
Programming big data analysis: principles
and solutions
Loris Belcastro1,2, Riccardo Cantini1, Fabrizio Marozzo1,2*  , Alessio Orsino1, Domenico Talia1,2 and
Paolo Trunfio1,2 

Introduction
Over the last years, with the development of the Internet of Things, the growth of social
networks and the widespread diffusion of mobile devices, enormous amounts of digi-
tal data are being generated by and gathered from several sources. For instance, data
from sensors, webcams, in-vehicle infotainment, mobile devices, GPS devices, wearable
trackers, social networks and web services is drastically rising. This huge amount of data,
commonly referred to as Big Data, is characterized by the complexity, by the variety in
terms of format [1], and is produced at a speed that is challenging the current storage,
processing and analysis capabilities. In fact, if on the one hand it opens up to several

Abstract 

In the age of the Internet of Things and social media platforms, huge amounts of
digital data are generated by and collected from many sources, including sensors,
mobile devices, wearable trackers and security cameras. This data, commonly referred
to as Big Data, is challenging current storage, processing, and analysis capabilities. New
models, languages, systems and algorithms continue to be developed to effectively
collect, store, analyze and learn from Big Data. Most of the recent surveys provide a
global analysis of the tools that are used in the main phases of Big Data management
(generation, acquisition, storage, querying and visualization of data). Differently, this
work analyzes and reviews parallel and distributed paradigms, languages and systems
used today to analyze and learn from Big Data on scalable computers. In particular,
we provide an in-depth analysis of the properties of the main parallel programming
paradigms (MapReduce, workflow, BSP, message passing, and SQL-like) and, through
programming examples, we describe the most used systems for Big Data analysis
(e.g., Hadoop, Spark, and Storm). Furthermore, we discuss and compare the different
systems by highlighting the main features of each of them, their diffusion (community
of developers and users) and the main advantages and disadvantages of using them to
implement Big Data analysis applications. The final goal of this work is to help design-
ers and developers in identifying and selecting the best/appropriate programming
solution based on their skills, hardware availability, application domains and purposes,
and also considering the support provided by the developer community.

Keywords:  Parallel Programming models, Programming systems, Big Data analysis,
MapReduce, Workflow, Message Passing, Bulk Synchronous Parallel, SQL-like

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

SURVEY PAPER

Belcastro et al. Journal of Big Data (2022) 9:4
https://doi.org/10.1186/s40537-021-00555-2

*Correspondence:
fmarozzo@dimes.unical.it
1 University of Calabria,
Rende, Italy
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-7887-1314
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00555-2&domain=pdf

Page 2 of 50Belcastro et al. Journal of Big Data (2022) 9:4

opportunities to extract useful information and produce valuable knowledge for science
[2], economy [3], health [4], and society [5], on the other hand, its volume and speed are
overwhelming the ability to use it.

To extract valuable information from the analysis of such data, novel architectures,
programming models and systems have been developed in the last years that address
their complexity and/or high velocity [6, 7]. In this scenario, data mining and machine
learning have grown over the past decades as two research and technology fields that
provided several different techniques and algorithms to automatically extract hidden,
unknown, but potential value from massive repositories [8]. However, sequential data
analysis algorithms are not feasible for extracting useful models and patterns from huge
volumes of data in a reasonable time. For this reason, high performance computers, such
as many and multi-core systems, Clouds, and multi-clusters, along with parallel and dis-
tributed algorithms and systems are required by data scientists to tackle Big Data issues
[9].

This work provides a structured overview of programming models and systems for Big
Data analysis, which is the final and most important phase of the Big Data life cycle man-
agement (data generation, acquisition, storage, and analysis) [10]. Taking into account
the most popular parallel programming models for Big Data analysis (MapReduce, work-
flow, Bulk Synchronous Parallel, message passing, and SQL-like), here we analyze the
features of the main frameworks implementing them. For each framework, through code
snippets and schemes, we show how data analysis applications can be implemented. The
different frameworks have been compared according to three main aspects: program-
ming features, diffusion and advantages/disadvantages. The programming feature com-
parison is based on three main criteria that assess the suitability of each framework in
supporting parallel and distributed programming: (i) type of parallelism that describes
how a system allows for expressing parallel operations; (ii) level of abstraction that refers
to their programming capabilities for hiding low-level details; and (iii) class of applica-
tions that describes the most common application domain of a system. To analyze the
use and popularity of each framework, the diffusion analysis is based on four aspects: (i)
the main companies that use it, which describes its current status and its potential on an
industrial scale; (ii) the API support that describes the available programming languages
to develop applications by using it; (iii) the community size, in terms of the number of
questions posed on Stack Overflow,1 one of the most popular Q&A sites for program-
ming problems; and (iv) number of commits and stars in its official GitHub2 repository.
Finally, the last comparison analyzes the main technical advantages and disadvantages
of using each framework.

Through the analysis, comparison and programming examples featured in this manu-
script, developers can find a useful way to identify and select the best solution based
on their skills, hardware availability, application domains and purposes, and the sup-
port provided by the developer community. This manuscript extends the work presented
in [6] in the following main aspects: (i) we focused our attention on systems that are
widespread and used by a large number of users around the world, by analyzing their

1  https://​stack​overf​low.​com/.
2  https://​github.​com/.

https://stackoverflow.com/
https://github.com/

Page 3 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

characteristics and describing their peculiarities; (ii) we showed data analysis examples
supported by diagrams and code snippets, for all the frameworks we considered; and (iii)
we provided a broad comparison of frameworks based on different principles, such as
programming aspects, size of the developer community and diffusion in the IT world,
strengths and weaknesses of each framework.

The reminder of this paper is organized as follows. “Related work” section presents
related work and the main contribution of our study. “Programming models and sys-
tems” section describes the most widespread programming models for Big Data analy-
sis and introduces the main software frameworks implementing them. “System features
and programming examples” section discusses the most used framework for each pro-
gramming model, also providing an application example for each of them. “Comparative
analysis” section presents an in-depth comparison of the described systems and “Final
remarks” section concludes the paper.

Related work
Big Data analysis has been discussed in several surveys and review papers, as well as
books and research reports. Among those, some papers review the main challenges and
state-of-the-art of Big Data. For example, Chen et al. [10] provided an extensive analysis
of technologies related to Big Data, such as Cloud Computing, Internet of Things, and
Data centers. The authors addressed the challenges of Big Data concerning data repre-
sentation and reduction, life cycle, energy management, and scalability. They focused on
the whole value chain of Big Data, from data generation to data acquisition (i.e., data
collection, transportation, and preprocessing) and data storage in either distributed sys-
tems or NoSQL databases, right up to data analysis. Concerning data analysis systems,
authors analyzed only MPI, Hadoop MapReduce, and Dryad [11], with a focus on Big
Data mining tools such as R,3 Excel, RapidMiner,4 Weka,5 and Pentaho. Finally, they dis-
cussed different fields where Big Data can be applied, such as text, web data and network
data analysis, but without discussing programming examples.

The paper by Oussous et al. [12] deals with Big Data challenges (management, clean-
ing, aggregation, and analysis) and mostly focused on the Hadoop ecosystem and distri-
butions. In particular, the authors discussed the different layers and their main software:
data storage (HDFS, HBase), data processing (MapReduce, YARN) and querying (Pig,
Hive), data ingestion (Sqoop,6 Flume7) and streaming (Storm, Spark), and the manage-
ment and deployment layer (Zookeeper, Oozie, Ambari).

Hu et al. [13] provided a technology-oriented tutorial on Big Data analytics tools. In
particular, they presented a systematic framework to decompose Big Data systems in a
value chain involving data generation, acquisition, storage, and analytics. They discussed
approaches and mechanisms both from research and industry communities, present-
ing a few programming models with associated frameworks: MapReduce with Hadoop,
Directed Acyclic Graph with Dryad, Storm and Apache S4 (Simple Scalable Streaming

3  https://​www.r-​proje​ct.​org/.
4  https://​rapid​miner.​com/.
5  https://​www.​cs.​waika​to.​ac.​nz/​ml/​weka/.
6  https://​sqoop.​apache.​org/.
7  https://​flume.​apache.​org/.

https://www.r-project.org/
https://rapidminer.com/
https://www.cs.waikato.ac.nz/ml/weka/
https://sqoop.apache.org/
https://flume.apache.org/

Page 4 of 50Belcastro et al. Journal of Big Data (2022) 9:4

System),8 and Directed Graph with Pregel and GraphLab for parallel machine learning
[14].

Yaqoob et al. [15] analyzed the state-of-the-art for Big Data technologies based on
batch and stream data processing with related strengths and weaknesses. Big Data analy-
sis techniques (data mining, web mining, machine learning, social network analysis) are
discussed with case studies. Also emerging technologies are presented (granular com-
puting, bio-inspired computing, quantum computing, semantic web, etc.) in the work.

Singh and Reddy [16] presented a survey on Big Data analytics by distinguishing
between horizontal scaling and vertical scaling platforms. For the former class P2P
networks, Hadoop, and Spark have been discussed, while for the latter one high per-
formance computing clusters, multi-core systems, GPU, and FPGA have been reviewed.
They provided a comparison of different platforms based on parameters such as scal-
ability, data I/O performance, fault tolerance, real-time processing, data size supported
and iterative tasks support. Finally, the development of a K-Means clustering example is
analyzed on the different platforms.

Wang et al. [17] analyzed the infrastructure of Big Data service architectures for col-
lection and storage of massive data. They analyzed different types of NoSQL databases
and discussed data processing frameworks such as MapReduce, Dryad, Storm, Spark,
Flink,9 and Pregel. The characteristics of these frameworks are analyzed in terms of scal-
ability, real-time processing, reliability, data persistence, multi-language programming,
memory programming, stream processing, batch computing, interactive query, and
more. Finally, they focused on Big Data-based Cloud Computing service systems and
presented some application scenarios such as recommendation systems, smart grid, and
emotional analysis, but without presentation and discussion of code snippets.

Rao et al. [18] provided a generalized view of Big Data systems and models like MapRe-
duce, Bulk Synchronous Parallel (BSP) and in-memory models. Distributed file systems
and distributed machine learning tools are also discussed (Mahout, Spark MLlib, and
FlinkML). Authors investigated Hadoop, Spark and Flink, providing a comparison and
highlighting their advantages and limitations. Finally, they discussed interactive ana-
lytical processing tools (Hive, Impala,10 and Tez11), data ingestion tools (Flume, Sqoop,
Chukwa12), and large-scale graph processing tools (GraphX for Spark and Gelly for
Flink).

Also Saggi et al. [19] discussed Big Data analytics and decision-making frameworks
based on machine learning. In particular, tools such as Spark, Hadoop, Mahout, R, and
Giraph13 were analyzed. Similarly, Tsai et al. [20] focused on Big Data analytics frame-
works and platforms for data mining and machine learning algorithms (i.e., Hadoop
paired with HDFS for storage and Mahout14 for analytics).

9  https://​flink.​apache.​org/.
10  https://​impala.​apache.​org/.
11  https://​tez.​apache.​org/.
12  http://​chukwa.​apache.​org/.
13  https://​giraph.​apache.​org/.
14  https://​mahout.​apache.​org/.

8  http://​incub​ator.​apache.​org/​proje​cts/​s4.​html.

https://flink.apache.org/
https://impala.apache.org/
https://tez.apache.org/
http://chukwa.apache.org/
https://giraph.apache.org/
https://mahout.apache.org/
http://incubator.apache.org/projects/s4.html

Page 5 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

As mentioned, most of the existing surveys on Big Data provided a global analysis of
frameworks that are used in all phases of Big Data management (data generation, acqui-
sition, storage, and analytics). However, only a few of them addressed the data analysis
and machine learning frameworks in detail. Those last ones did it with some significant
differences from our work:

•	 We classified the main framework models into five categories and for each of them
we provide an extensive analysis of the most widespread systems;

•	 For each system we discuss a real application scenario also using diagrams and code
snippets, which can help programmers/developers to better understand how to
structure a data analysis application;

•	 We provide a broad comparison of systems based on different principles and features
including programming aspects, size of the developer community and diffusion in
the IT world. Also strengths and weaknesses of each system are identified.

Programming models and systems
This section presents and discusses the most popular programming models for Big Data
analysis and their major associated software frameworks. They are MapReduce, work-
flow, Bulk Synchronous Parallel (BSP), message passing, and SQL-like. The goal of the
section is to highlight features, issues and benefits of each programming model and the
software systems based on it.

MapReduce

MapReduce [21] is a programming model inspired by functional programming. It is
based on the parallel execution of map and reduce functions for designing large-scale
data-intensive applications. Specifically, the distributed execution of a MapReduce appli-
cation is delegated to a set of mapper and reducer processes [22]. Each mapper executes
the map function by reading a chunk of the input data and generating a list of intermedi-
ate key/value pairs. Those pairs are then shuffled and sorted on the basis of their keys,
so as all pairs with the same keys are assigned to the same reducer. Hence, each reducer
executes the reduce function which merges all the values associated with the same key
to generate a possibly smaller set of values. The results of each reducer are then collected

Fig. 1  MapReduce data partitioning and processing on horizontally scaled units

Page 6 of 50Belcastro et al. Journal of Big Data (2022) 9:4

so as to generate the final output data. Figure 1 shows how input data is partitioned into
a set of n chunks c1, c2, . . . , cn and processed on horizontally-scaled units.

The MapReduce model is specially designed for data-intensive applications, such as
social media analysis, image retrieval, scientific simulation, and website crawling. In
such applications, whose complexity is mainly linked to the large volume of data to be
processed, MapReduce tries to move computation as close as possible to the data, which
can avoid bottlenecks in data access. In particular, it allows a full exploitation of data-
parallelism, enabling the efficient execution in distributed environments. In addition, it
can be adapted to several computing environments including multi-core, many-core and
multi-cluster systems, dynamic cloud platforms, and high-performance computing sys-
tems [22]. For these reasons, nowadays it is considered one of the most important paral-
lel programming models for distributed processing, which is supported by the major IT
companies, including Google, Amazon,15 Microsoft16 and IBM.17

The most used open source framework based on the MapReduce programming
model is Apache Hadoop,18 a general-purpose framework designed to process very large
amounts of data in infrastructures with up to tens of thousands of distributed machines.
It enables the development of distributed and parallel applications using many pro-
gramming languages, relieving developers from having to deal with classical distributed
computing issues, such as load balancing, fault tolerance, data locality, and network
bandwidth saving.

Over the years, several minor implementations of the MapReduce model have been
proposed and implemented, such as Phoenix++ [23] and Sailfish [24], but none of these
have ever achieved the same success as Hadoop. In particular, Phoenix++ is a C++
implementation that leverages multi-core chips and shared memory multi-processors.
Its runtime automatically manages thread creation, dynamic task scheduling, data par-
titioning, and fault tolerance. Sailfish is a MapReduce framework for large-scale data
processing, which facilitates batch transmission from mappers to reducers to improve
performance. An abstraction called I-files is used for supporting data aggregation, adapt-
ing the original model to efficiently batch data written and read by multiple nodes.

Workflow

Workflows provide another important paradigm adopted by several frameworks for Big
Data processing. A workflow is a well defined, and possibly repeatable, pattern designed
to achieve a certain transformation of data [25], usually programmed as a graph. A
workflow is developed as a graph composed of a finite set of directed edges and vertices,
which can be used to model complex data analysis scenarios, such as distributed data
mining, machine learning and stream analysis applications. Workflow tasks can be com-
posed together following different patterns (e.g., loops, pipelines, parallel constructs),
which enable the efficient modeling and execution of a wide range of applications where
input, output, and tasks may depend on other tasks. A comprehensive collection of
workflow patterns focusing on the description of control flow dependencies among tasks

15  https://​aws.​amazon.​com/​elast​icmap​reduce/.
16  https://​azure.​micro​soft.​com/​servi​ces/​hdins​ight/.
17  https://​www.​ibm.​com/​analy​tics/​us/​en/​techn​ology/​hadoop/.
18  https://​hadoop.​apache.​org/.

https://aws.amazon.com/elasticmapreduce/
https://azure.microsoft.com/services/hdinsight/
https://www.ibm.com/analytics/us/en/technology/hadoop/
https://hadoop.apache.org/

Page 7 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

has been described in [26]. When a workflow does not include cycles, it can be referred
to as Directed Acyclic Graph (DAG), which is the most common programming structure
used in workflow management systems [27] and adopted by the most famous systems.

Apache Spark19 is one of the most popular frameworks based on the workflow para-
digm. It relies on the DAG structure and is commonly used to develop applications
that exploit in-memory computation (e.g., iterative machine learning algorithms), by
caching data in RAM memory so as to speed up the execution compared to Hadoop
[28]. Furthermore, many powerful and robust libraries are built on top of it for dealing
with a wide range of applications involving machine learning, SQL analytics and graph
computation.

While Spark has been designed as a general-purpose distributed computing engine for
large-scale data processing, there exist many other frameworks that have been specifi-
cally developed to be used in a specific application domain. For instance, Apache Storm20
is an open source and distributed system for real-time stream processing, capable of
coping with huge amounts of unbounded data in large-scale infrastructures. Storm is
designed to be highly scalable, fault-tolerant, and to ensure high-speed data processing
(million tuples processed per second per node) with low-latency response time. A Storm
application is outlined as a topology in the shape of a DAG, where spouts and bolts act
as the graph vertices. Apache Flink21 is another open source real-time stream processing
system designed to deal with large volumes of data. Flink provides a DAG-based stream-
ing dataflow paradigm for processing both finite and infinite datasets. Dataflow opera-
tions can simply look at one individual event at a time, or remember information across
different events (i.e., stateful processing). The core of Flink is a distributed streaming
dataflow runtime, which is an alternative to Hadoop MapReduce, and a rich set of APIs.
Thanks to its user-friendly features, Flink can be used by small companies for business
purposes.

Since workflows are used in a wide range of application domains, including scien-
tific simulations, data analysis and machine learning, different parallel/distributed
frameworks have been proposed for easing application design and execution, as well
as exploiting distributed computational and/or storage resources efficiently. Among
the workflow-based frameworks, COMPSs [29] includes a programming system and an
execution runtime, designed to ease the development of scientific data analytics work-
flows for distributed environments. Users can create sequential applications in Java or
Python and select which methods will be executed remotely. COMPSs runtime man-
ages the parallel execution of an application, relieving users from dealing with the low-
level infrastructure or classical distributed computing issues (e.g., synchronization, data
transfer). The Data Mining Cloud Framework (DMCF) [30] is another software system
for designing and executing distributed data analysis workflows. It integrates a visual
workflow language, which allows users to model complex workflows without worrying
about low-level aspects, and a parallel runtime based on a Software-as-a-Service (SaaS)
model for executing them on Clouds. Its runtime is able to parallelize the execution of
workflow tasks by exploiting the maximal concurrency according to data dependencies

19  https://​spark.​apache.​org.
20  https://​storm.​apache.​org.
21  https://​flink.​apache.​org.

https://spark.apache.org
https://storm.apache.org
https://flink.apache.org

Page 8 of 50Belcastro et al. Journal of Big Data (2022) 9:4

[31]. Other visual workflow management systems are Kepler [32], YAWL (Yet Another
Workflow Language) [33], and Pegasus [34]. Kepler provides a graphical user interface
for designing scientific workflows, where users to create a workflow can select and then
connect analytical components and data sources. Kepler helps scientists and analysts
create, execute, and share models and analyses. Its built-in components focus on statisti-
cal analysis and support task parallelism by using multiple threads on a single machine.
YAWL, instead, provides a modeling language for workflows based on the Petri Nets
formalism, enriched with constructs to deal with multiple instance patterns. It is based
on a concise modeling language, which handles complex data transformations and inte-
gration with resources and external applications. The language is supported by a frame-
work that includes an execution engine, a graphical editor and a worklist handler. Finally,
Pegasus includes a set of technologies to execute workflow-based applications in differ-
ent environments. The system can manage the execution of a complex application mod-
eled as a visual workflow by mapping it onto available distributed resources, enabling
users to express workflows at an abstract level.

Other systems that exploit distributed computing for executing complex workflows are
Swift [35] and Taverna [36]. Specifically, Swift is a parallel scripting language designed to
run scientific data analytics workflows across different distributed systems. It provides a
functional language based on a C-like syntax and uses an implicit data-driven task paral-
lelism [37]. A workflow is modeled as a set of program invocations with associated input
and output files. The runtime allows the parallel execution of Swift scripts taking into
account data dependencies and the availability of external resources. Regarding Tav-
erna, it is a workflow management system mostly used in the scientific community, for
example for evidence gathering methods involving text or data mining. It is designed to
combine distributed Web Services and/or local tools into complex analysis applications,
by exploiting a pipeline parallelism. These pipelines can be executed on local desktop
machines or through larger infrastructure, such as supercomputers, multi-clusters and
Cloud environments.

Bulk synchronous parallel

Bulk Synchronous Parallel (BSP) [38] is a parallel computation model designed as a
bridging model between parallel hardware and software. It is defined on the BSP com-
puter, an abstract computing model composed of: (i) a group of p processors for com-
munication and local asynchronous computation; (ii) a network for allowing their
communication; and (iii) a synchronization mechanism. In a BSP application, parallel
computation is divided into a sequence of supersteps, in each of which processors per-
form local computation, exchange data and synchronize to the same barrier. Nowadays,
the BSP model is one of the most adopted models for executing massive computational
tasks on graphs and matrices, deep learning, machine learning, and network algorithms.

In this context, Apache Hama22 is a BSP-based open source framework, designed to
solve complex tasks involving matrix- and graph-based computation in small infrastruc-
tures. It is used mainly for developing highly iterative graph processing applications (e.g.,
graph analysis, deep learning, machine learning) exploiting the BSP model. Other open

22  https://​hama.​apache.​org.

https://hama.apache.org

Page 9 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

source processing frameworks based on the BSP programming model are BSPLib [39]
and Apache Giraph.23 BSPLib is an easy to use C++ implementation of the BSP thread-
ing model. Giraph provides iterative graph computation for developing high scalable
applications, relying on Hadoop as resource manager and Netty24 for communication.
Since Giraph runs map-only jobs, supporting data parallelism, it improves performance
by eliminating the reduce operations. Giraph is mainly used by academia and small
industry to run graph processing applications in small infrastructures.

Message passing

There is a large number of applications whose computational structure does not fit the
discussed paradigms (i.e., MapReduce, workflow, or BSP), which makes it difficult to
express general-structure computations and efficiently exploit the underlying distributed
resources [40]. To achieve high performance while ensuring flexibility in expressing the
computations required by several applications, the message passing model provides the
basic mechanisms for process-to-process communication in distributed computing sys-
tems. It is a well-known paradigm used in many programming languages, operating sys-
tems, and libraries for supporting data communication in distributed memory systems.
In message passing data is moved from the private memory address space of one process
to that of another process through basically two operations: Send(destination, message)
and Receive(source, message). Although the message passing paradigm has been and still
is widely used as a general parallel programming model, recently it has been exploited
for implementing scalable Big Data applications [40–42].

MPI (Message Passing Interface) [43] is the de-facto standard message passing inter-
face. It is a general-purpose distributed memory paradigm for parallel programming,
which is commonly used for developing iterative parallel applications where nodes
require data exchange and synchronization. There are several MPI implementations
that are used in many application fields related to high performance computing, such as
bioinformatics, biology, physics and weather modeling [44]. MPI provides hundreds of
primitives for point-to-point communication, broadcasting, barrier, reduce, and it sup-
ports the ability to collect processes in groups and communicate according to a specific
tag. Its basic implementation has been extended by researchers to deal with emerging
challenges in Big Data analysis. For example, BDMPI [40] (Big Data MPI) is a runtime
system that enables the efficient out-of-core execution of distributed-memory parallel
programs. It leverages the MPI semantic to orchestrate the execution of a large num-
ber of processes on distributed computing systems, enabling the development of effi-
cient out-of-core applications avoiding complexities associated with coding multiple
levels of blocking. However, traditional MPI all-to-all communication does not scale
well in Exascale systems (i.e., highly parallel computing systems capable of at least one
exaFLOPS). Hence to solve this issue new MPI releases (like MPI+X) have been pro-
posed to support neighbor collectives for providing sparse “all-to-some” communication
patterns that reduce the data exchange on limited regions of processors [45, 46]. Many
alternatives to MPI have been proposed in the literature, aimed at including data locality,

23  https://​giraph.​apache.​org.
24  https://​netty.​io.

https://giraph.apache.org
https://netty.io

Page 10 of 50Belcastro et al. Journal of Big Data (2022) 9:4

raising the level of abstraction, as well as leveraging modern language design features.
These alternatives may consist in both parallel programming languages (e.g., UPC [47],
Julia [48]), frameworks for large-scale data processing (e.g., Tensorflow,25 Dask26), and
extensions of existing languages (e.g., COMPSs [49], UPC++ [50]).

SQL‑like

In the last few years, NoSQL (Not Only SQL) databases addressed several issues about
storing and managing Big Data compared to relational databases, ensuring horizontal
scaling of continuous read/write operations distributed over many servers. In particu-
lar, instead of the ACID model (Atomicity, Consistency, Isolation, Durability), NoSQL
databases typically follow another alternative model namely BASE (Basic Availability,
Soft-state and Eventual consistency), which releases the requirement of consistency after
every transaction for supporting the processing of several instances on different servers
simultaneously.

Although NoSQL solutions enable to effectively process large volumes of fast-moving
data, there are many applications that still need to be ACID-compliant for user security
and privacy, such as managing financial transactions or personal data (e.g., health infor-
mation). Consequently, relational databases including Oracle, MySQL, Microsoft SQL
Server, and PostgreSQL are still more widespread than the most popular NoSQL solu-
tions, such as MongoDB, Redis and Cassandra.27 Moreover, NoSQL databases are often
not suitable for data analytics, which led to the development of different MapReduce
solutions to query and analyze data in a more productive manner. SQL-like systems try
to combine the effectiveness and query capabilities of Hadoop with the ease of use of the
SQL-like language, in order to allow the development of simple and efficient data analy-
sis applications. They are widely used to overcome the complexity of writing MapRe-
duce applications in Hadoop, also for simple tasks (e.g., row aggregations, selections, or
counts) while maintaining its performance in terms of querying times and scalability.
Their main application domains are data manipulation (ETL operations), data querying
and reporting on large repositories.

In this context, one of the most popular system is Apache Hive,28 a data warehouse
software built on top of Hadoop for reading, writing, and managing data in large-scale
infrastructures. It allows the scalable and fault-tolerant management of a huge amount
of data through a declarative SQL-like language, namely Hive Query Language (HiveQL).
In Hive, each data manipulation query is automatically translated into a MapReduce job,
which allows to easily process Big Data without the need of writing complex MapReduce
programs.

Apache Pig29 is another Hadoop-based framework that exploits a SQL-like language
for executing data flow applications in large-scale infrastructures. It was originally devel-
oped for easing the development of Big Data analysis applications, allowing program-
mers to develop a data analysis application through a scripting and procedural data flow

28  https://​hive.​apache.​org.
29  https://​pig.​apache.​org.

25  https://​www.​tenso​rflow.​org/.
26  https://​dask.​org/.
27  https://​db-​engin​es.​com/​en/​ranki​ng (accessed December 2021).

https://hive.apache.org
https://pig.apache.org
https://www.tensorflow.org/
https://dask.org/
https://db-engines.com/en/ranking

Page 11 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

language, called Pig Latin. A script contains a sequence of operations, each of one is
defined in a SQL-like syntax, for describing how data must be manipulated and pro-
cessed. Although Hive and Pig can be used to develop the same type of applications, they
have different goals. Pig is meant for programmers with a good SQL background to pro-
cess large amounts of unstructured data, while Hive is a data warehouse software used
to read, write, and manage large amounts of structured data in a distributed manner.

Slightly different is Apache Impala [51], a massively-parallel query engine, which runs
on small Hadoop data processing environments. Impala provides low latency and high
concurrency for analytic queries on Hadoop, but circumvents the MapReduce model to
directly access the data through the distributed query engine for offering an RDBMS-
like experience. Indeed, it uses SQL as a query language, combining it with the perfor-
mance of traditional databases and the scalability of Hadoop.

System features and programming examples
After we reviewed the main models and systems for Big Data analysis in parallel systems,
in this section we discuss programming details and illustrate advanced examples of data
analysis and mining applications for some of the frameworks introduced in the previ-
ous section. We made a selection of those systems keeping one or two of them for each
programming model. In particular, we have chosen Hadoop for MapReduce, Spark and
Storm for workflows, Hama for BSP, MPI for message passing, and Hive and Pig for the
SQL-like model. These seven systems are quite representative and are widely used all
over the world in data analysis both in the research and business sectors.

Apache Hadoop

Apache Hadoop is widely used to develop batch applications and over the years it has
been adopted by most of the leading IT companies, such as Yahoo!, IBM and Amazon.
For example, Yahoo! used it for developing ad systems, web search, and scaling tests.
However, it is suitable for batch processing only, resulting in inefficiency with highly
iterative applications that repeatedly perform operations on the same set of data. This
is due to the disk-based processing on the distributed file system when computing
intermediate results with the MapReduce model [52]. Nevertheless, the project is sup-
ported by a large user community and its diffusion is linked to high support for different
programming languages and constant updates and bug fixes by a massive open source
community.

Hadoop provides a low-level of abstraction because programmers can define an appli-
cation using APIs that are powerful but not easy to use. In fact, they are close to the
computing infrastructure and require a low-level understanding of the system and the
execution environment for dealing with issues related to distributed file systems, net-
worked computers and distributed programming [53]. Developing an application by
Hadoop requires more lines of code and development effort if compared to systems pro-
viding a higher level of abstraction (e.g., Spark, Pig, or Hive), but the code is generally
more efficient because it can be fully tuned.

Hadoop is designed for exploiting data parallelism during map/reduce steps. In fact,
input data is partitioned into chunks and processed by different machines in parallel.
Data chunks are replicated on different nodes, ensuring high fault tolerance along with

Page 12 of 50Belcastro et al. Journal of Big Data (2022) 9:4

checkpoint and recovery. However, the partitioning strategy does not guarantee effi-
ciency when it is needed to access a large amount of small files.

In addition to the MapReduce programming model, the Hadoop project includes
many other modules, such as:

•	 Hadoop Distributed File System (HDFS), a distributed file system providing fault tol-
erance with automatic recovery, portability across heterogeneous and low-cost com-
modity hardware and operating systems, high-throughput access and data reliability.

•	 YARN, a framework for cluster resource management and job scheduling.
•	 Hadoop Common, common utilities that support the other Hadoop modules.

In particular, thanks to the introduction of YARN (Yet Another Resource Negotiator)
in 2013, Hadoop turns from a batch processing solution into a reference platform for
several other programming systems, such as: Storm for streaming data analysis; Hama
for graph analysis; Hive for querying large datasets; HBase30 for random and real-time
read/write access to data in a non-relational model; Oozie,31 for managing Hadoop jobs;
Ambari32 for provisioning, managing, and monitoring Hadoop clusters; ZooKeeper33 for
maintaining configuration information, naming, and providing distributed synchroniza-
tion and group services; and more.

Programming example

The application example we discuss here shows how Hadoop MapReduce can be
exploited for creating an inverted index for a large set of Web documents [54]. An
inverted index contains a set of words (index terms), and for each word it specifies
the IDs of all the documents that contain it and the number of occurrences in each

Fig. 2  Architecture of the proposed Hadoop application

30  https://​hbase.​apache.​org/.
31  https://​oozie.​apache.​org/
32  https://​ambari.​apache.​org/.
33  https://​zooke​eper.​apache.​org/.

https://hbase.apache.org/
https://oozie.apache.org/
https://ambari.apache.org/
https://zookeeper.apache.org/

Page 13 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

document. The inverted index data structure is a central component of a search engine
indexing system. Figure 2 shows the dataflow and main components (Mapper, Com-
biner, Reducer) of the proposed application.

The Mapper (or MapTask) parses text lines coming from some input documents and
emits a pair 〈word:documentID, numberOfOccurrences〉 for each word they contain,
where documentID is the identifier of the document and numberOfOccurences is set to
1 (see Listing 1). Each word is processed with common steps of Natural Language Pro-
cessing (NLP), such as punctuation removal, lemmatization, and stemming. In order to
handle Objects’ serialization in a lighter way, programmers have to use specific types
for keys and values. As an example, Hadoop uses Text and IntWritable instead of String
and Integer, respectively, which contain the same information by using a much easier
abstraction on top of byte arrays.

After word mapping, a combine function is exploited to aggregate intermediate data
produced by mappers, before passing them to reducers. As shown in Listing 2, the com-
biner sums all the occurrences of each word that appear multiple times in a document,
and emits a pair (documentID, sumNumberOfOccurrences).

Page 14 of 50Belcastro et al. Journal of Big Data (2022) 9:4

For each word, the Reducer produces the list of all the documents containing that
word and the number of occurrences in each document. Specifically, as shown in List-
ing 3, a 〈word , documentID:numberOfOccurrences〉 pair is emitted for each word. The
set of all output pairs generated by the reduce function forms the inverted index for the
input documents.

Finally, Listing 4 shows the main class used to set up and run the application. A pro-
grammer must specify the classes to be used as mapper, combiner, and reducer, the
input/output format for such classes, and the data input/output paths.

Page 15 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

Apache Spark

Apache Spark is commonly used to develop in-memory applications, such as interactive
query and batch processing. Many powerful and robust libraries are built on top of Spark
making it a flexible system for a wide range of applications, such as Spark SQL34 for deal-
ing with SQL queries, MLlib35 for scalable machine learning applications, GraphX36 for
graph-parallel computation, and Spark Streaming37 for streaming analysis. The execu-
tion of a generic Spark application on a cluster is driven by a central coordinator (i.e.,
the main process of the application), which can connect with different cluster managers,
such as Apache Mesos,38 YARN, or Spark Standalone (i.e., a cluster manager embedded
into the Spark distribution). Ambari can be used for provisioning, managing, and moni-
toring Spark clusters. Spark does not provide its own distributed storage system, but it
has been designed to run on top of several data sources, such as distributed file systems
(e.g., HDFS), Cloud object storages (e.g., Amazon S3, OpenStack Swift) and NoSQL
databases (e.g., Cassandra). A comprehensive software stack is shown in Figure 3.

Several big companies use Spark in production to quickly extract insights from data
for analysis purposes, such as eBay, Amazon, and Alibaba. For example, eBay uses Big
Data and machine learning solutions based on Spark for log aggregation and to provide
targeted offers enhancing customer experience. Its user community is very large and its
development is constantly expanding. In particular, many efforts are oriented towards
the MLlib library, which provides advanced data analytics with parallel machine learning
algorithms.

Spark provides a low-level of abstraction, in fact programmers must define applica-
tions using APIs that are powerful but require advanced programming skills. Compared

34  http://​spark.​apache.​org/​sql/.
35  https://​spark.​apache.​org/​mllib/.
36  http://​spark.​apache.​org/​graphx/.
37  https://​spark.​apache.​org/​strea​ming/.
38  http://​mesos.​apache.​org/.

http://spark.apache.org/sql/
https://spark.apache.org/mllib/
http://spark.apache.org/graphx/
https://spark.apache.org/streaming/
http://mesos.apache.org/

Page 16 of 50Belcastro et al. Journal of Big Data (2022) 9:4

to Hadoop, developing an application using Spark results in a smaller number of lines
of code. In fact, Spark provides some built-in operators (e.g., filter, map, reduceByKey,
groupByKey) that make easier to code a parallel application exploiting transformations
and actions on distributed datasets. Moreover, Spark results up to 100x faster than
Hadoop [52], thanks to in-memory computing, and easier to use specially when used
with the Scala programming language, which provides an object-oriented and functional
programming high-level interface. On the other hand, it is more costly compared to
Hadoop and presents the same limits when dealing with large numbers of small files.
Even though Spark can be considered a better alternative to Hadoop, in some classes
of applications it has limitations that make it complementary to Hadoop. The main one
is that to reduce execution time datasets must fit in main memory. In fact, RAM is a
critical resource and Spark can suffer from the lack of automatic optimization processes
aimed at maximizing in-memory computing while minimizing the probability of data
spilling, which is a major cause of performance degradation [55]. A Spark application
is defined as a set of independent stages running on a pool of worker nodes and con-
nected in a DAG. A stage is a set of tasks executing the same code on different partitions
of input data, thus providing data parallelism, as input data is divided into chunks and
processed in parallel by different computing nodes. Spark supports task parallelism as
well when independent stages of the same application are executed in parallel.

“Programming example” section proposes an example in which Spark is used for
designing a batch application based on the MLlib library. Additionally, despite being a
general-purpose framework, Spark also provides a set of libraries specially designed for
several tasks, such as structured data analytics, stream processing, and graph computa-
tion. For this reason, we provide a pointwise comparison between task-specific libraries
of Spark and the corresponding special purpose frameworks. In particular:

•	 “Comparison with Spark Streaming” section shows how the streaming application
implemented in Storm can be expressed with the Spark Streaming library;

Fig. 3  The Spark software stack

Page 17 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

•	 “Comparison with Spark GraphX” section discusses how the BSP-based application
proposed in Hama can be modeled with the Spark GraphX library;

•	 “Comparison with Spark SQL” section shows how Pig queries can be written with the
Spark SQL library.

Programming example

The proposed application shows how to exploit Spark for implementing a customer
churn prediction system (i.e., customer switch from a company to another) [56]. In
order to identify potential churners and re-engage them, machine learning algorithms
can help to mine shared behavioral patterns of those already churned customers and
promptly detect current customers at risk of churn. Due to the volume of historical data
of both churned customers and existing ones, and the need to periodically analyze new
customers and retrain the model, distributed and parallel frameworks such as Spark can
be employed with benefits. Figure 4 shows the architecture of the proposed application.

Spark is used for preprocessing historical data and training a prediction model, which
will be used to forecast whether a customer will change to another company. Specifi-
cally, the MLlib package is employed to handle data organized in RDDs (Resilient Dis-
tributed Datasets) and build the classification model. The dataset used for training the
prediction model consists of telecommunication customer activity data (e.g., total day
minutes, total day calls, customer service calls, etc.), along with a churn label specifying
whether a customer has cancelled the subscription. Overall, a generic tuple in the data-
set is composed of 20 features.

Firstly, clients need to connect to the master node of the Spark cluster via the spark
session. Spark currently supports authentication for RPC (Remote Procedure Call) chan-
nels using a shared secret. In particular, master should be configured to require authen-
tication via the spark.authenticate property. However, according to the CVE (Common
Vulnerabilities and Exposures) database,39 some versions of Spark (2.4.5 version and ear-
lier) present some security issues when a master in standalone deploy mode is accessed
remotely. In particular, even without the shared key, a RPC to the master can be spe-
cially-crafted for starting an application’s resources on the Spark cluster, thus allowing to
execute shell commands on the host machine.

Fig. 4  Architecture of the proposed Spark application

39  https://​cve.​mitre.​org/​index.​html (accessed December 2021).

https://cve.mitre.org/index.html

Page 18 of 50Belcastro et al. Journal of Big Data (2022) 9:4

Once connected to the master node, data is retrieved from a batch file and uploaded
into a RDD, as shown by the Scala code in Listing 5. The objects representing the dif-
ferent users are defined by parsing the RDD. Then, data is cached for performance
purposes.

Afterwards, data is processed to be properly used by the machine learning algorithm.
A tuple is converted to a LabeledPoint, which represents the features (as a local dense
vector) and the label of a data point. Categorical features are encoded as numerical to
be standardized by removing the mean and scaling to unit variance. The preprocessing
phase is shown in Listing 6. The numericalFeature function exploits a map to assign a
numerical value (1.0 or 0.0) to categorical features.

Page 19 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

After preprocessing, data is partitioned into two sets used for training a decision
tree model and evaluating its performance. The decision tree is configured with three
main hyper-parameters: (i) the impurity measure used for computing the split informa-
tion gain; (ii) the maximum depth for terminating the algorithm; and (iii) the maximum
number of bins used when discretizing continuous features. The training phase is car-
ried out by invoking the trainClassifier method that outputs the trained model, saved
to disk for the classification of unclassified customers. Subsequently, the test set is used
to evaluate the model against unseen examples by computing the test error and binary
metrics such as precision and recall. Empty categoricalFeatures indicates that all features
are continuous after the scaling. The complete code is described in Listing 7.

Page 20 of 50Belcastro et al. Journal of Big Data (2022) 9:4

It is worth noticing that in a real-world scenario, in which the set of customers is con-
tinuously evolving, it may be required to retrain the classification model in order to
discover up-to-date churning patterns. For this purpose, streaming machine learning
algorithms provided by Spark MLlib can be used, aimed at incrementally updating the
model as new data arrives. However, not all the models currently support incremental
learning, and in this case the only solution is to add the newly generated examples to the
training set and retrain the model from scratch.

The classification model can be exploited to periodically monitor current custom-
ers to find potential churners and react appropriately. The system integrates structured
data from a data warehouse, such as Apache Hive, a feature extraction module and the
trained model to infer new churning customers, as shown in Listing 8. Queries to Hive
warehouse are expressed in HiveQL based on the Spark SQL library (see “Apache Hive”
section).

Page 21 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

Apache Storm

Apache Storm is widely used for real-time analytics by big companies such as Twit-
ter, Groupon, and Spotify. For example, Twitter developers use Storm for processing
many terabytes of data flows a day, for filtering and aggregating contents or for apply-
ing machine learning algorithms on data streams. Its user community is relatively small
but, thanks to its user-friendly features and flexibility, Storm can be adopted by medium
companies for business purposes (e.g., real-time customer services, security analytics,
and threat detection). Other typical use cases of Storm are online machine learning,
continuous computation, and distributed RPC.

The programming paradigm offered by Storm is based on four abstractions:

•	 Stream: it represents an unbounded sequence of tuples, which is created or pro-
cessed in parallel. Streams can be created using standard serializers (e.g., integer,
doubles) or with custom ones;

•	 Spout: it is the data source of a stream. Data is read from different external sources,
such as social network APIs, sensor network, queuing systems (e.g., JMS, Kafka,40
Redis41), and then it is feeded into the application;

•	 Bolt: it represents the processing entity. Specifically, it can execute any type of tasks
or algorithms (e.g., data cleaning, functions, joins, queries);

•	 Topology: it represents a job. A generic topology is configured as a DAG, where
spouts and bolts represent the graph vertices and streams act as their edges. It may
run forever until it is stopped.

Storm adopts by default a stateless processing semantic “at least once”, which ensures
all the messages will be processed, but some of them may be processed more than once
(e.g., in case of system failure). This does not guarantee a message ordering and if pro-
grammers need to implement a stateful operation they could use the Trident library,
which provides a “only one” processing semantic.

Storm provides a medium-level of abstraction as programmers can easily define an
application by using spouts, streams, bolts, and topologies. The Storm APIs allow devel-
opers to test an application in local-mode, without having to run it on a cluster. Storm is
written mainly in Clojure, but different programming languages are supported through
the Multi-Language Protocol that allows to implement bolts and spouts with other lan-
guages such as Java and Python. It supports data parallelism when many threads execute
in parallel the same code on different chunks, task parallelism when different spouts and
bolts run in parallel, and pipeline parallelism for data stream propagation in a topology.

Programming example

The proposed application shows how to leverage Storm for implementing a network
intrusion detection system. Network intrusion detection is a critical part of network
management for security and quality of service. These systems allow early detection of
network intrusion and malicious activities through anomaly detection based techniques
(AIDS, Anomaly-based Intrusion Detection System) [57].

40  https://​kafka.​apache.​org/.
41  https://​redis.​io/.

https://kafka.apache.org/
https://redis.io/

Page 22 of 50Belcastro et al. Journal of Big Data (2022) 9:4

A Storm application requires defining three entities: spouts, bolts and the topology.
The proposed topology, composed of one spout and two bolts, is given below:

•	 ConnectionSpout is the only data source. This spout streams connections coming
from a firewall or stored in a log file, and each record is forwarded as a tuple to the
next bolt. In this example, a connection is described by 41 features, some of which
are duration, protocol type, service, etc.;

•	 DataPreprocessingBolt receives the tuples from the spout and performs preproc-
essing. Specifically, it converts the categorical features to numerical and performs
standardization for the machine learning model;

•	 ModelBolt performs the classification through a Support Vector Machine (SVM)
model trained offline and stores the results to a file for further analysis.

The training phase is performed offline using the Python scikit-learn library, as Storm
does not provide any native machine learning library. As with the churn prediction
system discussed in the Spark programming example (see “Programming example”
section), it may be required to periodically retrain the classification model to discover
up-to-date patterns of malicious connections. However, the scikit-learn library lever-
aged in this example does not support online SVM training. To overcome this limitation,
the linear SVM can be approximated to a Stochastic Gradient Descent (SGD) classifier,
which supports the partial fit option.

All the trained models (i.e., standard scaler for numerical features, label encoder for
categorical features and the SVM model) are dumped in files using the pickle module.
Hence, the Storm Multi-Language protocol can be adopted to use the trained models in
a topology implemented in a JVM language. Figure 5 shows the whole architecture of the
proposed application.

The Storm topology Java code is shown in Listing 9. A topology can be submitted to
a production cluster using the storm client, specifying the path of the jar file, the class-
name to run, and any other arguments. The shuffle grouping ensures that tuples are ran-
domly distributed so that each bolt receives an equal number of tuples.

The data model used by Storm is the tuple. Each spout node must specify the collector
used to emit the tuples (method open), how to emit the next tuple (method nextTuple)

Page 23 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

and must declare the output fields for the tuples it emits (method declareOutputFields),
as shown in Listing 10.

Each tuple is emitted by the spout and will be processed by the subsequent bolts as
declared in the topology. In this case, the class DataPreprocessingBolt (see Listing 11) is
a proxy for the Python bolt defined in Listing 12, which processes the tuples by applying
the transformations of a set of trained models loaded from the disk (e.g., the encoders

Fig. 5  Architecture of the proposed Storm application

Page 24 of 50Belcastro et al. Journal of Big Data (2022) 9:4

for categorical features and the scalers for numerical features). The Multi-Language pro-
tocol only requires the bolt specifies the script to execute (see Listing 11), while all the
application logic is contained in the Python script (see Listing 12).

Finally, the ModelBolt in Listing 13 acts similarly to the DataPreprocessingBolt, with
the application of the SVM model trained offline using the scikit-learn library. The pre-
dicted connection type, from a set of 23 types (e.g., smurf, buffer overflow, guess pass-
word, etc.), allows the Network Security infrastructure to react and mitigate possible
threats.

Page 25 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

Comparison with Spark Streaming

Spark Streaming is a library provided in Apache Spark for scalable, high-throughput,
and fault-tolerant stream processing. Data can be ingested from many stream services
(e.g., Apache Kafka or Amazon Kinesis) or TCP sources, and processed using advanced
algorithms (e.g., machine learning and graph processing). Spark Streaming comes up
with a high-level abstraction for a continuous stream of data, named DStream (Discre-
tized Stream), which are internally represented as a sequence of RDDs. Each RDD in a
DStream collects data from a certain time window and all operations performed on a
DStream are forwarded to the underlying RDDs.

Listing 14 shows how the real-time intrusion detection application discussed for
Storm can be coded with Spark Streaming. The StreamingContext is the entry point for
all streaming operations. Through it, a data stream can be ingested and collected into a
DStream from text data received on a TCP socket, by specifying the source host name and
port. It is worth noting that developers need to explicitly start data ingestion and process-
ing, by invoking the start() operation on the streaming context, and wait for processing to
stop (either manually or due to an error) via the awaitTermination() operation. Further-
more, it is assumed that the model has been trained previously using MLlib (as seen in)
and loaded from disk to be used in inference mode during the processing of data streams.

Page 26 of 50Belcastro et al. Journal of Big Data (2022) 9:4

As it emerges from the code, similarly to Storm, Spark Streaming provides windowed
operations that allow to apply transformations on a sliding window of data. Each time
the window slides over a source DStream, all associated RDDs that fit into that window
are combined and processed to produce a windowed DStream. Any window operation
must specify the duration of the window and the interval in which the window opera-
tion is performed. On the other hand, some of the main advantages offered by Spark
Streaming over Storm are: (i) the full integration with MLlib, which allows the easy use
of a wide range of algorithms for offline learning; (ii) the native support for streaming
machine learning algorithms which can simultaneously learn and predict given a stream
of data; (iii) the support for the Scala programming language, an object-oriented lan-
guage with scalable functional programming features, which leads to a more compact
and readable code.

Apache Hama

Apache Hama is used mainly for developing iterative graph processing applications (e.g.,
graph analysis) based on the BSP model, with support for graphics processing units
(GPGPU) acceleration. For example, Sogou, a well-known Chinese search engine, adopts
Hama to compute PageRank and determine the relevance or importance of a page [58].
Its user community is very small, so that in April 2020 it moved to Apache Attic, which
collects Apache projects that have reached their end of life.

Hama is written in Java and built on the Hadoop Distributed File System (HDFS),
thereby being fully compatible with Hadoop clusters. However, it is not limited to HDFS,
but can be used with other distributed file systems. The architecture of Hama is based
on the master-worker model and consists of three main components:

Page 27 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

•	 BSP Master: it is responsible for job scheduling and assignment of tasks to Groom
servers. It also has the role of monitoring the superstep sequence in a cluster, check-
ing errors and maintaining the state of Groom servers using heartbeat messages.

•	 Groom servers: a Groom server acts as a worker component in the BSP architecture
and is responsible for the execution of the tasks assigned by the BSP Master. It uses
heartbeat messages to periodically report important information to the BSP Master,
such as its current status and other metrics including available memory on the server
and maximum task capacity.

•	 ZooKeeper: it is responsible for the efficient management of BSP peers synchroniza-
tion, following a mechanism based on blocking barriers. It typically runs together
with the BSP Master on the same node.

In the last few years, the growing use of social media platforms has drawn attention of
the scientific community to graphs that are abstract data structures very suitable for
representing social network contents and connections. In this context, many solutions
have been proposed for the efficient computation of massive graphs. Following the
BSP model, Google Pregel [59] was the first to provide a scalable and general-purpose
computing system, aimed at supporting the implementation of algorithms on arbitrary
graphs in distributed environments. Inspired by Google Pregel, Hama supports vertex-
centric graph computation, allowing the user to program intensive iterative applications
with Google Pregel style through a simple programming interface. Specifically, Hama
outperforms MapReduce frameworks by avoiding the processing overhead of sorting,
shuffling and reducing the vertices. This is due to the message passing interface it pro-
vides, thanks to which each BSP superstep is faster than a full MapReduce job execution,
especially in the case of highly iterative applications like those involving graph computa-
tions [60].

Hama provides a low-level of abstraction, because programmers must define an appli-
cation using low-level BSP primitives for computation and communication. It can be
used with any distributed file system in addition to HDFS and it provides explicit sup-
port for the message passing interface (MPI). In particular, the BSP model enables Hama
to avoid conflicts and deadlines during communication at the largest scale, due to the
synchronization mechanism included in the BSP superstep. In contrast, Hama does
not provide proper APIs (e.g., for input/output data, for data partitioning) or high-level
operators that make it easier to build parallel applications, and the BSP Master repre-
sents a single point of failure. Hama supports data parallelism by executing the same
code in parallel on different portions of data.

Programming example

The proposed application shows how to exploit Hama for addressing the influence maxi-
mization problem. Since social media platforms are increasingly used to convey adver-
tising campaigns for products or services, the goal is to identify a set of k users in a social
network, namely seeds, that maximizes the spread (i.e., the number of influenced users).
The application is based on a bio-inspired technique for numerical optimization, called
the Artificial Bee Colony (ABC) [61], which belongs to the field of swarm intelligence.
It focuses on the study of self-organized systems, such as ant and bee colonies, flocks of

Page 28 of 50Belcastro et al. Journal of Big Data (2022) 9:4

birds and schools of fish, in which a complex action derives from a collective intelligence
[62]. The main techniques in this field include Genetic Algorithms, Ant Colony Opti-
mization, Particle Swarm Optimization, Differential Evolution, Artificial Bee Colony,
Glowworm Swarm Optimization, and Cuckoo Search Algorithm [63].

Differently from Ant Colony Optimization, which exploits a local search process, the
ABC system relies on a global strategy and is composed of three main entities:

•	 Food source, characterized by its goodness in terms of quantity of nectar or distance
from the hive;

•	 Employer bees, which collect the nectar and carry details about the source of food to
the hive;

•	 Unemployer bees, which are not currently picking up nectar. They can be divided into
two categories: scout bees, which search for new sources of food and on-looker bees,
which choose a source of food according to the information brought to the hive by
the employer bees.

The main goal of the system is to maximize the nectar collection and it can be adapted
to the influence maximization problem as described in [64, 65]. Specifically, each user
of a social network is considered as a source of food, employer bees identify the opinion
leaders of the network (i.e., final seeds), scout bees are used for exploring the neighbor-
hood of employer bees, and on-looker bees indicate the influenced users.

Figure 6 shows the execution flow of the proposed application, implemented using the
Vertex-Centric model provided by Hama for graph computations.

The main step involved in writing a Hama graph application is to extend the prede-
fined Vertex class, specifying the value types for vertices, edges and messages through its
template arguments, as shown in the Java code in Listing 15. The user must encode, by
overriding the compute() method, the behavior of a vertex, i.e. the set of operations that
will be executed by each active node at each superstep. Furthermore, built-in methods
such as sendMessage(Edge 〈V, E〉 e, M msg) and getValue() allow the current vertex to
send messages to other vertices or to inspect its associated value.

During the setup phase the nodes initialize their data structures and one of them is
elected as master, taking on the role of coordinator. The compute method separates the

Page 29 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

behavior of the master from that of the other vertices, by simply checking the id associ-
ated with the current vertex. The behavior of the vertices, shown in Listing 16, depends
on the type of message they receive. During the first phase each seed sends the rank of
its neighbors to the master. Then, when notified by the master, the vertex sends a new
message to its neighbors specifying the activation probability. Once the propagation
phase is over, i.e. there are no more messages to be processed, the node with maximum
influence probability is chosen, sending this value to an aggregator that evaluates the fit-
ness of each seed. Finally, when a vertex receives the stop signal from the master, it votes
to halt the execution and suspend itself.

The behavior of the master, shown in Listing 17, is described as follows. Once the
first iterative phase is over, it elects the scout bees with the highest ranking, notify-
ing the beginning of the influence evaluation. Thus, each scout bee sends an influence
message along the outgoing edges, in order to evaluate its fitness. Once the aggregator

Fig. 6  Architecture of the proposed Hama Vertex-Centric application

Page 30 of 50Belcastro et al. Journal of Big Data (2022) 9:4

has completed the evaluation, the master determines whether to proceed with the role
switch (scout → employer), communicating it to the other nodes. The process iterates
until either the entire set of scout bees is evaluated or convergence is reached (i.e., the
minimum percentage increment of the spread between two subsequent iterations is less
than a threshold ω ). At the end of the process the final result is stored, which consists
of the final seed set (i.e., the selected influencers) and the expected spread of influence
within the network.

Comparison with Spark GraphX

GraphX is a high-level extension of Spark RDD APIs for graph-parallel computations. It
is based on the Graph abstraction, which represents a directed multigraph with vertex

Page 31 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

and edge properties. In addition to basic graph-based queries and algorithms (e.g., sub-
graph sampling, connected components identification, PageRank, etc.) it provides an
optimized version of the Google Pregel graph processing system. In particular, it is spe-
cially included for expressing graph-parallel iterative algorithms where the properties of
vertices and edges are recomputed iteratively up to a stop condition. Internally, the Pregel
operator is a BSP messaging abstraction that performs a series of supersteps in which a
vertex receives an aggregation of its in-neighborhood messages from the previous super-
step, computes a new value for its property, and finally sends messages to its neighbor-
hood in the next superstep. Differently from Pregel, messages are computed in parallel
using a user defined messaging function. Moreover, a vertex can only send messages to
its neighborhood and, if it does not receive a message, it is skipped within that superstep.

Listing 18 shows how the ABC algorithm for influence maximization can be modeled
using the Pregel API of GraphX. For the sake of brevity, we only reported the message-
based communication among vertices, showing the master operations only for the fit-
ness evaluation.

Page 32 of 50Belcastro et al. Journal of Big Data (2022) 9:4

The Pregel operator takes six arguments partitioned in two lists: (i) the initial message,
which triggers the start of the application, the maximum number of iterations, and the
edge direction in which to send messages; (ii) three user defined functions for receiving,

Page 33 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

computing and merging messages. The output is the final graph where there are no
remaining messages to be processed. In the proposed example, a vertex is characterized
by a vertexId, that is a unique identifier in the whole network, and a nodeStatus, mod-
eled as a map, which internally stores information about the vertex, such as its role (i.e.,
master or slave) and its neighborhood. Next, messages are modeled as the nodeStatus,
since the internal properties of the vertices are updated through message passing. Simi-
larly to Hama, this framework provides an efficient implementation of the Pregel model
based on the BSP paradigm. However, unlike Hama, GraphX requires developers to pro-
vide three user defined functions for specifying how messages have to be exchanged and
processed. On the other hand, GraphX provides some advantages, such as in-memory
computation, the ability to express efficient queries on graph data using built-in opera-
tors, and the compactness of the code deriving from the use of the Scala programming
language.

Message passing interface

The Message Passing Interface (MPI), defined since 1992 by a forum composed of many
industrial and academic organizations, is widely used by academia and industry in
medium-scale infrastructures for developing parallel and distributed applications. Even
if the MPI user community is medium in size, the project engages many contributors.

The first version MPI-1 provided a rich set of messaging primitives, based on a set
of eight basic functions that enable it to fully express parallel programs, and other 129
advanced functions. A MPI-1 parallel program is composed of a set of similar processes
running on different processors that use MPI functions for message passing. According
to the SPMD (Single Program Multiple Data) model, MPI is designed for exploiting data
parallelism, because all the MPI processes that compose a parallel program execute the
same code on different data elements. Examples of MPI point-to-point communication
primitives are:

•	 MPI_Send(msg, leng, type, rank, tag, comm);
•	 MPI_Recv(msg, leng, type, source, tag, comm, status).

Group communication is implemented by the primitives:

•	 MPI_Bcast (inbuf, incnt, intype, root, comm);
•	 MPI_Gather (outbuf, outcnt, outype, inbuf, incnt, intype, root, comm);
•	 MPI_Reduce (inbuf, outbuf, count, type, op, root, comm).

Other primitives include MPI_Init and MPI_Finalize, which are used to initialize and
terminate a program respectively.

MPI provides a low-level of abstraction for developing efficient and portable itera-
tive parallel applications, even if performance may be limited by the communication
latency between processors. MPI programmers cannot exploit any high-level construct
and must manually cope with complex distributed programming issues, such as data
exchange, distribution of data across processors, synchronization, and deadlock. Those
issues make it hard to debug an application and does not make the programming task

Page 34 of 50Belcastro et al. Journal of Big Data (2022) 9:4

easy on end-user parallel applications where higher level languages are required to sim-
plify the developer task. However, thanks to its portability and efficiency coming from
a low-level programming model, MPI is largely used and has been implemented on a
very large set of parallel and sequential architectures, such as MPP systems, worksta-
tion networks, clusters, and Grids. It is worth mentioning that MPI-1 did not make any
provision for process creation, which were introduced later in the MPI-2 [66] version.
The current version, MPI-4, provides extensions to better support hybrid programming
models and fault tolerance.

Programming example

In this section we present an application for parallel counting characters in a text file by
using the OpenMPI42 implementation. In particular, given an input file of M bytes and
N processes, a worker process, with rank not equal to 0, reads a chunk of MN bytes and
counts each character in a private data structure. The master process, with rank equal
to 0, receives the partial counts from other N − 1 processes within the group with the
specified tag and aggregates them, as shown in Fig. 7.

Listing 19 shows the application code and basic primitives of MPI: (i) Init and Final-
ize for initializing and terminating the program; (ii) bcast to broadcast messages from
the master to the workers; and (iii) send and recv for point-to-point communication
between master and workers. To run the application, the source code must be compiled
with mpijavac command and executed using the mpirun -N command, where N is the
number of processes per node on all allocated nodes.

Fig. 7  Architecture of the proposed MPI application

42  https://​www.​open-​mpi.​org/.

https://www.open-mpi.org/

Page 35 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

When the program starts, only the master process is executed. After the MPI_Init
primitive within the master process, N − 1 additional processes (i.e., workers) are cre-
ated to reach the number of parallel processes N indicated in the mpirun command.
To identify a process, MPI uses an integer ID, called rank, for each process, which is 0
for the master and is incremented each time a new process is created. In this way, the
master can check the condition rank == master_rank to perform two operations: (i)
establish the split size of a chunk for each worker; and (ii) aggregate the partial charac-
ter counts received by the workers. Communication is handled by the default commu-
nicator (i.e., MPI.COMM_WORLD), which groups all the processes to enable message
exchange. Then, each process, including the master, continues to run distinct versions
of the program. In particular, after receiving the split size broadcast by the master, the
workers read the assigned data chunk, count the occurrences of each character, and

Page 36 of 50Belcastro et al. Journal of Big Data (2022) 9:4

store the result in a private structure (partial_counter). Finally, each worker sends the
partial counter results to the master, in order to compute the final result.

Apache Hive

Apache Hive is commonly used by data analysts for data querying and reporting on large
datasets and is adopted by several big companies such as Facebook, Netflix, Yahoo!, and
Airbnb. For example, Netflix uses Hive for ad hoc queries and analytics.

The architecture of Hive is comprised of the following main components:

•	 User interface: allowing users to interact with HDFS via a web UI or a CLI;
•	 Metastore: it uses a relational database for storing the metadata of persistent rela-

tional entities and how they are mapped to HDFS;
•	 HiveQL process engine: it handles the communication with the Hive Metastore.

HiveQL queries get converted into MapReduce jobs;
•	 Execution engine: it is the bridge component between the HiveQL process engine

and MapReduce. It executes the MapReduce jobs resulting from the translation of
HiveQL queries;

•	 HDFS: it is the underlying distributed file system used for data storage.

Hive provides a high-level of abstraction, because a programmer can develop a data pro-
cessing application by using HiveQL, which relies on traditional concepts of relational
databases (e.g., table, row, column). In addition, Hive provides many User Defined Func-
tions (UDF) for data manipulation (e.g., sum, average, explode) and makes it really easy
to write custom ones in different languages. For these reasons, Hive is supported by a
large user community. However, it is designed only for Online Analytical Processing
(OLAP) and not for Online Transaction Processing (OLTP), and does not provide real-
time access to data unlike SQL Server.

Hive supports data parallelism which allows the execution of the same query on dif-
ferent portions of data. When many complex queries run in parallel, each query can be
composed of several jobs, which could starve computational resources. To cope with this
issue Hive is powered by Cost-Based Optimizer (CBO), which performs further optimi-
zations by making a series of decisions based on the cost of queries (e.g., join order, type
of join, number of parallel queries to run).

Programming example

The proposed application shows how to implement a RoI Mining application with Hive.
The widespread use of social media and location-based services makes it possible to
extract very useful information for understanding the behavior of large groups of people.
Every day millions of people log into social media and share information about the places
they visit. The analysis of geo-referenced data produced by users on social media is use-
ful for determining whether users have visited interesting places (e.g., tourist attractions,
shopping centres, squares, parks), often called Places-of-Interest (PoIs). Since a PoI is
generally identified by the geographic coordinates of a single point, it is useful to define
a Region-of-Interest (RoI), an area represented by the geographic boundaries of the PoI.
RoI Mining techniques are aimed precisely at the discovery of regions of interest [67].

Page 37 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

In this application data is collected from Flickr, a social network used for shar-
ing photos. The initial goal is to assign a generic geo-localized Flickr post to the cor-
responding PoI, through an analysis of the textual content and metadata of the post
(tags and description). After assigning each post to its PoI, the geographical coordinates
〈longitude, latitude〉 are aggregated through DBSCAN (Density-Based Spatial Clustering
of Applications with Noise), a density-based clustering algorithm that exploits informa-
tion on the density of points to identify clusters that are representative of a RoI. The
cluster with the largest size represents the most significant subregion of the PoI to which
it belongs since it is characterized by a greater density of the 2D points identified by the
pair of geographical coordinates. Figure 8 shows the overall structure of the application.

Flickr data is firstly filtered to select only a few fields for analysis: the latitude and lon-
gitude contain information related to geographical coordinates; description contains a
description of the post; dateposted contains the date it was posted; username contains
the id of the user who shared the post and tags is a string that contains the set of tags,
separated by commas, which give additional information. Listing 20 shows how data is
loaded into a Hive table.

The first step is to map a Flickr tuple to the corresponding PoI. It can be done by defin-
ing an UDF that allows to run custom Java code within a Hive script; in particular, a
Regular UDF works on a single row of a table and produces a single output row. The
assignRoI method of Listing 21 checks if the tags and the description contain a keyword
of the file loaded as input and returns the name of the RoI (e.g., the Colosseum is also
called the Flavian Amphitheater, Coliseo, etc.).

Fig. 8  Structure of the proposed Hive application

Page 38 of 50Belcastro et al. Journal of Big Data (2022) 9:4

The function can be called in a Hive query as shown in Listing 22, for determining a
ranking of the most visited RoIs. In particular, the GeoData function in the select clause
returns the name of a RoI for each point and the number of users who have visited that
area. The rows selected from the data table are grouped by the RoI’s name (group by
clause) and sorted by the number of visitors (order by clause) in descending order.

At this point data is ready for clustering analysis. To launch the DBSCAN algorithm it
is required the implementation of an UDAF (User Defined Aggregate Function), which
applies a function to multiple rows of a table by implementing five methods:

•	 init(): it initializes the evaluator, which actually implements the UDAF logic;
•	 iterate(): it is called whenever there is a new value to aggregate;
•	 terminatePartial(): it is called for the partial aggregation, and returns an object that

encapsulates the state of the aggregation;
•	 merge(): it is called to combine a partial aggregation with another;
•	 terminate(): it is called when the final result of the aggregation is required.

In particular, DBSCAN is launched on the points belonging to the same RoI, where the
name of a RoI is obtained using the previously defined GeoData function, as shown in
Listing 23. Since DBSCAN should find more than one cluster, the one containing the
highest number of points is chosen and returned as a KML (Keyhole Markup Language)
string.

Page 39 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

Finally, the UDAF can be called in the Hive script to get the final results. The HiveQL
query is detailed in Listing 24.

Apache Pig

Apache Pig is commonly used for developing data querying, simple data analysis and
ETL (Extract, Transform, Load) applications, gathering data from several sources such

Page 40 of 50Belcastro et al. Journal of Big Data (2022) 9:4

as streams, HDFS, or files. Companies and organizations using Pig in production include
LinkedIn, PayPal, and Mendeley. For example LinkedIn, the largest professional online
social network, uses the Hadoop ecosystem with Pig, though native MapReduce is
sometimes used for performance reasons. Thanks to the Pig Latin scripting language,
Pig provides a medium-level of abstraction. Compared to other systems, such as Hadoop,
Pig developers are not required to write complex and lengthy codes. For this reason, Pig
is adopted to ease the development process for several goals, such as link prediction, ad
targeting and job recommendations [68].

Pig Latin statements are based on relations, which are similar to tables in a relational
database and can be defined as follows: a relation is a bag; a bag is a collection of tuples; a
tuple is an ordered set of fields; a field is a piece of data.

Tuples in a bag correspond to the rows in a table, although unlike a relational table Pig
relations do not require that each tuple contains the same number of fields. A Pig script
can use a large set of operators to ease the development of common tasks on data, such
as load, filter, join, and sort. Pig scripts can be invoked by applications written in many
other programming languages (actually Java, Python, and JavaScript) and it can exploit
custom User Defined Functions (UDFs) for advanced analytics. Each Pig script is trans-
lated into a set of MapReduce jobs that are automatically optimized by the Pig engine by
using several built-in optimization rules, such as reducing unused statements or apply-
ing filters during data loading. In addition, it exploits a multi-query execution system to
process an entire script or a batch of statements at once.

Pig supports both data parallelism, which is exploited by partitioning data in chunks
and processing them in parallel, and task parallelism when multiple queries run in paral-
lel on the same data.

Programming example

The Pig application discussed here shows how to use Pig for implementing a diction-
ary-based sentiment analyzer. Since Pig does not provide a built-in library for sentiment
analysis, the system exploits external dictionaries to associate words to their sentiments
and determine the semantic orientation of the opinion words [69]. Given a dictionary
of words associated with positive or negative sentiment, the sentiment of a text (e.g.,
sentence, review, tweet, comment) is calculated by summing the scores of positive and
negative words in the text and then by calculating the average rating, as shown in Fig. 9.

As in Hive, developers can include advanced analytics in a script by defining UDFs.
For example, the PROCESS UDF in Listing 25 is aimed at processing a tuple by removing
punctuation as a preprocessing step. Other functionalities, if required, can be added to
the exec method, which is implemented in Java.

Page 41 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

Listing 26 shows the code in PigLatin of the sentiment analyzer. Once registering the
UDF defined in Java, the dataset containing the reviews is loaded from HDFS. Each
review is tokenized and processed according to the function defined in Listing 25. Then,
a score from a sentiment dictionary is assigned to each token and the final rating of a
review is calculated as the average of the scores of its tokens.

Fig. 9  Structure of the proposed Pig application

Page 42 of 50Belcastro et al. Journal of Big Data (2022) 9:4

Comparison with Spark SQL

Spark SQL is a module for structured data management and processing. It differs from
the RDD API as it extends Spark with optimizations based on information about the
structure of data and the computations performed. Developers can interact with Spark
SQL via SQL statements and the Dataset API, using the same execution engine. In addi-
tion to SQL query execution, Spark SQL can also be used to read data from an existing
Hive environment, as discussed in the Spark programming example (see “Programming
example” section). Spark SQL provides two high-level abstractions, namely Dataset and
DataFrame. A Dataset is a distributed collection of data, which offers the benefits of
RDDs, such as resilience and support for lambda functions, along with a set of optimiza-
tions performed by the Spark SQL execution engine. A DataFrame is a Dataset struc-
tured into named columns, such as tables in a relational database, but with further
optimizations. DataFrames can be created from structured files, Hive tables, databases,
or existing RDDs. The data types are automatically inferred, but developers can provide
an explicit schema via a StructType, matching the structure of the DataFrame in named
columns. Spark SQL supports the vast majority of Hive features, such as UDFs and Data-
Frame operations. Listing 27 shows how the sentiment analysis application discussed in
the previous section can be implemented with the Spark SQL Dataset API.

Page 43 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

It is worth noting that Spark SQL always uses the same engine when executing a query,
regardless of which API is adopted (i.e., SQL or Dataset API). This kind of uniformity
brings a major benefit to the developers, which can easily switch between the two APIs,
based on which is the most suitable to express a certain transformation. As an exam-
ple, the first query, dedicated to the tokenization of the processed text, can be easily
expressed using SQL statements, as shown in Listing 28. This requires registering the
UDFs in the sqlContext and creating a temporary or global view of the DataFrames.

Comparative analysis
This section summarizes and classifies the main features of all discussed programming
frameworks, their diffusion and the advantages and disadvantages. Some of these sys-
tems share features and, in some cases, for programmers choosing one rather than
another is an hard choice that can depend on several factors, such as budget (e.g., often
high-level services are easy-to-use but more expensive than low-level solutions), type of
parallelism, data format, data source, amount of data, performance, and so on. Indeed,

Page 44 of 50Belcastro et al. Journal of Big Data (2022) 9:4

given a specific Big Data analysis task, it can be implemented using different program-
ming models and systems.

The comparative analysis carried out in this section may help scholars and devel-
opers to choose the best system based on their programming skills, parallel model,
budget, application domain, and support provided by the community of both users and
developers.

System features

Table 1 summarizes the features of the frameworks according to their programming
model, the type of parallelism, the level of abstraction, the verbosity in writing code and
the main classes of applications.

As for the level of abstraction, systems have been classified in three categories:

•	 Low: this category includes Hadoop, Spark, MPI, and Hama. Those systems provide
powerful APIs and primitives that require distributed programming skills and make
the development effort high, but code efficiency is high because it can be fully tuned;

•	 Medium: it includes Storm and Pig. Such systems allow developers to implement
parallel and distributed applications using few constructs. They require some pro-
gramming skills, but the development effort is lower than systems with a low-level of
abstraction;

•	 High: this class includes Hive. Those systems require limited programming skills,
allowing developers to rapidly build data analytics applications through simple visual
interfaces or simple scripts.

About the type of parallelism, systems have been classified as follows:

•	 Data parallelism: here we have Hadoop, Spark, Storm, MPI, Hama, Hive, and Pig.
Such systems are designed to automatically manage large input data, which is split in
chunks and processed in parallel on different computing nodes.

•	 Task parallelism: this form of parallelism is exploited in Spark, Storm and Pig. Such
systems allow to run in parallel independent tasks without any data dependency.

•	 Pipeline parallelism: it includes Storm, which allows sending the partial output of a
task to the next tasks to be processed in parallel during the stages. Also workflow-
based frameworks may exploit some form of pipeline parallelism.

As regards verbosity, systems have been classified as follows in the view of the discussed
programming examples:

•	 High: Hadoop is included in this category. Those systems require a large number of
lines of code and the use of many instructions/calls to build even a simple applica-
tion. For example, a MapReduce application in Hadoop requires the definition of the
mapper, reducer, and job. Writing applications with these systems is complex and
lengthy [52];

•	 Medium: it includes Storm and Hama. Such systems require implementing specific
interfaces and methods to codify an application. For example, Storm requires to

Page 45 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

implement the interfaces for spouts and bolts, and to override methods like nextTu-
ple and declareOutputFields;

•	 Low: it includes frameworks like Spark, MPI, Hive, and Pig. Writing code in those
systems is always compact, because programmers are not forced to use specific con-
structs or when needed it requires a few lines of code. They usually provide an easy
to use style of programming (e.g., HiveQL or Pig Latin).

With regard to the class of applications, programmers can decide to exploit some gen-
eral-purpose systems like Hadoop, Spark, and MPI or systems that have been developed
to be used in specific application domains. For example, Hama has been used for devel-
oping graph processing applications, Hive and Pig for data querying, Storm for real-time
stream processing and so on.

System diffusion

Table 2 summarizes the diffusion and popularity of each system from the user and devel-
oper perspectives. Data from Stack Overflow and GitHub has been accessed in Decem-
ber 2021.

As for the diffusion, we classified the systems considering the following parameters:

•	 Main companies, which considers the major companies in the IT world that use a
given system.

•	 User community, which refers to the diffusion of a system among people who use it.
We compared the systems in terms of the number of questions asked on Stack Over-
flow. In particular, we used the total number of questions as the main indicator of
user interest towards the system, and the average number of questions per week for

Table 1  Features of the systems

System Programming
model

Type of parallelism Level of
abstraction

Verbosity Class of applications

Hadoop MapReduce Data Low High General-purpose
(batch processing)

Spark Workflow Data/Task Low Low General-purpose
(batch and stream
processing, machine
learning, graph analy-
sis, structured data
analysis)

Storm Workflow Data/Task/Pipeline Medium Medium Stream processing
(real-time)

Hama BSP Data Low Medium Massive scientific
computations (matrix
computation, graph
analysis, machine and
deep learning)

MPI Message passing Data Low Low General-purpose
(iterative parallel
applications)

Hive SQL-Like Data High Low Data querying and
reporting

Pig SQL-Like Data/Task Medium Low Data querying and
analysis

Page 46 of 50Belcastro et al. Journal of Big Data (2022) 9:4

better capturing the latest trends in user adoption. Spark showed to be the most dif-
fused system with a very large user community, followed by Hadoop and Hive, MPI,
Pig and Storm. Lastly, Hama registered the fewest number of questions per week.

•	 GitHub commits, as an indicator of the size of the developer community who con-
tribute to the development and maintenance of code. We referred to the number of
commits on official GitHub repositories to grasp the interest of developers in fix-
ing errors/bugs and introducing new features. As seen for the diffusion among users,
Spark showed to be one of the frameworks involving most contributors, followed by
Hadoop but preceded by MPI that gets the interest of programmers coming from a
wide range of applications. Hive, Storm, Pig and Hama follow in order.

•	 Github stars, as an indicator of popularity and reusability of the systems. In fact,
there exists a strong relationship between system popularity and user-perceived
quality of that system and therefore its reuse. In particular, Papamichail et al. [70]

Table 2  Diffusion and popularity of the systems

System Main companies
using it

User community
size questions
(weekly)

GitHub stars API support GitHub commits

Hadoop Yahoo!, IBM, Amazon Large-43.3k (36) 11.8k Java, C, C++, Ruby,
Groovy, Perl, Python

25.1k

Spark eBay, Amazon,
Alibaba

Very Large-69.5k
(193)

30.4k Scala, Python, Java, R 30.8k

Storm Twitter, Groupon,
Spotify

Small-2.5k (2) 6.3k Clojure, Java, Python,
Ruby, JavaScript

10.4k

Hama Samsung Electron-
ics, Korea Telecom,
Sogou

Very Small-22 (< 1) 129 Java, Python, C, C++ 1.6k

MPI Amazon WS, AMD,
Cisco, Facebook

Medium-6.3k (13) 1.3k Java, Fortran, C,
C++, Perl, Python

31.8k

Hive Facebook, Netflix,
Yahoo!, AirBnB

Large-20.2k (44) 3.8k HiveQL 15.6k

Pig LinkedIn, PayPal,
Mendeley

Small-5.2k (< 2) 631 PigLatin 3.7k

Table 3  Advantages and disadvantages of the systems

System Advantages Disadvantages

Hadoop Fault tolerance, low cost, very large open source
community

Verbosity, batch processing only, small files issues,
inefficiency with iterative applications

Spark In-memory computing, ease-of-use, flexibility,
libraries for advanced analytics, scalable machine
learning support

No automatic optimization process, small files
issues, high memory consumption

Storm Multi-language support, low-latency response
time

Message ordering not guaranteed

Hama Many Distributed FS supported, general-purpose
computing on GPUs, conflicts and deadlines
avoidance

Single point of failure (BSP Master), low flexibility of
partitioning policies, small community

MPI Efficiency, portability, shared or distributed
memory

Hard to debug, bottleneck in network communica-
tion

Hive Large distributed datasets querying, SQL-like
language, UDFs for advanced data analysis

Support only for OLAP, real-time data access not
supported

Pig High-level procedural language, UDFs for
advanced data analysis, easy learning and devel-
opment

Small community, hard to tune performance

Page 47 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

showed a strong positive correlation between the number of stars and the number
of forks, by analyzing the 100 most popular Java repositories on GitHub. The most
popular and reused system is Spark, followed by Hadoop, Storm, Hive, MPI, Pig and
Hama.

•	 API support, which indicates the set of programming languages available to develop
applications with that system. Systems such as Hadoop, Spark, Storm, and MPI can
embrace developers with different programming skills and backgrounds thanks to
the wide set of languages and the provision of APIs in popular languages (specifi-
cally, Python and Java according to the PYPL index available at https://​pypl.​github.​
io/​PYPL.​html, accessed December 2021). Conversely, languages such as Pig or Hive
may require learning new languages, such as PigLatin or HiveQL.

Advantages and disadvantages

Table 3 summarizes the main advantages and disadvantages of the described systems
when they are used for programming Big Data analysis applications. The pros and cons
are outlined starting from features emerged during the description of each system and
are discussed in the light of the applications and code snippets proposed in “System fea-
tures and programming examples” section.

The advantages of each system are related to the specific features it offers compared
to related systems, in terms of functionality, support for different libraries and integra-
tion with other frameworks. For example, Spark is the only system that leverages an in-
memory computing model, enabling the design of efficient data-intensive applications.
Furthermore, as emerged from the comparison with special-purpose frameworks like
Hama, Storm and Pig, Spark is highly flexible and can be leveraged in a wide range of
application domains, as it provides libraries for stream and graph processing, machine
learning, and structured data analysis.

On the other hand, system disadvantages are mainly related to lacks, weaknesses, costs
and limitations in the use of a given system. For example, Hadoop suffers when it is used
for iterative applications, whereas it is suitable for batch processing. The main disadvan-
tage of using Storm in real-time data stream computations concerns the lack of message
ordering. The Hama framework offers a simple programming model also for GPU-based
systems, however the BSP Master failure is a critical issue for that system. MPI is gener-
ally efficient but it can be hard to debug due to its low-level programming model. Hive is
well suited for large distributed data querying, however it does not support OLTP opera-
tions. Finally, Pig offers an easy-to-use programming interface for data analysis applica-
tions but debugging is complex.

Final remarks
In the age of Internet of Things and social media platforms, novel programming mod-
els and systems were proposed for collecting and analyzing huge amounts of data in a
reasonable time, by leveraging high performance computers and parallel and distributed
algorithms. However, the ability to generate and gather data is increasing in a constant
and drastic way, which poses a series of challenges to the current solutions aimed at pro-
cessing, storing and analyzing Big Data. Due to this, current frameworks are expected to

https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html

Page 48 of 50Belcastro et al. Journal of Big Data (2022) 9:4

be constantly improved for coping with such challenges, allowing the effective extraction
of useful knowledge in several application domains. Furthermore, the novel Exascale
systems pose new requirements for addressing architectures composed of a very large
number of cores. In particular, in the near future, existing frameworks will have to
address a wide range of issues related to energy consumption, scheduling, data distri-
bution and access, communication and synchronization, in order to enable the scalable
implementation of real Big Data analysis applications [71].

This paper presented a structured analysis and comparison of the most widespread
programming models for Big Data analysis and the features of the main software frame-
works implementing them. In particular, such systems have been compared according to
several criteria concerning three main aspects: their features, diffusion and the advan-
tages/disadvantages of using them. Furthermore, the analysis of each system is carried
out with the discussion of a programming example and code snippets to better show the
potential and limitations of each one.

The final aim of this work is to support users, designers and developers in identify-
ing and selecting the best solution according to: (i) their skills in terms of program-
ming capabilities and knowledge of languages; (ii) hardware availability; (iii) application
domain and purposes; and (iv) support provided by the software community, concerning
both the availability of multi-language APIs, project maintenance on GitHub repository
and the availability of solutions for problems in Q&A platforms such as, for example,
Stack Overflow or Memory Exceptions.
Acknowledgements
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No 955558. The JU receives support from the European Union’s Horizon 2020 research and innovation pro-
gramme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Authors’ contributions
All the authors contributed to the structuring of this paper, providing critical feedback and helping shape the research,
analysis and manuscript. LB and FM conceived of the presented idea and organized the manuscript. AO and RC wrote
the manuscript with input from all authors and implemented the programming examples. DT and PT were involved in
planning the work and supervised and reviewed the structure and contents of the paper. All authors read and approved
the final manuscript.

Authors’ information
L. Belcastro is a research fellow of computer engineering at the University of Calabria. R. Cantini is PhD student of
computer engineering at the University of Calabria. F. Marozzo is an assistant professor of computer engineering at the
University of Calabria. A. Orsino is PhD student of computer engineering at the University of Calabria. D. Talia is a profes-
sor of computer engineering at the University of Calabria and an adjunct professor at Fuzhou University. P. Trunfio is an
associate professor of computer engineering at the University of Calabria.

Funding
Not applicable.

 Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 University of Calabria, Rende, Italy. 2 Dtok Lab, Rende, Italy.

Page 49 of 50Belcastro et al. Journal of Big Data (2022) 9:4 	

Received: 7 September 2021 Accepted: 19 December 2021

References
	1.	 Belcastro L, Marozzo F, Talia D, Trunfio P. Big data analysis on clouds. In: Handbook of big data technologies. Springer;

2017. p. 101–42.
	2.	 Marx V. Biology: the big challenges of big data. Nature. 2013;498(7453):255–60.
	3.	 Belcastro L, Marozzo F, Talia D, Trunfio P. Using scalable data mining for predicting flight delays. ACM Trans Intell Syst

Technol. 2016;8(1):20.
	4.	 Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309(13):1351–2.
	5.	 Walker SJ. Big data: a revolution that will transform how we live, work, and think. Int J Advert. 2014;33(1):181–3.
	6.	 Belcastro L, Marozzo F, Talia D. Programming models and systems for big data analysis. Int J Parall Emerg Distrib Syst.

2019;34(6):632–52.
	7.	 Jin X, Wah BW, Cheng X, Wang Y. Significance and challenges of big data research. Big Data Res. 2015;2(2):59–64.
	8.	 Athmaja S, Hanumanthappa M, Kavitha V. A survey of machine learning algorithms for big data analytics. In: 2017

International conference on innovations in information, embedded and communication systems (ICIIECS). IEEE;
2017. p. 1–4.

	9.	 Talia D, Trunfio P, Marozzo F. Data analysis in the cloud. Elsevier; 2015. ISBN 978-0-12-802881-0.
	10.	 Chen M, Mao S, Liu Y. Big data: a survey. Mob Netw Appl. 2014;19(2):171–209.
	11.	 Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad: distributed data-parallel programs from sequential building blocks.

In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007; 2007. p. 59–72.
	12.	 Oussous A, Benjelloun FZ, Ait Lahcen A, Belfkih S. Big data technologies: a survey. J King Saud Univ Comput Inform

Sci. 2018;30(4):431–48.
	13.	 Hu H, Wen Y, Chua TS, Li X. Toward scalable systems for big data analytics: a technology tutorial. IEEE Access.

2014;2:652–87.
	14.	 Low Y, Gonzalez JE, Kyrola A, Bickson D, Guestrin CE, Hellerstein J. Graphlab: a new framework for parallel machine

learning. arXiv preprint arXiv:​14082​041. 2014.
	15.	 Yaqoob I, Hashem IAT, Gani A, Mokhtar S, Ahmed E, Anuar NB, et al. Big data: from beginning to future. Int J Inform

Manage. 2016;36(6):1231–47.
	16.	 Singh D, Reddy CK. A survey on platforms for big data analytics. J Big Data. 2015;2(1):1–20.
	17.	 Wang J, Yang Y, Wang T, Sherratt RS, Zhang J. Big data service architecture: a survey. J Internet Technol.

2020;21(2):393–405.
	18.	 Rao TR, Mitra P, Bhatt R, Goswami A. The big data system, components, tools, and technologies: a survey. Knowl

Inform Syst. 2019;60(3):1165–245.
	19.	 Saggi MK, Jain S. A survey towards an integration of big data analytics to big insights for value-creation. Inform

Process Manage. 2018;54(5):758–90.
	20.	 Tsai CW, Lai CF, Chao HC, Vasilakos AV. Big data analytics: a survey. J Big data. 2015;2(1):1–32.
	21.	 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
	22.	 Marozzo F, Talia D, Trunfio P. P2P-MapReduce: parallel data processing in dynamic Cloud environments. J Comput

Syst Sci. 2012;78(5):1382–402.
	23.	 Talbot J, Yoo RM, Kozyrakis C. Phoenix++ modular mapreduce for shared-memory systems. In: Proceedings of the

second international workshop on MapReduce and its applications; 2011. p. 9–16.
	24.	 Rao S, Ramakrishnan R, Silberstein A, Ovsiannikov M, Reeves D. Sailfish: A framework for large scale data processing.

In: Proceedings of the Third ACM Symposium on Cloud Computing; 2012. p. 1–14.
	25.	 Talia D, Trunfio P. Service-oriented distributed knowledge discovery. London: Chapman and Hall/CRC; 2012.
	26.	 Van Der Aalst WMP, Ter Hofstede AHM, Kiepuszewski B, Barros AP. Workflow Patterns. Distrib Parallel Databases.

2003;14(1):5–51.
	27.	 Talia D. Workflow systems for science: concepts and tools. International Scholarly Research Notices. 2013;2013.
	28.	 Xin RS, Rosen J, Zaharia M, Franklin MJ, Shenker S, Stoica I. Shark: SQL and Rich Analytics at Scale. In: Proceedings of

the 2013 ACM SIGMOD International Conference on Management of Data. SIGMOD ’13. New York, NY, USA: ACM;
2013. p. 13–24.

	29.	 Marozzo F, Lordan F, Rafanell R, Lezzi D, Talia D, Badia RM. Enabling cloud interoperability with compss. In: European
Conference on Parallel Processing. Springer, Berlin, Heidelberg; 2012. p. 16–27.

	30.	 Marozzo F, Talia D, Trunfio P. A Workflow management system for scalable data mining on clouds. IEEE Trans Serv
Comput. 2016;11:480–92.

	31.	 Marozzo F, Talia D, Trunfio P. Scalable script-based data analysis workflows on clouds. In: Proceedings of the 8th
Workshop on Workflows in Support of Large-Scale Science; 2013. p. 124–133.

	32.	 Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, et al. Scientific workflow management and the Kepler
system. Concurr Comput Pract Exp. 2006;18(10):1039–65.

	33.	 Van Der Aalst WM, Ter Hofstede AH. YAWL: yet another workflow language. Inform Syst. 2005;30(4):245–75.
	34.	 Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, et al. Pegasus: a framework for mapping complex scientific

workflows onto distributed systems. Sci Program. 2005;13(3):219–37.
	35.	 Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, Foster I. Swift: a language for distributed parallel scripting.

Parallel Comput. 2011;37(9):633–52.
	36.	 Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al. The Taverna workflow suite: designing and

executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res. 2013;41(W1):W557–61.
	37.	 Wozniak JM, Wilde M, Foster IT. Language features for scalable distributed-memory dataflow computing. In: Data-

Flow Execution Models for Extreme Scale Computing (DFM), 2014 Fourth Workshop on. IEEE; 2014. p. 50–3.

http://arxiv.org/abs/14082041

Page 50 of 50Belcastro et al. Journal of Big Data (2022) 9:4

	38.	 Valiant LG. A bridging model for parallel computation. Commun ACM. 1990;33(8):103–11.
	39.	 van Duijn M, Visscher K, Visscher P. BSPLib: a fast, and easy to use C++ implementation of the Bulk Synchronous

Parallel (BSP) threading model.
	40.	 LaSalle D, Karypis G. Mpi for big data: new tricks for an old dog. Parallel Comput. 2014;40(10):754–67.
	41.	 Reyes-Ortiz JL, Oneto L, Anguita D. Big data analytics in the cloud: spark on hadoop vs mpi/openmp on beowulf.

Procedia Comput Sci. 2015;53:121–30.
	42.	 Liang F, Lu X. Accelerating iterative big data computing through MPI. J Comput Sci Technol. 2015;30(2):283.
	43.	 Gropp W, Lusk E, Skjellum A. Using MPI: portable parallel programming with the message-passing interface, vol. 1.

Cambridge: MIT press; 1999.
	44.	 Laguna I, Marshall R, Mohror K, Ruefenacht M, Skjellum A, Sultana N. A large-scale study of MPI usage in open-

source HPC applications. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’19. New York, NY, USA: Association for Computing Machinery; 2019.

	45.	 Talia D, Trunfio P, Marozzo F, Belcastro L, Garcia Blas J, Del Rio D, et al. A novel data-centric programming model for
large-scale parallel systems. In: Euro-Par 2019: parallel processing workshops. Lecture Notes in Computer Science.
Gottingen, Germany; 2020. p. 452–63. ISBN: 978-3-030-48339-5.

	46.	 Bader DA. Evolving mpi+ x toward exascale. Computer. 2016;49(08):10.
	47.	 Consortium U, Bonachea D, Funck G. UPC language and library specifications. Version. 2013;1(3):11.
	48.	 Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev.

2017;59(1):65–98.
	49.	 Lordan F, Tejedor E, Ejarque J, Rafanell R, Álvarez J, Marozzo F, et al. ServiceSs: an interoperable programming frame-

work for the cloud. J Grid Comput. 2014;12(1):67–91.
	50.	 Zheng Y, Kamil A, Driscoll MB, Shan H, Yelick K. UPC++: A PGAS Extension for C++. In: 2014 IEEE 28th international

parallel and distributed processing symposium; 2014. p. 1105–14.
	51.	 Kornacker M, Behm A, Bittorf V, Bobrovytsky T, Ching C, Choi A, et al. Impala: a modern, open-source SQL engine for

hadoop. In: Cidr. vol. 1; 2015. p. 9.
	52.	 Verma A, Mansuri AH, Jain N. Big data management processing with Hadoop MapReduce and spark technology: A

comparison. In: 2016 Symposium on Colossal Data Analysis and Networking (CDAN). IEEE; 2016. p. 1–4.
	53.	 Wadkar S, Siddalingaiah M, Venner J. Pro Apache Hadoop. New York: Apress; 2014.
	54.	 Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. In: Proceedings of the 6th Confer-

ence on Symposium on Operating Systems Design & Implementation—Volume 6. OSDI’04. USA: USENIX Associa-
tion; 2004. p. 10.

	55.	 Cantini R, Marozzo F, Orsino A, Talia D, Trunfio P. Exploiting machine learning for improving in-memory execution of
data-intensive workflows on parallel machines. Fut Internet. 2021;13(5):121.

	56.	 Balle B, Casas B, Catarineu A, Gavaldà R, Manzano-Macho D. The Architecture of a churn prediction system based on
stream mining. In: Frontiers in artificial intelligence and applications. vol. 256; 2013. p. 157–66.

	57.	 Khraisat A, Gondal I, Vamplew P, Kamruzzaman J. Survey of intrusion detection systems: techniques, datasets and
challenges. Cybersecurity. 2019;2(1):1–22.

	58.	 Siddique K, Akhtar Z, Kim Y, Jeong YS, Yoon EJ. Investigating Apache Hama: a bulk synchronous parallel computing
framework. J Supercomput. 2017;73(9):4190–205.

	59.	 Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, et al. Pregel: a system for large-scale graph processing.
In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. ACM; 2010. p. 135–46.

	60.	 Siddique K, Akhtar Z, Yoon EJ, Jeong YS, Dasgupta D, Kim Y. Apache Hama: an emerging bulk synchronous parallel
computing framework for big data applications. IEEE Access. 2016;4:8879–87.

	61.	 Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes univer-
sity, engineering faculty, computer engineering department; 2005.

	62.	 Wang D, Tan D, Liu L. Particle swarm optimization algorithm: an overview. Soft Comput. 2018;22(2):387–408.
	63.	 Ab Wahab MN, Nefti-Meziani S, Atyabi A. A comprehensive review of swarm optimization algorithms. PLoS ONE.

2015;10(5):e0122827.
	64.	 Sankar CP, Kumar KS. Learning from bees: an approach for influence maximization on viral campaigns. PLoS ONE.

2016;11(12):e0168125.
	65.	 Cantini R, Marozzo F, Mazza S, Talia D, Trunfio P. A weighted artificial bee colony algorithm for influence maximiza-

tion. Online Soc Netw Media. 2021;26:100167.
	66.	 Geist A, Gropp W, Huss-Lederman S, Lumsdaine A, Lusk E, Saphir W, et al. MPI-2: Extending the message-passing

interface. In: Euro-Par’96 Parallel Processing. Springer; 1996. p. 128–35.
	67.	 Belcastro L, Marozzo F, Talia D, Trunfio P. G-RoI: automatic region-of-interest detection driven by geotagged social

media data. ACM Trans Knowl Discov Data. 2018;12(3):22.
	68.	 Sumbaly R, Kreps J, Shah S. The big data ecosystem at linkedin. In: Proceedings of the 2013 ACM SIGMOD Interna-

tional Conference on Management of Data; 2013. p. 1125–34.
	69.	 Kumar A, Sebastian TM. Sentiment analysis on twitter. Int J Comput Sci Issues. 2012;9(4):372.
	70.	 Papamichail M, Diamantopoulos T, Symeonidis A. User-Perceived Source Code Quality Estimation Based on Static

Analysis Metrics. In: 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS); 2016. p.
100–7.

	71.	 Talia D. A view of programming scalable data analysis: from clouds to exascale. J Cloud Comput. 2019;8(1):1–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Programming big data analysis: principles and solutions
	Abstract
	Introduction
	Related work
	Programming models and systems
	MapReduce
	Workflow
	Bulk synchronous parallel
	Message passing
	SQL-like

	System features and programming examples
	Apache Hadoop
	Programming example

	Apache Spark
	Programming example

	Apache Storm
	Programming example
	Comparison with Spark Streaming

	Apache Hama
	Programming example
	Comparison with Spark GraphX

	Message passing interface
	Programming example

	Apache Hive
	Programming example

	Apache Pig
	Programming example
	Comparison with Spark SQL

	Comparative analysis
	System features
	System diffusion
	Advantages and disadvantages

	Final remarks
	Acknowledgements
	References

