUPRC 
regardless of how RUS changes.

Next, we report results for classifying the Part B data, starting with Fig. 2. Results are 
similar to those we obtain for the DMEPOS data. Again, all classifiers show strong per-
formance in terms of mean AUC. However, the mean AUPRC scores reveal a different 
picture altogether. Consistent with results for DMEPOS, we see ET yields consistently 
strong AUPRC scores. XGBoost and Random Forest AUPRC scores appear to be in some 
direct proportion with the size of the majority class in the training data. Also in keeping 
with their performance in classifying the DMEPOS data, LightGBM and CatBoost yield 
low AUPRC scores for any level of RUS.

Finally, we report classification results for Part D data. We notice in Fig. 3 that while 
mean AUC scores are high, with the larger dataset there is a bifurcation of performance 
in terms of AUC. XGBoost, ET, and Random Forest yield AUC scores that appear 
noticeably higher than those of LightGBM and CatBoost. For classifying the Part D data, 
mean AUPRC scores are generally lower than those we see for the Part B or DMEPOS 
data. However, the same pattern we saw in the results for the Part B and DMEPOS data 
appears again in the Part D data; ET yields consistently high results, Random Forest and 
XGBoost scores improve as we apply RUS to increase the size of the majority class, and 
LightGBM and CatBoost yield low scores relative to the other classifiers.

Table 10  Part-D mean and standard deviation of AUPRC with varying levels of RUS (10 iterations of 
fivefold cross-validation)

Standard deviations are below AUPRC scores in parenthesis

Class Ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.01567 0.01766 0.83614 0.11168 0.20205

(0.00015) (0.00020) (0.00307) (0.00158) (0.00322)

1:3 0.01724 0.02096 0.88826 0.32721 0.32806

(0.00016) (0.00021) (0.00181) (0.00572) (0.00322)

1:9 0.01910 0.02451 0.91341 0.58986 0.45801

(0.00025) (0.00035) (0.00103) (0.00571) (0.00312)

1:27 0.02095 0.02736 0.92451 0.70815 0.56448

(0.00031) (0.00039) (0.00080) (0.00375) (0.00195)

1:81 0.02203 0.02818 0.92925 0.74950 0.63787

(0.00030) (0.00044) (0.00073) (0.00335) (0.00283)

Unchanged 0.02294 0.02651 0.93288 0.76105 0.71047

(0.00037) (0.00054) (0.00073) (0.00406) (0.00169)
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We find AUPRC scores for CatBoost and LightGBM to be surprisingly low. As a val-
idation step, we performed one additional experiment. We wrote a separate program, 
completely independent of the program that produced the results above, and we per-
formed an experiment where we trained XGBoost, CatBoost and LightGBM on 80% of 
the shuffled Part B data without RUS, and use 20% of the shuffled Part B without RUS 
data as a test set. We then calculated the AUC and AUPRC scores for the three classi-
fiers, and obtained results that align with the previous results we report here. In that 
experiment, CatBoost yields an AUC score of 0.89744, and an AUPRC score of 0.14076, 
XGBoost yields an AUC score of 0.99407, and an AUPRC score of 0.93796, LightGBM 
yields and AUC score of 0.87017, and an AUPRC score of 0.07413. We include these 
results to show due diligence in ruling out any software bugs causing the extreme differ-
ences in AUPRC scores we report.

Statistical analysis
In order to make an informed decision on the results of the previous section, we apply 
statistical analysis in the form of Analysis of Variance (ANOVA) [48] and Tukey’s Hon-
estly Significant Difference (HSD) [49] tests. The ANOVA tests tell us whether a factor 
has a significant effect on experimental outcomes. When the ANOVA test identifies that 
a factor has a significant impact, we can then perform an HSD test to rank the levels of 
the factor in terms of its impact on experimental outcomes. Here, the outcome is either 
an AUC score or an AUPRC score. For all statistical tests, we use a significance level of 
α = 0.01.

The first outcome we perform analysis for is the AUC score. This is analysis of the vari-
ance in AUC scores for all classifiers, all datasets, and all levels of RUS. In all ANOVA 
tables we present, CLF indicates the classifier factor, RUS indicates the Random Under-
sampling factor, and Size indicates the number of instances in the dataset before RUS 
is applied. Please see Table 11 for the ANOVA test results. Since the Pr(>F), or p-val-
ues associated with each factor are practically zero, we conclude that all factors have 

Table 11  ANOVA for RUS, CLF and Size as factors of performance in terms of AUC​

* Indicates value is less than 1× 10−4 , † indicates value is less than 1× 10−2

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.06 0.01 14.21 *

CLF 4 16.97 4.24 4832.58 *

Size 2 4.70 2.35 2673.69 *

Residuals 4488 3.94 †

Table 12  HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:9, 1:3, 1:27

Group ab consists of: 1:81

Group bc consists of: 1:1

Group c consists of: Unchanged
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a significant effect on experimental outcomes. Therefore, we can conduct HSD tests to 
rank the levels of each factor in terms of its impact on AUC score.

HSD test results separate factors into groups such that levels of a factor that have a 
similar impact on performance are placed into the same group. The group that is asso-
ciated with the highest value of the experimental outcome is labeled as group ‘a’, lower 
ranked groups are labeled with letters that follow in alphabetical order. If there is overlap 
in the performance associated with two groups, then overlapping groups will be labeled 
with letters in common. For example, in Table 12, the results for the 1:1 level of the RUS 
factor are placed in group ‘ab’, and results for the 1:81 level of the RUS factor are placed 
in group ‘bc’. This implies the intersection of confidence intervals for AUC scores associ-
ated with these levels of RUS overlap.

The HSD test results in Table 12 show that applying RUS to induce class ratios of 1:9, 
1:3, or 1:27 yields the best performance. This is important to bear in mind, since the 
HSD tests for the impact of RUS on AUPRC scores will show there is a negative impact 
on performance.

The next HSD test we undertake is to determine which classifier yields the best perfor-
mance. The results here are processed for all datasets, and all levels of RUS. Here we see 
ET and XGBoost yield the best performance (Tables 13, 14).

The final HSD test we can conduct is for the size factor. We have three datasets of 
varying size. The HSD test results do not reveal a trend on the impact of size. We see 
that the best AUC scores are associated with the medium size, Part B, dataset. However, 
the second best AUC scores are associated with the small size, DMEPOS dataset. Finally, 
the lowest AUC scores are coupled with the largest, Part D dataset.

Table 13  HSD test groupings after ANOVA of AUC for the CLF factor

Group a consists of: XGB-24, ET

Group b consists of: RF-GPU-32

Group c consists of: CB-16

Group d consists of: LGB

Table 14  HSD test groupings after ANOVA of AUC for the size factor

Group a consists of: Medium

Group b consists of: Small

Group c consists of: Large

Table 15  ANOVA for RUS, CLF and size as factors of performance in terms of AUPRC

* Indicates value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 44.65 8.93 713.68 *

CLF 4 501.08 125.27 10011.73 *

Size 2 9.62 4.81 384.50 *

Residuals 4488 56.16 0.01
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Here we begin a series of statistical tests similar to the previous section, only now the 
experimental outcome we are analyzing is AUPRC instead of AUC. As is the case with 
the previous analysis of AUC scores, results here are obtained by processing experimen-
tal outcome data over all factors: data set size, RUS and classifier, for the Part B, Part 
D, and DMEPOS data. The factors in Table 15 are the same as in Table 11. Similar to 
Table 11, the Pr(>F) values for all factors in Table 15 are practically zero, which means 
each factor has a significant impact on AUPRC scores.

Since all factors have a significant impact on performance, we can conduct a Tukey 
HSD test to rank the levels of the factors in terms of their impact on performance. Here 
we see a clear relationship between the class ratio and AUPRC scores. The HSD results 
in Table 16 show that models built with larger number of majority class instances in the 
training data are associated with higher AUPRC scores. Since the results here are for 
AUPRC scores averaged across all datasets and learners, they imply that in general, RUS 
to induce a class ratio any larger than 1:81 yields worse performance in terms of AUPRC.

Next we report the results of the HSD test to rank the classifier factor. In keeping with 
the previous results for performance in terms of AUC, ET and XGBoost are associated 
with the best performance. However, we see in Table 17 that for performance in terms of 
AUPRC, ET is in a class by itself. ET and XGBoost are grouped together for best perfor-
mance in terms of AUC.

Interestingly, for performance in terms of AUPRC, we see there is a trend in the size of 
the dataset and performance in terms of AUPRC. The smallest dataset is associated with 
the best performance in terms of AUPRC, as Table 18 reveals. Intuitively, the smallest 
dataset has the smallest negative class size. This could make it so there are fewer false 

Table 16  HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: Unchanged, 1:81

Group b consists of: 1:27

Group c consists of: 1:9

Group d consists of: 1:3

Group e consists of: 1:1

Table 17  HSD test groupings after ANOVA of AUPRC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 18  HSD test groupings after ANOVA of AUPRC for the size factor

Group a consists of: Small

Group b consists of: Medium

Group c consists of: Large
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positives to bring down the precision score. It is an interesting question for future work 
as to whether we might see less of an impact of RUS on performance in terms of AUPRC 
for small imbalanced datasets than large imbalanced datasets.

Now we move on to analyze the effect of classifier and RUS on experimental outcomes 
for individual datasets. The first dataset we report on is the DMEPOS dataset. First we 
present the ANOVA table for the analysis of the variance in AUC scores that the classi-
fier and RUS factors contribute to experimental outcomes. The ANOVA test results in 
Table 19 show both RUS and classifier factors have a significant impact on AUC scores.

Since both the choice of classifier and RUS have a significant impact on experimental 
outcomes, we can rank both factors with HSD test. The first test we do is to rank the 
RUS factors. The result of the HSD test is in Table 20. Similar to the previous case where 
we looked at the impact of RUS across all three datasets, we see that for the DMEPOS 
data, RUS to induce class ratios of 1:9, 1:27, and 1:3 yield the best performance in terms 
of AUC.

Table 19  ANOVA for RUS and CLF as factors of performance in terms of AUC​

*Indicates the Pr(>F) value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.03 0.01 132.89 *

CLF 4 3.26 0.82 16241.00 *

Residuals 1490 0.07 0.00

Table 20  HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:9, 1:27, 1:3

Group b consists of: 1:81

Group c consists of: 1:1

Group d consists of: Unchanged

Table 21  HSD test groupings after ANOVA of AUC for the CLF factor

Group a consists of: XGB-24

Group b consists of: ET

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 22  ANOVA for RUS and CLF as factors of performance in terms of AUPRC

*Indicates value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 14.37 2.87 260.65 *

CLF 4 161.84 40.46 3669.03 *

Residuals 1490 16.43 0.01
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Next we rank the classifiers in terms of their impact on AUC scores when classify-
ing the DMEPOS data. This ranking is in Table  21. In this case XGBoost is the top 
performer; however, the pattern that the two best classifiers are XGBoost and ET con-
tinues to hold.

Here we take a look at how the RUS and classifier factors influence the outcome 
of DMEPOS classification as measured by the AUPRC score. The ANOVA results 
recorded in Table 22 show both factors have a significant impact on AUPRC scores. 
Therefore, HSD tests are worthwhile to conduct.

The impact of RUS on AUPRC scores for the classification of DMEPOS data is simi-
lar to what we find for the classification over all datasets. The outcome of the HSD 
test is reported in Table 23. We see not applying RUS at all, and applying it to induce 
class ratios of 1:81 or 1:27 does not yield a significant difference in the best possible 
results.

Table 23  HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: Unchanged, 1:81, 1:27

Group b consists of: 1:9

Group c consists of: 1:3

Group d consists of: 1:1

Table 24  HSD test groupings after ANOVA of AUPRC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 25  ANOVA for RUS and CLF as factors of performance in terms of AUC​

*Indicates the value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.03 0.01 160.56 *

CLF 4 2.21 0.55 13222.85 *

Residuals 1490 0.06 0.00

Table 26  HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:9, 1:3

Group b consists of: 1:27

Group c consists of: 1:1

Group d consists of: 1:81

Group e consists of: Unchanged
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Next we take a look at the impact of the choice of classifier on AUPRC scores for the 
classification of DMEPOS data. The result of the HSD test in Table 24 reflects the trend 
that XGBoost and ET yield the best performance.

Here we start the analysis of results for classification of the Part B data. Table 25 con-
tains the results of the ANOVA test for the impact of the classifier and RUS factors on 
AUC scores recorded for classification of the Part B data. Since the Pr(>F) values for 
both factors are both practically zero, we conclude both factors have a significant impact 
on AUC scores.

Since the ANOVA test results in Table 25 show RUS has a significant impact, we con-
duct an HSD test to determine which level of RUS is associated with the best perfor-
mance. The result of the HSD test is in Table 26. The HSD test results for all datasets and 
the DMEPOS dataset associate RUS at the 1:27 level with the best performance. How-
ever, for the Part B data, we see that 1:3 and 1:9 are associated with the best performance.

In Table 27 we have the results of the HSD test for the classifier factor. In keeping with 
their performance across all datasets, and the DMEPOS dataset, ET and XGBoost are 
the two best performing classifiers.

Now we come to the analysis of classification results for the Part B data. To start the 
analysis of the impact of RUS and classifier on the AUPRC scores we recorded in our 
experiments with the Part B data, we ran an ANOVA test. The outcome of the ANOVA 
test is listed in Table 28. Since the Pr(>F) values are very small, we conclude both the 
RUS and CLF factors have a significant impact on AUPRC scores.

Table 27  HSD test groupings after ANOVA of AUC for the CLF factor

Group a consists of: XGB-24

Group b consists of: ET

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 28  ANOVA for RUS and CLF as factors of performance in terms of AUPRC

*Indicates the values is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 18.29 3.66 242.75 *

CLF 4 171.20 42.80 2839.60 *

Residuals 1490 22.46 0.02

Table 29  HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: Unchanged

Group ab consists of: 1:81

Group b consists of: 1:27

Group c consists of: 1:9

Group d consists of: 1:3

Group e consists of: 1:1
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Since the ANOVA test shows RUS has a significant effect on AUPRC scores, we can 
use an HSD test to rank levels of the RUS factor. This will determine which level of 
RUS yields the best performance. For the Part B data, we see not applying RUS yields 
the best performance. This result is recorded in Table 29.

The ANOVA test also shows that the classifier has a significant impact on AUPRC 
scores for the classification of Part B data. Therefore, we conduct an HSD test to rank 
the classifiers. In Table 30 we have the now-familiar results of ET doing the best in 
terms of AUPRC scores, and XGBoost coming in second.

Here we begin the analysis of results for the largest of the three datasets, the Part 
D data. The first set of results we analyze is for the AUC scores recorded for experi-
ments in classifying the Part D data. The resulting ANOVA table is Table 31. It shows 
that both RUS and classifier choice have a significant impact on performance.

Table 30  HSD test groupings after ANOVA of AUPRC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 31  ANOVA for RUS and CLF as factors of performance in terms of AUC​

*Indicates the value is less than 1× 10−4 , †indicates the value is less than 1× 10−3

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.01 0.00 45.53 *

CLF 4 15.21 3.80 72803.06 *

Residuals 1490 0.08 †

Table 32  HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:9

Group ab consists of: 1:27, 1:3

Group bc consists of: 1:81

Group c consists of: Unchanged

Group d consists of: 1:1

Table 33  HSD test groupings after ANOVA of AUC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: LGB, CB-16
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Since the ANOVA test shows that RUS has a significant impact, we can rank the RUS 
factors by their effect on AUC scores. In Table 32 we see only the 1:9 RUS level is associ-
ated with the best performance.

The ANOVA test result for the classifier factor also implies that it has a significant 
impact on AUC scores. Interestingly, in Table 33 we see that ET is associated with the 
best performance in terms of AUC. For other datasets, and across all datasets, XGBoost 
is associated with the best performance.

The last statistical analysis we perform is for the effect of RUS and classifier on AUPRC 
scores for the classification of the Part D data. The outcome of the ANOVA test is listed 
in Table 34. The results show both factors have a significant impact on AUPRC scores.

Table 35 shows that not applying RUS yields the best AUPRC scores. This is consistent 
with results for other datasets. We see consistently that other levels of RUS are associ-
ated with lower AUPRC scores for other datasets.

The HSD result for the effect of the classifier on AUPRC scores is in Table 36. As the in 
cases of other datasets, ET is associated with the highest AUPRC scores for classifying 
the Part D data as well.

Conclusion
We have presented a thorough review of experiments for Medicare fraud detection in 
three highly imbalanced Big Data datasets. The three datasets, DMEPOS, Part B, and 
Part D, range in size from about 12 million to 175 million instances. To the best of our 

Table 34  ANOVA for RUS and CLF as factors of performance in terms of AUPRC

*Indicates value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 12.38 2.48 248.02 *

CLF 4 170.02 42.51 4256.20 *

Residuals 1490 14.88 0.01

Table 35  HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: Unchanged

Group ab consists of: 1:81

Group b consists of: 1:27

Group c consists of: 1:9

Group d consists of: 1:3

Group e consists of: 1:1

Table 36  HSD test groupings after ANOVA of AUPRC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: CB-16, LGB
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knowledge, we are the first to present a study on the latest versions of all three datasets. 
The original class ratio of the DMEPOS data is 0.0044, Part B data is 0.0019, and the 
Part D data is 0.0039. Our primary goal in compiling this study is to show that the AUC 
metric does not give a clear signal on the negative impact of RUS in the classification of 
highly imbalanced Big Data. RUS is a tempting technique for addressing class imbalance 
with Big Data since it lowers resource consumption. However, our results and statistical 
analyses show that applying RUS to change class ratios appears to have a positive impact 
on AUC scores. At the same time, for some classifiers, we see a significant drop in 
AUPRC scores as we apply RUS to make the majority class closer in size to the minority 
class. Moreover, we find that although other classifiers yield relatively high AUC scores, 
they yield relatively low AUPRC scores, regardless of the level of RUS used.

For highly imbalanced Big Data, we find that the size of the majority class overwhelms 
other terms in the calculation of the false positive rate, and therefore hides the detrimen-
tal effect of RUS. This in turn hides the effect of RUS in the calculation of AUC as well. 
Since the AUPRC metric involves recall, and not the false positive rate, the impact of 
RUS is easier to detect in AUPRC scores. Moreover, as Table 18 illustrates, the size of the 
majority class magnifies the impact on AUPRC scores. Therefore, the size of the imbal-
anced dataset is an important consideration when selecting a performance metric. Two 
interesting avenues for future work are investigation into whether RUS has a negative 
impact on the classification of smaller imbalanced Big Data, and whether there exist any 
classifiers that exhibit the same robustness to RUS that ET does.

The choice of classifier has a significant effect on our experimental outcomes. XGBoost 
and ET are consistently the best classifiers, both for performance in terms of AUC and 
AUPRC. It is interesting to note that were we to select XGBoost and ET on the basis of 
their performance in terms of AUC, we would find they both give strong performance for 
all levels of RUS. However, the AUPRC scores would more accurately inform which clas-
sifier performs better. Overall, we find ET is the more robust of the two classifiers, since 
it is the least impacted by RUS. To the best of our knowledge, we are the first to apply 
ET in the domain of Medicare fraud detection. All classifiers appear to do well when 
we look at AUC scores. However, when we look at AUPRC scores we see differences in 
classifier performance. XGBoost and Random Forest show improved performance as the 
class ratio reduces from 1:1 to its original highly imbalanced ratio. CatBoost and Light-
GBM yield relatively poor performance in terms of AUPRC. The ensemble technique for 
classifiers does not appear to have an effect on outcome, since LightGBM, CatBoost, and 
XGBoost are all GBDT implementations, and Random Forest and ET are applications of 
a bagging technique. Moreover, we see the performance of CatBoost and LightGBM, in 
terms of AUPRC, appears to diminish also as the size of the dataset increases. Overall, 
we see RUS has the smallest effect on ET. We conjecture that ET’s random split selection 
makes it robust to the random deletion of instances of the majority class that we perform 
when doing RUS. Our results can be summarized as follows: in the classification of the 
highly imbalanced Part B, Part D, and DMEPOS Big Data, AUPRC shows that RUS can 
have a detrimental effect on performance, whereas AUC does not show this detrimental 
effect, and ET’s performance in terms of AUC is more robust to RUS than other learners.
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