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Introduction
Missing values are usually attributed to: human error when processing data, machine 
error due to the malfunctioning of equipment, respondents refusal to answer certain 
questions, drop-out in studies and merging unrelated data [1, 2]. The missing values 
problem is usually common in all domains that deal with data and causes different issues 
like performance degradation, data analysis problems and biased outcomes lead by the 
differences in missing and complete values [3]. Moreover, the seriousness of missing val-
ues depend in part on how much data is missing, the pattern of missing data, and the 
mechanism underlying the missingness of the data [4]. Missing values can be handled 
by certain techniques including, deletion of instances and replacement with potential 
or estimated values [5–7], a technique denoted as imputation [8]. Several traditional 
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statistical and machine learning imputation techniques such as mean, regression, K 
nearest neighbor, ensemble based etc, have been proposed in the literature to handle 
missing values [9, 10]. In some cases, hybrid approaches [11–15], have also been uti-
lized to solve the weaknesses of the traditional imputation techniques. However, it is 
important to note that the only suitable solution comes down to a virtuous design and 
good analysis [16]. This is because analysis of performance is dependent but not limited 
to several factors such as the type of algorithm selected, attribute selection and sam-
pling techniques. Also, as the era of big data is here, data has become large and complex 
that it is difficult to deal with missing data using traditional learning methods since the 
established process of learning from conventional methods was not designed to with big 
data [17]. Therefore, when dealing with missing data, approach is always crucial since 
improper handling may lead to drawing inaccurate inferences.

In this study, we discuss missing values in “Missing data patterns and mechanisms” 
section, where we also introduce missing data patterns and mechanisms. “Missing val-
ues approaches” section empirically discusses approaches in literature for handling miss-
ing values and critically review several implementations in different domains, mostly 
focusing more on machine learning. In “Performance metrics for missing data impu-
tation” section, we discuss several performance metrics in the missing values domain 
and “Comparisons” section discusses and analyse results from previous works. We then 
implement two machine learning algorithms using the Iris data-set on “Experimen-
tal evaluation on machine learning methods” section and discussed the results. Finally, 
“Conclusion and future work” section summarises the paper and point out potential 
directions for future exploration.

Missing data patterns and mechanisms
In this section, we discuss the missing patterns in data and different missing data 
mechanisms.

Missing data patterns

Missing data patterns describe which values are missing and observed in a data set. 
However, there is no standard list of missing data patterns in the literature as discussed 
in [18–20]. In this subsection, we discuss three missing data patterns that appear most 

Fig. 1  Representation of missing data patterns data. Blue represents observed values; red is missing values
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in the literature which are univariate, monotone and non-monotone. In Fig. 1 we further 
demonstrates the different patterns in missing data.

Univariate: Missing data pattern is univariate when there is only one variable with 
missing data [21]. This pattern is rare in most disciplines and arises in experimental 
studies [22].

Monotone: Missing data pattern is said to be monotone if the variables in the data can 
be arranged, this pattern is usually associated with a longitudinal studies where mem-
bers drop out and never return [23]. The monotone data pattern is easier to deal with 
since patterns among the missing values are easily observable [24].

Non monotone: This is a missing data pattern whereby the missingness of one variable 
does not affect the missingness of any other variables [25].

Missing data mechanisms

Mostly mechanisms that lead to the missing values on data affect some assumptions 
supporting most missing data handling methods, hence, in the literature the missing 
data has been defined according to these mechanisms. The authors of Rubin [26] estab-
lished the missing data theory, categorized by three main mechanisms for missingness, 
which are defined depending on the available and missing data. To define missingness, 
let Y be a matrix of the entire data set that is decomposed into Yo and Ym , which denote 
the observed and missing data. Let R denote a missing value matrix defined by,

Let q represent a vector of values that indicate the association between missingness in R 
and the data set Y. The missing values mechanisms are therefore defined by the probabil-
ity of whether a value is observed or missing as we outline below.

Missing completely at random (MCAR)

This is when missing observations are not reliant on the observed and unobserved meas-
urements. The probability of MCAR is defined as:

Missing at random (MAR)

The likelihood of a missing value in MAR is only related to the observable data. The 
probability for MAR can be defined as:

Missing at random (MAR) is mostly encountered in health science studies data sets. 
Under this mechanism, missing values can be handled by observed predictor variables 
[27].

R :=

{

0, if Y is observed
1, if Y is missing

(1)p(R|q)

(2)p(R|Yo, q)
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Missing not at random (MNAR)

This refers to when missing data is neither MCAR nor MAR. The missing data depends 
equally on the missing and observed values. In this method, handling the missing values 
is usually impossible, as it depends on the unseen data. The MNAR probability is defined 
as:

The probability of whether a position R is missing or observed depends on both Yo and 
Ym . This mechanism is mostly applied in different domains predominantly in the domain 
of (bio)medicine [28], but is also applied in the psychological and educational data-sets 
[29, 30].

According to Graham and Dantan et al. [9, 31], it is mostly impossible to unambigu-
ously categorise missing data into these three mechanisms since imagining that missing 
data is completely not related to other non missing variables is very challenging because 
one way or the other missing values relate to non-missing variables. Many researchers, 
however, report that the easiest way is to complete all the missing data as MAR to some 
degree because MAR resides in the middle of this continuum [9].

Missing values approaches
In this section we discuss missing values approaches available in the literature. We also 
review implementation of missing values approaches in various domains.

Deletion

In this approach all entries with missing values are removed/discarded when doing anal-
ysis. Deletion is considered the simplest approach as there is no need to try and esti-
mate value. However, the authors of Little and Rubin [18] have demonstrated some of 
the weakness of deletion, as it introduce bias in analysis, especially when the missing 
data is not randomly distributed. The process of deletion can be carried out in two ways, 
pairwise or list-wise deletion [32].

List‑wise or case deletion

In list-wise deletion, every case that has one or more missing values is removed. List-
wise deletion has become the default choice when analysing data in most statistical 
software packages [33]. However, under the assumption that the data is not MCAR, list-
wise results in biasness [34]. While, if the data samples are large enough and the MCAR 
assumption is satisfied, then list-wise deletion may be a reasonable approach. If the sam-
pled data is not large, or the MCAR assumption is not satisfied, then list-wise deletion 
is not the best approach to consider. List-wise deletion may also result in losing some 
important information, especially when the discarded cases are high in numbers.

Pairwise deletion

To mitigate against information loss when doing do list-wise deletion one can use pair-
wise deletion. This is because pairwise deletion is carried out such that it reduces losses 
that could occur in list-wise deletion. This is done by eliminating values only when there 

(3)p(R|Yo,Ym, q)
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is a certain data point needed to test if the value assumed to be missing is in fact missing 
[35]. The weakness of pairwise deletion is that it can lead to an inter-correlation matrix 
that is not positive definite, which is can possibly prevent further analysis such as calcu-
lating coefficients estimates [36]. Finally, pairwise deletion also known to produce low 
bias results for MCAR or MAR data [34].

Imputation

The process of imputation involves replacing missing values by some predicted values. 
The non-missing values data set is normally used to predict the values used to replace 
the missing values [8]. In the following we cover some of the most used imputation 
methods in the literature.

Simple imputation

Simple imputation approach entails replacing missing values for each individual value by 
using a quantitative attribute or qualitative attribute of all the non-missing values [37]. 
With simple imputation, missing data is handled by different methods such as, mode, 
mean, or median of the available values. In most studies simple imputation methods are 
used because of their simplicity and that they can be used as an easy reference technique 
[38]. However, simple imputation methods may produce bias or unrealistic results on a 
high-dimensional data sets. Also, with the generation of big data emerging, this method 
seems to be performing poorly and therefore is inadequate to be implemented on such 
data sets [39].

Regression imputation

Regression is one of the preferred statistical technique for handling missing values. This 
method is also termed conditional mean imputation, here missing values are replaced 
with a predicted value created on a regression model if data is missing at random. The 
overall regression process is a two-phase method: the first step, uses all the complete 
observations to build a regression model, and imputes missing data based on the built 
regression model [40]. The regression method is decent since it maintains the sample 
size by preserving all the observations with missing values. However, regression may 
need a large sample of data to produce stable results. Furthermore, a single regression 
curve is followed for all the imputed values and no inherent variation is presented in 
the data [18]. Considering a feature containing missing values, and the remaining attrib-
utes are complete. A regression model approximates the missing features using the avail-
able data. The first step is to estimate a set of regression equations that will predict the 
incomplete values from the complete values using a complete case. Predicted values are 
then generated for the incomplete variables. These predicted values fill in the missing 
values. For the imputation of y variables given a set of variables j1, . . . , jq , a regression 
model is used as follows:

with α , β1, . . . , βq being the unknown values and ǫ is a distance variable. The estimates in 
Eq. 4 will results in a prediction for y given by the variables:

(4)y = α + β1j1 + · · · + βqjq + ǫ
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with a b1 bq denoting the least squares estimates of α , β1, . . . , βq . An imputation ỹ is then 
made

The technique of regression implemented depend on the nature of the data. If there are 
two or more missing features, a multivariate regression model must be used for imputa-
tion [41]. Multivariate Regression measures the degree at which more than one inde-
pendent prediction and more than one dependent responses, are linearly related [42]. A 
multivariate regression imputation is used as follows using the extension of a standard 
regression model in Eq. 4:

where the target value in y is retrieved by using the same vector of variables j. An expec-
tation maximization algorithm is then used to find the estimates of the parameters in 7, 
the algorithm uses the information of the observed data to estimate the parameters. 
More information on the expected maximisation is presented on De Waal et  al. [43]. 
After obtaining estimates of the unknown parameters in Eq. 7, the imputation of miss-
ing values in y is obtained as before from the observed vector ji . Then an imputation is 
retrieved directly from the predicted value,

and an imputation is done by adding a random disturbance to the prediction:

A common choice is to get ei from a multivariate distribution with a mean vector zero 
and the residual of the regressions y on j [43].

In research studies using the regression approach includes one by Sherwood et al. 
[44], where a weighted quantile regression approach that estimated missing values in 
health data was conducted. The authors used a quantile regression approach on the 
health data because it is usually attributed to a high level of skewness, heteroscedas-
tic variances and the weighted quantile regression estimator is consistent, unlike the 
naive estimator, and asymptotically normal making it suitable for analysing this type 
of data. The experiment demonstrated the effectiveness of the quantile regression 
technique on the numeric health care cost data analysis. However, the estimator used 
fully observed observations and was most suitable when the rate of the missing data 
was not excessively high. Moreover, the approach was not robust due to functional 
form specification and could have introduced bias results.

In another study, the authors proposed a complete case regression missing values 
handling method using functional principal component [45]. The performance of the 
approach when the missing values were not handled was experimented on and com-
pared with regression imputed missing values. Their major interest in the study was 

(5)ŷ = a+ b1j1 + · · · + bqjq

(6)ỹ = ŷ = a+ b1j1i + · · · + bqjqi

(7)y = µy + Byj(j − µj)+ ǫ

(8)ỹi = ŷi = µ̂y + B̂yj(ji − µ̂j)

(9)ỹi = ŷi + ei = µ̂y + B̂yj(ji − µ̂j)+ ei



Page 7 of 37Emmanuel et al. J Big Data           (2021) 8:140 	

the functional linear regression when some observations of the actual response were 
missing.

Another study applied a multivariate imputation technique for imputing miss-
ing values in normal multivariate data. The imputation values were obtained from 
the sequence of regression, where all the variables containing missing values were 
regressed against the variables that did not contain missing values as predictor vari-
ables by using the iteration approach. The approach worked well with more one vari-
able containing missing values and non-monotonous patterns [46].

Hot‑deck imputation

Hot-deck imputation handles missing values by matching the missing values with 
other values in the data set on several other key variables that have complete values 
[47]. The method has variations, but one that allows natural variability in missing 
data selects a pool of all cases. This pool is called the donor pool, that is identical to 
the cases with missing data on many variables and chooses one case randomly out 
of that pool. The missing value is then replaced by data from the randomly chosen 
cases. Another technique involves replacing the closest donor neighbor rather than 
selecting one donor from a pool of donors [48]. However, the method disregards the 
variability in missing data. The other variations of this imputation technique are 
weighted random hot-deck and weighted sequential hot deck. The weighted random 
hot deck method does not limit the number of times a donor is nominated; however, 
the donors are chosen randomly from the donor pool. In contrast, weighted sequen-
tial hot-deck puts a restriction on the amount of time a donor can be chosen to pre-
vent the same donor to be paired with a large quantity of recipients [47].

The hot-deck method is very popular in all single imputation methods as it results 
in a rectangular data [47], that can be used by secondary data analysts. Also, the 
method avoids cross-user inconsistency and does not depend on model fitting for 
the missing value to be replaced, making it possibly less delicate to model specifi-
cation as compared to a method built on a parametric model, for instance regres-
sion imputation. The method also decreases bias in non-response. Even though the 
method is being used widely in research, its concept is not as well established com-
pared to other imputation techniques.

In Sullivan and Andridge [49], a hot deck imputation method that allowed for 
the investigation of the impact of missingness mechanisms, ranging from MAR to 
MNAR, and used the information contained in fully observed covariates was pro-
posed. Bias and coverage of estimates from the proposed technique were investi-
gated by simulation. Results also, showed that the method performed best when 
fully observed values were associated with the outcome.

In another study Christopher et al. [50], a fractional hot deck imputation method 
was used to handle missing values. The procedure was applied to the MAR mecha-
nism, but the missing data pattern and the comparison was done with list-wise dele-
tion, mean, median imputation methods only. Their method produced a smaller 
standard error compared to other method they used for comparison. However, the 
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experiment may have been bias since it was concluded that it performed better being 
compared to the imputation method that usually produce biased results.

Expectation–maximization

The expectation maximization technique is an iterative method for handling missing 
values in numerical datasets, the algorithm uses an “impute, estimate and iterate until 
convergence” approach. Every iteration includes two stages which are: expectation and 
maximisation. Expectation estimates missing values given observed data, whereas in 
maximisation, the present estimated values are used to maximize the probability of all 
the data [51].

Approaches in research have been proposed to deal with missing values using expec-
tation minimisation. In Rubin et  al. [52], an investigation on handling missing data 
was done using a dataset that analysed the impacts of feeding behaviours among drug-
treated and untreated animals. The expectation maximisation algorithm was used 
and compared to other methods like list-wise deletion which was the least efficacious 
method, Bayesian approach and the mean substitute regression. The authors concluded 
that that the EM algorithm was the best method for the type of data they used. However, 
using real datasets in the study may have led to the results being specific to idiosyncra-
sies in the dataset and in sampling or are reflective of hypothetical expectations.

In another research, an expected maximisation algorithm was used for imputation to 
solve the problem of training Gaussian mixtures in large high-dimensional datasets set-
tings with missing values [53]. The imputed datasets were then experimented in classifi-
cation models and proved to provide a significant performance improvement over other 
basic missing value imputation methods. However, the expected maximisation tech-
nique resulted in expensive matrix computations.

Generally, single imputation methods as discussed above are simple methods to han-
dle missing data and save time. However, these methods are mostly bias, and error of 
their imputations is not incorporated. Furthermore, single imputation techniques do not 
represent the vulnerability associated with the missing values [9]. Therefore, researchers 
have experimented on improved methods to handle missing data that give much better 
performance [10]. The improved techniques are believed to be unrivalled to the single 
missing data techniques since they proved to yield unbiased analysis.

Multiple imputation

It is evident that missing data handling goes beyond deleting or discarding missing data 
[26] and therefore researchers resort to multiple imputation. Multiple imputation is 
where the distribution of the observed data is utilized to approximate numerous values 
that reflect the uncertainty around the true value, and this method was mostly imple-
mented to solve the limitations of single imputation [54]. The analysis is done on a data 
set using the various missing data techniques, and the average of parameter estimates 
across M samples is computed into a single point estimate. Thus, multiple imputation 
technique comprises of three distinct phases:

•	 Missing data is handled in M resulting in M complete data sets.
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•	 The M complete data sets are then analysed.
•	 The results of all the M imputed data sets are combined for the final imputation 

result.

Though multiple imputation is set up as a standard methodology for dealing with miss-
ing values, it is important for researchers to utilize appropriate techniques for imputa-
tion, to guarantee that dependable results are obtained when experimenting with this 
approach [55]. Furthermore, performance may be affected negatively when carrying out 
imputation on real data such as survey data, clinical data and industrial data which may 
be characterized by a high rate of missingness and a great number of factors that are 
not necessarily linearly related. Also, traditional multiple imputation methods seem to 
perform poorly on high dimensional data and researchers have resorted to improving 
these algorithms to enhance their performance [56, 57]. Similarly, there is also evidence 
that caution should be made for continuous-based techniques when imputing categori-
cal data as this may lead to biased results [58].

We discuss the approaches on the literature on multiple imputation: the research-
ers in Horton et  al. [58], experimented on a technique that accurately imputed miss-
ing values on a patient data set using multiple imputation using Least Squares Support 
Vector Machine (LSSVM). Five datasets were used to determine the performance of the 
proposed method. The evaluation results illustrated that their method outperformed 
conventional imputation methods and that the study was a more robust technique that 
generated values closer to the one that was missing. Moreover, the author also proposed 
another method Clustered Z-score Least Square Support Vector Machine (CZLSSVM) 
and demonstrated its efficiency in two classification problems for incomplete data. Their 
experimental results also indicated that the accuracy of the classification was increased 
with CZLSSVM, and that the algorithm outperformed other data imputation approaches 
like SVM, decision tree, KNN, rough sets and artificial neural networks. In another 
study de Goeij et al. [59], the authors also proposed a multiple imputation method for 
clinical practice data. The results of the method gave unbiased estimates and standard 
errors, on MCAR or MAR missing mechanisms. Also, the prediction model specifica-
tion was adequate, though it may have required the help of a statistician. However, their 
multiple imputation technique performed better than the other conventional methods. 
There has been a study also by Khan and Hoque [39], that explored a multiple imputa-
tion approach that extended multivariate imputation by chained equation for big data. 
The approach had presented two variants one for categorical and the other numeric data 
and implemented twelve existing algorithms for performance comparison. The experi-
mental results of the experiment with four datasets demonstrated that the method per-
formed better for the imputation of binary and numeric data.

Imputation methods inspired by machine learning

Imputation methods built on machine learning are sophisticated techniques that mostly 
involve developing a predictive approach to handle missing values using unsupervised or 
supervised learning. As other imputation methods these techniques estimate the miss-
ing data estimation depending on the information available from the non-missing values 
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in the data using labelled or unlabelled data. Mostly if the available data has useful infor-
mation for handling the missing values, an imputation high predictive precision can be 
maintained. We discuss some of the most researched on machine learning imputation 
techniques below.

K nearest neighbour classification

The KNN algorithm works by classifying the nearest neighbours of missing values and 
use those neighbours for imputation using a distance measure between instances [60]. 
Several distance measures such as the Minkowski distance, Manhattan Distance, Cosine 
Distance, Jaccard Distance, Hamming Distance and Euclidean distance can be used for 
KNN imputation, however the Euclidean distance is reported to give efficiency and pro-
ductivity [61, 62] and therefore is the most widely used distance measure. We further 
explain the KNN imputation using the Euclidean distance measure below:

where Distxy is the Euclidian distance, k is data attributes j = 1, 2, 3 . . . k , k data dimen-
sions, (Xik) : value for j − attribute containing missing data and (Xjk) is the value of j − 
attribute containing complete data.

The value of the k points that have a minimum distance are chosen then Weight Mean 
Estimation is calculated.

where Xk is the mean estimation, J is the number of parameters used with j = 1,2,3…K. vj 
are complete values on attributes containing missing data while wj is the nearest neigh-
bors observed. The weighted value is then given by the following equation:

The KNN imputation technique is flexible in both discrete and continuous data and can 
also be implemented as a multiple missing data handler [1, 60]. However, KNN imputa-
tion has drawbacks such as low precision when imputing variables and introduces false 
associations where they do not exist [63]. The other weakness of KNN imputation is that 
it searches through all the data set, hence increasing computational time [64]. However, 
there are approaches in literature that have been developed to improve the KNN impu-
tation algorithm for missing values problems, see [65–70].

A KNN imputation using several cases with different mechanisms and missing data 
models was proposed [71]. The authors concluded that their method performed well in 
handling missing values. However, the research did not follow any missing value mech-
anism when manually removing the data for the experiment, which may lead to bias 
results.

(10)Distxy =

√

√

√

√

m
∑

k=1

(Xik − Xjk)
2

(11)Xk =

∑J
j=1wjvj

∑J
j=1 wj

(12)wj =
1

dis(x,y)2
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In another research, the authors introduced an iterative KNN imputation method 
which was an instance-based technique that took advantage of the correlation on the 
attributes by using grey relational grade as an alternative for Euclidean distance meas-
ure to search k-nearest neighbour instances. The imputed data was predicted from these 
nearest neighbour instances iteratively. This iterative imputation permitted all values 
from the preceding iteration to be used for missing value estimation. Also, the method 
was reported to fill in all the missing values with dependable data regardless of the miss-
ing rate of the dataset. The experimental results suggested that the proposed method 
resulted in a better performance than other methods regarding imputation accuracy and 
convergence speed [72]. However, the dataset that was used here had originally no miss-
ing values and the missing values been imputed at random not considering other miss-
ing values mechanisms which may have led to unrealistic results.

In another research, a novel grey relational analysis approach for incomplete instances 
using the KNN imputation technique was experimented on [73]. The approach was 
experimented on four datasets with different artificial missingness set-ups to investigate 
the performance of the imputation. The experiential results of the study demonstrated 
that the approach was superior to traditional KNN imputation. Furthermore, the clas-
sification accuracy could be maintained or improved by using this approach in classifica-
tion tasks.

Another study developed a novel K nearest neighbour (KNN) incomplete-instance 
based imputation approach called CVBkNN, which utilized cross-validation to improve 
the parameters for each missing value [74]. Eight different datasets were used for the 
experiment. The results of the study demonstrated that their approach was superior to 
other missing values approaches. They also displayed the optimal fixed parameter set-
tings for KNN imputation for software quality data. Their approach proved to improve 
classification accuracy or at least maintained it. However, determining additional mean-
ingful parameters for configuration could have improved the study’s accuracy further.

In another study by Batista and Monard [75], the KNN algorithm was experimented 
to evaluate its efficiency as an imputation method to treat missing data and compared 
its performance to other algorithms such as by the C4.5 and CN2 and the mean or mode 
imputation method. In the experiment missing values were artificially implanted, in dif-
ferent rates and attributes, into the data sets. The KNN algorithm performed well even 
in the presence large amount of missing data compared to the other algorithms.

A genetic algorithm enhanced k-nearest neighbour for handling missing values named 
EvlKNNImpute was also proposed in this study. The KNNImpute has showed effec-
tive compared to other methods used in imputation using the yeast dataset [76]. Their 
approach also proved to perform better when there was an elevated level of missing rate 
in a data than a small missing rate.

In another study, the authors incorporated correlation matrix for KNN algorithm 
design. The least-squares loss function was used to minimize the reconstruction error 
and reconstruct every test data point by using all training data points. Their method, 
compared with traditional KNN methods, proved to achieve a higher accuracy and effi-
ciency [77]. However, like many other kinds of research in data imputation this study 
did not consider the influence of missingness mechanisms and patterns on imputation 
performance.
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The KNN imputation method has been highly researched for imputation since it 
has proved in literature to perform better than other imputation approaches as seen 
in the reviews above. However, none of the studies systematically analysed the effects 
of imputation ordering in the KNN imputation performance. Moreover, there is still 
no proven common resolution to select the optimized KNN parameters for imputa-
tion. Although some researchers use different missingness scenarios to evaluate their 
approaches, the significance of the influences of this missingness mechanisms are 
often neglected. Also, the use of KNN in the big data setting is still an under-explored 
area.

Support vector machine (SVM)

Another common machine learning algorithm that is extensively used for missing data 
handling is the SVM [78, 79]. The SVM, for a labelled training sample, efforts to discover 
an optimal separating hyper-plane such that the distance from the hyper-plane to the 
nearest data points is maximized [80]. The hyper-planes are defined by

where w is a weight vector, x is an input vector and b is bias.
Like other machine learning algorithms, the imputation of missing values with this 

method can impact the accuracy and utility of the resulting analysis. Authors of Hong-
hai et al. [78], used the SVM regression-based method for missing data imputation. The 
experimental procedure set the decision attributes as the condition attribute and the 
condition attribute as the decision attribute, then SVM regression predicted the condi-
tion attribute values. The experimental results proved that the SVM regression approach 
had the highest precision on the SARS data set. However, the experiment did not report 
any use of missing value patterns, ratios or mechanisms used. Also, in Smola et al. [81], 
the authors demonstrated an SVM and Gaussian processes for missing data handling 
using exponential families in feature space. In this research estimation with missing val-
ues become a problem of computing marginal distribution and finding efficient optimi-
zation methods. In another approach [82], the authors replaced the missing values by 
using the results obtained from applying the SVM classifier over the training set and 
used an SVM regression to handle the values. The authors experimented using the SVM 
classifier as an imputation approach because it was reported to perform well on text cat-
egorisation problems in Joachims [83]. However, the results of the study concluded that 
the SVM regression approach gave a much better performance compared to the SVM 
classifier and other classification and regression approaches, though this might have 
been influenced by the imbalanced dataset used for the experiment. Since imbalanced 
data may contribute to the increase of performance of SVM regression.

In Chechik et  al. [84], handled missing values by max-margin learning framework. 
They formulated an objective function, which used geometric interpretation of the mar-
gin, that aimed to maximize the margin of every sample in its own relevant subspace. 
They also showed two approaches for optimizing the general case: an estimation that 

(13)w · x1 + b ≥ +1 when yi = +1

(14)w · x1 + b ≤ −1 when yi = −1
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can be solved as a standard quadratic problem and an iterative approach for solving the 
exact problem. Their methods saved computational time by avoiding the pre-processing 
step. More importantly, they demonstrated an elegant missing value handling approach 
which outperformed other methods when the missing values had a significant structure, 
and the approach also proved to be competitive compared with other techniques when 
the values are missing at random.

Decision tree

The decision tree is a machine learning algorithm that illustrates all conceivable out-
comes and the paths leading to those outcomes in the form of a tree structure. Missing 
values imputation using this method is done by building decision trees to observe the 
missing values of each variable, and then fills the missing values of each missing vari-
able by using its corresponding tree [85]. The missing values prediction is then shown 
in the leaf node. Additionally, this algorithm can handle both numerical and categorical 
variables, identify the most variables and eliminate the rest. However, decision trees can 
produce a complex tree that tend to be time consuming but have a low bias [86].

Several researchers [82, 87–89] have used decision trees for imputation, and we dis-
cuss their input. A decision tree and forest technique for the imputation of categori-
cal and numerical missing values was proposed. The technique identified horizontal 
segments in the data set where the records belonging to a certain segment had higher 
similarity and attribute correlations. The missing data were then imputed using the simi-
larity and correlations. Nine real life data sets were used to compare the technique to 
other existing ones using four regularly used evaluation criteria [87]. Their experimental 
results indicated a clear superiority of the technique. However, an improvement on their 
technique for attaining a better computational complexity, and memory usage may be 
needed.

Also, in a by Gimpy and Rajan Vohra [88], a missing values approach using a decision 
tree algorithm. A student data set with missing values was used and a classification algo-
rithm was implemented for comparing accuracy with incomplete data and after imputa-
tion. As a result, accuracy was higher on imputed data set as compared to incomplete 
data set. However, in this study there was no report on missingness ratios or mecha-
nisms considered.

In another paper Rahman and Islam [89], the authors presented a missing value han-
dling technique, using decision trees and expectation–maximization algorithm. They 
argued that the correlations among the attributes in the horizontal partition of a data 
set could be higher than the correlations over the whole data set. Also, that expectation 
maximization performance on higher correlations data is expected to be better than on 
lower correlations data set. Therefore, they applied expected maximization imputation 
on various horizontal segments of the data with high correlations between the attrib-
utes. Also, various patterns of missing values with different missing ratios were used and 
the experimental results indicated that their approach performed significantly better.

Another study replaced the missing values by applying the Decision Trees approach. 
The authors pruned the decision tree by learning the pruning confidence over a train-
ing set and predicted probabilities keeping the minimum number of instances per leaf 
to 2. The method was proposed with other methods for handling missing data and the 
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author concluded that the results of different approaches were dataset dependent, and 
no approach was a solution for all [82].

The three most used decision tree learning algorithms are: ID3, C4.5 and CART​.

•	 CART: Classification and Regression Trees (CART) addresses both continuous and 
categorical values to generate a decision tree and handle missing values. The algo-
rithm identifies a twofold rule based on one indicator variable that segments the 
data into two nodes by minimizing variance of the outcome within each node. The 
tree is then developed by proceeding this splitting recursively until reaching a stop-
ping point determined by the tuning parameters. Imputation is then made from 
a regression tree by identifying the terminal node to which a new subject belongs 
and sampling from the outcomes in that node [90]. An attribute selection measure 
Gini Indexing is used in CART to build a decision tree which unlike ID3, C4.5 does 
not use probabilistic assumptions. Also, CART generates binary splits that produce 
binary trees which other decision tree methods do not. Furthermore, this method 
uses cost complexity pruning to remove the unreliable branches from the decision 
tree to improve accuracy and does not rely upon distributional assumptions on the 
data [91].

•	 ID3: This is a decision tree technique that can be built in two stages: tree building 
and pruning. A top-down, greedy search is applied through a given set to test each 
attribute at every tree node. Then information gain measure is used to select the 
splitting attribute. It only accepts categorical attributes when building a tree model 
and does not give precise outcome when there is noise. Continuous missing values 
can be handled by this method by discrediting or considering the value for the best 
split point and taking a threshold on the attribute values. This method does not sup-
port pruning by default; however, it can be done after building a data model [91].

•	 C4.5: This algorithm was developed after the ID3 algorithm and handles both con-
tinuous and categorical values when constructing a decision tree. C4.5 addresses 
continuous attributes by separating the attribute values into two portions based on 
the selected threshold such that all the values above the threshold is regarded as one 
child and the remaining as another child. Gain Ratio is used as an attribute selection 
measure to construct a decision tree. The algorithm handles missing values by select-
ing an attribute using all instances of a known value for information gain calculation. 
Instances with non missing attributes are then split as per actual values and instances 
with missing attribute are split proportionate to the split off known values. A test 
instance with missing value is then split into branches according to the portions of 
training examples into all the child nodes [92]. The algorithm withdraws bias infor-
mation gain when there are many output values of an attribute.

Another popular form of the Decision trees approach is the Random Forest algorithm, 
which is a stack of decision trees through bagging which combines multiple random pre-
dictors to aggregate predictions the prediction rule is based on the majority vote or aver-
age over all trees. Forests can achieve competitive or even superior prediction strengths 
in comparison to well established approaches such as regression and support vector 
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machines [93]. The process of imputing missing values with the random forest includes 
the following steps as discussed by Breiman [94]: 

1.	 Selecting a random sample of the observations with replacement;
2.	 A set of variables are then selected at random;
3.	 A variable providing the best split is chosen;
4.	 The step of choosing a variable that produces the best split is repeated until the max-

imum depth is reached;
5.	 The steps above are repeated until the certain number of trees is reached;
6.	 A prediction of the missing value is then done upon a majority vote.

There are several studies in literature [95, 96], where Random Forests were used for han-
dling missing values. In a study by Hong and Lynn [97] an extensive simulation study 
that involved missing at random simulated datasets using random forest imputation and 
evaluated in comparison with predictive mean matching.

Clustering imputation

Clustering methods, such as hierarchical clustering and k-means clustering have been 
generally experimented for missing data handling in the literature. The K-means cluster-
ing technique consists of 2 steps where, in the first step K-means clustering is used to get 
clusters, then the cluster information is used to handle the missing values [98]. However, 
clustering methods are reported to not be robust enough to handle the missing data 
problem. The clustering method can be defined as follows [99]:

Given a data set T = t1, t2, . . . tp, . . .TNp where Tp is a feature vector in the Nd-dimen-
sional feature space, this feature vector t is a single data point and Np is the num-
ber of patterns in T, then the clustering of T is the partitioning of T into K clusters 
C1,C2, . . . ,CK  satisfying the following conditions:

•	 Every feature vector has to be assigned to a cluster 

•	 With at least one feature vector assigned to it 

•	 Each feature vector is assigned to one and only one cluster 

 where k  = kk .

In study by Gajawada and Toshniwal [98], a missing value imputation method was pro-
posed based on K-means clustering. The proposed method was applied to clinical data-
sets from the UCI Machine Learning Repository. The method proved to perform better 
than the simple method that did not use imputed values for further imputations. How-
ever, errors in earlier imputations may have propagated to further imputations. Hence 

(15)
K
⋃

k=1

Ck = T

(16)Ck  = φ, k = 1, . . . ,K

(17)Ck

⋂

Ckk = φ



Page 16 of 37Emmanuel et al. J Big Data           (2021) 8:140 

this point should be considered when applying methods like the proposed method on 
real world datasets. In another paper, a clustering-based non-parametric kernel-based 
imputation technique, called Clustering-based Missing value Imputation (CMI), was 
proposed for dealing with missing values in target attributes [100]. The experimental 
results demonstrated the algorithm was an effective method in creating inference for 
variance and distribution functions after clustering. However, the approach did not con-
sider missing values in conditional attributes and class attributes. There has also been 
advances in imputing big data based on clustering, Besay Montesdeoca et  al. [101] 
proposed a big data k-means clustering, and a big data fuzzy k-means missing values 
approach that resulted in robust and efficient output for big data and offered reasonable 
execution times. The two imputation techniques surpassed in most cases mean imputa-
tion and elimination of the instances with lost values during classification. Offer robust 
and efficient results for Big Data datasets, offering reasonable execution times. The fuzzy 
k-means approach was proved to provide better results for high percentages of miss-
ing values in the data, while the k-means performed better with the dataset that had 
lower amounts of missing values. Zhang et al. [102], also proposed a multiple imputation 
clustering based approach that handled missing values in big longitudinal trial data in 
e-Health. The proposed concept proved that it could be easily adapted for different types 
of clustering for big incomplete longitudinal trial data in eHealth services.

Ensemble methods

Ensemble methods are strategies that make multiple models and then combine them to 
produce a single improved result. This method usually produces more precise results 
than a single model would. This has been the case in machine learning competitions, 
where the triumphant models used ensemble techniques [103]. Studies have confirmed 
that ensemble missing data handling algorithms outperform single base machine learn-
ing algorithms [104–108]. Also, ensemble methods can be implemented in parallel com-
puting environments, which are necessary to process missing data in big datasets. These 
ensemble algorithms are a group of techniques that their decisions are combined in a 
way to optimize the execution of a specific algorithm [109]. Developing an ensemble 
involves of certain steps which are creating varied models and merging their estimates 
(see Ensemble Generation). It is to be noted that ensemble techniques are best suited 
mostly where the highest possible accuracy is desired [110]. Before an ensemble is cre-
ated there need to be a strategy in-order to build an ensemble that is as diverse as pos-
sible. This is because building the best ensemble method depends much on the problem 
that is being handled [111]. They are several ensemble strategies that are used, and these 
include but are not limited to Bagging, Boosting and Stacking.

Ensemble Generation The general ensemble algorithm creation which was formal-
ized by [112] consists of two steps as stated above. The steps involve selecting points 
(creating varied models) and fitting coefficients (merging their estimates) which are 
explained in detail below. 
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1.	 Selecting points {qm}MI

1:	 T0(x) = 0
2:	 For m = 1 to M
3:	 qm =

argmin
q

∑

i∈Sm(η)
L
(

yi,Tm−1(Xi)+ F(xi; q)
)

4:	 Fm(x) = F(x; qm)
5:	 Tm(x) = Tm−1(x) + ν·Fm(x)
6:	 write{Fm(x)}

M
I

  

2.	 Choose coefficients {cm}MO  After all the base learners {Fm(x)}MI  = {F(x; qm)}MI  have 
been selected the coefficients are obtained by linear regression: 
{

ˆcm
}

= argmin
∑N

I=1 L
(

yi, co+
∑M

m=1 cmFm(xi)
)

� · Q(c) , where Qc is the complex-

ity penalty and � represents the meta-parameter. The other three parameters L, η ν , L 
represent the loss function, η is responsible for data distribution and S(η) represents a 
random sample that is the same size or less than the original data. If the values of η are 
smaller the diversity of the ensemble will increase, also, η influences computing time. 
ν , regulates the alarms to the loss function.

The algorithm explains the start of an ensemble T0 with a function (Line 1) which can be 
zero or any other constant. Then a leaner Fm is included into the process. Tm − 1 displays 
the ensemble of the base learners till m− 1 . qm = argminq . . . finds the lowest error base 
leaner on a selected data set. That is a base learner is chosen that when combining with 
other selected learners best approximates the response. The new base leaner is then added 
to the ensemble which is represented by Fm . After M base learner have been created the 
algorithm ends the process.

Bagging: This is a combination method where each ensemble is trained using dis-
similar training sets which are generated by sampling the original set, choosing N items 
uniformly at random with replacement [113]. The missing values predictions of the algo-
rithms are then combined by averaging or voting. One major high notes of bagging it is 
that it is a standout and simple ensemble methods to implement and has great execution.

AdaBoost: Boosting is the procedure of taking weak learning missing handling algorithms 
and turning them into strong learning algorithms. Like bagging, boosting also re-samples 
data to create ensembles, which are then combined by majority voting. However, similari-
ties end there. Different variations of Boosting have been done and proved to be good as far 
as expectation exactness in an assortment of uses. Its major drawback is the slow training 
speed of boosted trees [114]. However, the highlight of AdaBoost is that it can be utilised to 
enhance the performances of other data mining algorithms regardless of their nature [115].

Stacking: Stacking is a mechanism that combines different types of models that have 
been learned in the task into one. The missing value predictions of different models gives 
an input on a meta-level classifier and the output of this meta classifier will be the final 
prediction [116]. The major component in stacking is the optimal features and the algo-
rithm for learning at the meta-level [117]. Instead of choosing one generalisation out 
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of multiple generalisations, stacking combines them by using the output of base classi-
fiers as inputs into the new space, stacking then makes predictions from new space. The 
stacking is also considered as an ensemble for further research in the context of base-
level classifiers created by different learning algorithms [118].

Approaches in literature on missing values handling using ensemble methods are dis-
cussed in the following. Authors in Khan et al. [119], proposed a bootstrapping ensemble 
to model uncertainty and variety in the data that has high missingness. They performed 
an extensive evaluation of their approach by varying the missingness ratio of the missing 
data. Their results illustrated that bootstrapping is the most robust method for miss-
ing value imputation even at a high missingness ratio of up to 30 percent. However, for 
a small missingness ratio of 10 percent the ensemble strategy performed equivalently 
to other approaches but better than single imputation. Furthermore, the study was car-
ried out using the MCAR missingness mechanism only, making their findings to be valid 
solely for this type of missingness.

Also, in another study Aleryani et al. [120] the authors proposed a Multiple Imputa-
tion Ensembles approach for handling with missing data in classification problems. They 
combined multiple imputation and ensemble techniques and compared two types of 
ensembles namely, bagging and stacking. The approach was termed robust as 20 bench-
mark datasets from the UCI machine learning repository were used. An increasing 
amount of missing data completely at random was simulated for all the data sets. It was 
reported that the approach performed well. However, it was not possible for the exper-
iments results to be directly compared to other works on related work since different 
datasets and experimental set-ups were used.

Moreover, in Wang and Chen [121], a new approach for missing data using a three-way 
ensemble algorithm based on the imputation result was proposed. The objects with no miss-
ing values were firstly clustered by using a clustering method, then missing objects were filled 
using mean attributes of each cluster. The experimental results of the study on UCI machine 
learning repository data sets verify that the proposed algorithm was effective. However, like 
many other approaches in literature a missing value mechanism was not considered.

Also, in Madhu et  al. [122], the researchers developed a novel ensemble imputation 
approach named the missXGBoost imputation technique. The technique has proven to 
be suitable for continuous attributes of medical applications. The missXGBoost method 
imputed plausible missing values in the original dataset and evaluated the classifier 
accuracy. The study experimental results demonstrated that the proposed imputation 
approach accuracy was better than the other traditional imputation methods. Further-
more, the method could be applied to high-dimensional mixed-type attributes data sets.

In another research a bagging and boosting ensemble algorithms as methods for han-
dling missing data was proposed [123]. The proposed technique was compared with the 
existing methods by simulation and then applied to analyse a real large dataset to obtain 
realistic results. The researchers concluded that there is a lot of work to further experi-
ment with their approach.

Table  1, presents a summary of different techniques in literature that used machine 
learning techniques to handle missing values. We present the general objective of the 
studies, the type of data set they used for their experiments, the missing mechanism fol-
lowed and the limitations of the studies.
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Performance metrics for missing data imputation
The performance evaluation of different missing values approaches in machine learn-
ing problems can be done using different criteria, on this section we discuss the most 
used which are, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE) and Area under the curve (AUC).

Mean Absolute Error (MAE)

MAE measures the average difference between imputed values and true values defined 
as:

Mean Squared Error (MSE)

While MSE is equal to the sum of variance and squared predicted missing value as in the 
following equation:

Root Mean Square Error (RMSE)

RMSE computes the difference in imputed values and actual values as follows:

MSE measures the average squared difference between the predicted missing values 
and the actual value, while RMSE represents the standard deviation of the differences 
between estimated missing values and observed values. Where m is the number of 
observations, yi is the observed values and ȳi is the estimated missing value. A small 
value as an output for these performance metrics means that the estimated value is close 
to the real value.

Area under the curve (AUC)

AUC is the representation of the degree or measure of separability and is used as a sum-
mary of the Root Receiver Operator Characteristic (ROC) curve, which is curve is a vis-
ualisation graph representing imputation performance [143]. The AUC is represented 
by the true positive rate (TPR) and the false positive rate (FPR). Where the TPR is the 
proportion of correctly imputed positives of all positives and the TPR is the proportion 
of all negatives that are wrongly imputed as positives [144]. The true positive rate and 
the false positive rate are defined as:

(18)MAE =
1

m

m
∑

i=1

∣

∣yi − ŷi
∣

∣

(19)MSE =
1

m

m
∑

i=1

(yi − ȳi)
2

(20)RMSE =

√

√

√

√

1

m

m
∑

i−1

(yi − ȳi)2

(21)TPR =
TP

TP + FN
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The major advantages of the MSE and RMSE is that they provide a quadratic loss func-
tion. Also, uncertainty in forecasting is measured when they are used. However, MSE 
and RMSE are highly influenced by extreme values [145]. While MAE is not influenced 
by extreme values, also a more natural measure and unambiguous [146]. Most stud-
ies in research are found to mostly use the RMSE for missing value imputation evalu-
ation [147–149]. Although some studies have proposed valid evidence against the use 
of RMSE in favour of MAE due to its less sensitive to extreme values [150]. The authors 
further advised against the reporting of RMSE in literature and strongly recommended 
the use of MAE [146, 150]. However, Chai and Draxler [145] partially disputed the con-
clusions and introduced arguments against avoiding RMSE. They contended that RMSE 
was appropriate to represent model performance than the MAE. The AUC like other 
performance measures also has its advantages, it allows for a visualised graphical rep-
resentation of imputation performance and is also unaffected by abnormal distributions 
in the population and decision criterion [151]. However, actual decision thresholds are 
usually not represented by AUC graph and it overlooks the probability of predicted val-
ues and the goodness-of-fit of the model [152]. Discussions on which metric to use in 
literature have proven that performance measures are not equivalent to each other, and 
one cannot easily derive the value of one from another. Nonetheless, all distance meas-
urements (MSE, RMSE, MAE and AUC) help to quantify the accuracy of the estimated 
solution compared to the actual non-missing data and an appropriate method must be 
selected for the most appropriate analysis for the question being addressed.

Comparisons
In this section, we discuss observations made, and present a comparative analysis 
on performance matrices, publications made and the year of publication for different 
research.

Evaluation metrics

Table 2 shows details of different selected articles that were researched on missing data 
handling using different techniques and the journals, books, conference they were pub-
lished on. We selected articles in Table  3 for metrics used to evaluate different miss-
ing values handling approaches. The selection is based on whether the article covers the 
most popular evaluation methods.

Experimental evaluation on machine learning methods

An experimental evaluation on two of the most representative machine learning tech-
niques on two datasets was done to show experimental results. Considering the pos-
sible variability on performances of algorithms, the experiment was done on more than 
one algorithm based on the Iris and ID fan datasets. The Iris dataset is a very popular 
dataset which was originally published at UCI Machine Learning Repository introduced 
by Fisher [177], for an application of discriminant analysis for three species of Iris flow-
ers (setosa, versicolor, and virginica), having four variables being length and width of 

(22)FPR =
FP

FP + TN
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Table 2  Details of selected articles for missing values handling

Citation Year Publisher Article Journal/conference/book 
chapter

[153] 2020 Applied Science Missing value imputation in 
stature estimation by learning 
algorithms using anthropo-
metric data: a comparative 
study

Multidisciplinary Digital Pub-
lishing Institute

[139] 2020 Applied Science Evaluating machine learning 
classification using sorted 
missing percentage tech-
nique based on missing data

Multidisciplinary Digital Pub-
lishing Institute

[154] 2020 Biometrical Journal Multiple imputation methods 
for handling missing values 
in longitudinal studies with 
sampling weights: compari-
son of methods implemented 
in Stata

Wiley Online Library

[155] 2019 Applied Artificial Intelligence Comparison of performance 
of data imputation methods 
for numeric dataset

Taylor and Francis

[8] 2006 Elsevier A gentle introduction to 
imputation of missing values

Journal of clinical epidemiol-
ogy

[127] 2017 Elsevier Adjusted weight voting 
algorithm for random forests 
in handling missing values

Pattern Recognition

[60] 2017 Elsevier kNN-IS: an Iterative Spark-
based design of the k-Nearest 
Neighbors classifier for big 
data

Knowledge-Based Systems

[156] 2021 Elsevier Ground PM2. 5 prediction 
using imputed MAIAC AOD 
with uncertainty quantifica-
tion

Environmental Pollution

[157] 2021 Elsevier A neural network approach 
for traffic prediction and 
routing with missing data 
imputation for intelligent 
transportation system

Expert Systems with Applica-
tions

[158] 2021 Elsevier Handling complex missing 
data using random forest 
approach for an air quality 
monitoring dataset: a case 
study of Kuwait environmen-
tal data (2012 to 2018)

Multidisciplinary Digital Pub-
lishing Institute

[159] 2021 Elsevier HA new method of data 
missing estimation with 
FNN-based tensor heteroge-
neous ensemble learning for 
internet of vehicle

Neurocomputing

[111] 2006 IEEE Ensemble based systems in 
decision making

IEEE Circuits and systems 
magazine

[160] 2010 IEEE Missing value estimation for 
mixed-attribute data sets

IEEE Transactions on Knowl-
edge and Data Engineering

[161] 2014 IEEE Modeling and opti-
mization for big data 
analytics:(statistical) learning 
tools for our era of data 
deluge

IEEE Signal Processing Maga-
zine

[2] 2014 IEEE Handling missing data prob-
lems with sampling methods

2014 International Confer-
ence on Advanced Network-
ing Distributed Systems and 
Applications
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Table 2  (continued)

Citation Year Publisher Article Journal/conference/book 
chapter

[123] 2018 IEEE An imputation method for 
missing data based on an 
extreme learning machine 
auto-encoder

IEEE ACCESS

[162] 2018 IEEE A data imputation model in 
phasor measurement units 
based on bagged averaging 
of multiple linear regression

IEEE ACCESS

[163] 2018 IEEE Missing network data a 
comparison of different 
imputation methods

2018 IEEE/ACM International 
Conference on Advances in 
Social Networks Analysis and 
Mining (ASONAM)

[164] 2018 IEEE MIAEC: missing data imputa-
tion based on the evidence 
chain

IEEE ACCESS

[165] 2018 IEEE A survey on data imputation 
techniques: water distribution 
system as a use case

IEEE ACCESS

[166] 2019 IEEE Missing values estimation on 
multivariate dataset: compari-
son of three type methods 
approach

International Conference on 
Information and Communica-
tions Technology (ICOIACT)

[122] 2019 IEEE A novel algorithm for missing 
data imputation on machine 
learning

2019 International Conference 
on Smart Systems and Inven-
tive Technology (ICSSIT)

[167] 2020 IEEE Approaches to dealing with 
missing data in railway asset 
management

IEEE ACCESS

[168] 2020 IEEE Traffic data imputation and 
prediction: an efficient realiza-
tion of deep learning

IEEE ACCESS

[169] 2020 IEEE Iterative robust semi-super-
vised missing data imputa-
tion

IEEE ACCESS

[170] 2021 IEEE Missing network data a com-
parison of different imputa-
tion methods Neighborhood-
aware autoencoder for 
missing value imputation

2020 28th European Signal 
Processing Conference 
(EUSIPCO)

[171] 2021 IEEE Hybrid missing value imputa-
tion algorithms using fuzzy 
C-means and vaguely quanti-
fied rough set

IEEE Transactions on Fuzzy 
Systems

[56] 2016 SAGE Publications Multiple imputation in the 
presence of high-dimensional 
data

Statistical Methods in Medical 
Research

[172] 2020 Sensors A method for sensor-based 
activity recognition in missing 
data scenario

Multidisciplinary Digital Pub-
lishing Institute

[31] 2012 Springer Analysis of missing data Missing data

[65] 2015 Springer CKNNI: an improved knn-
based missing value handling 
technique

International Conference on 
Intelligent Computing

[126] 2015 Springer Missing data imputation by K 
nearest neighbours based on 
grey relational structure and 
mutual information

Applied Intelligence
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the sepal and the petal (in cm). We also experimented on an Induced draft fan (ID fan) 
dataset from a local coal-fired power plant where real data of a coal power plant fan 
system was recorded. The dataset contains readings for the month of February 2021 of a 
single unit of the power plant. The ID fan vibrations are measured by sensors and were 
recorded by the technicians every 4 h when the plant was running. These variables spe-
cifically consist of bearing vibrations and temperatures, at the fan non-drive end (FNDE) 
and fan drive end (FDE), motor temperatures and vibrations, at the motor non-drive 
end (MNDE) and motor drive end (MDE). The values of the ID fan are recorded as part 
of the daily power plant monitoring system. Both the Iris and ID Fan datasets contain 
150 instances with no missing values. Our method simulates the missing values on sepal 
length and petal width of the Iris data and the Vibrations on the ID fan data. The tar-
get missingness fraction was set to MCAR by setting the probability of a value to being 

Table 2  (continued)

Citation Year Publisher Article Journal/conference/book 
chapter

[63] 2016 Springer Nearest neighbor imputa-
tion algorithms: a critical 
evaluation

BMC medical informatics and 
decision making

[105] 2017 Springer Multiple imputation and 
ensemble learning for classifi-
cation with incomplete data

Intelligent and Evolutionary 
Systems

[68] 2018 Springer NS-kNN: a modified k-nearest 
neighbors approach for 
imputing metabolomics data

Metabolomics

[136] 2019 Springer Analysis of interpolation algo-
rithms for the missing values 
in IoT time series: a case of air 
quality in Taiwan

The Journal of Super comput-
ing

[39] 2020 Springer Open SICE: an improved missing 
data imputation technique

Journal of Big Data

[138] 2020 Springer BEST: a decision tree algo-
rithm that handles missing 
values

Computational Statistics

[173] 2020 Springer A new multi-view learning 
machine with incomplete 
data

Pattern Analysis and Applica-
tions

[140] 2021 Springer Multistage model for accurate 
prediction of missing values 
using imputation methods in 
heart disease dataset

Innovative Data Commu-
nication Technologies and 
Application

[14] 2021 Springer A new imputation method 
based on genetic program-
ming and weighted KNN for 
symbolic regression with 
incomplete data

Soft Computing

[174] 2021 Springer An exploration of online 
missing value imputation in 
non-stationary data stream

SN Computer Science

[175] 2021 Springer Data imputation in wireless 
sensor network using deep 
learning techniques

Data Analytics and Manage-
ment

[176] 2020 Sustainable and Resilient 
Infrastructure

Handling incomplete and 
missing data in water net-
work database using imputa-
tion methods

Taylor and Francis
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missing to 5%, 10% and 15% across all observations. RMSE performance measure was 
then used to help quantify the accuracy of the estimated values compared to the actual 
non-missing data.

After simulation of missing values, KNN imputation was implemented to replace the 
missing values. Firstly, when implementing the imputation method, the nearest neigh-
bors (K) must be chosen. The value of K was chosen based on experimental results start-
ing with K = 1 and stopped at K = 5, the best accurate estimation value of K was then 
used for the experiment which was K = 4. The Euclidean distance measure was used on 
the KNN imputation algorithm. The  RF missForest algorithm was then implemented, 
which is a nonparametric imputation method based on the random forest. For every 
variable missForest fits a random forest on the observed values and then predicts the 
missing variables. The process of training and predicting of missForest is repeated in an 
iterative process until a number of iterations are reached. The missForest ran for three 
iterations and stopped. The iterative stopping criterion was reached when the difference 
between the previously imputed values and the newly imputed data increased for the 
first time with respect to both variable types. Multiple iterations enabled the algorithm 
to be trained on better quality data that it previously predicted.

Table 3  Qualitative comparison between different missing data techniques in machine learning 
based on the performance metrics adopted

Publication Performance metrics

RMSE MAE MSE AUC​

[125] × × � ×

[129] × × � �

[74] � × × ×

[127] × × × �

[131] � � × ×

[133] � × × ×

[135] � × × ×

[136] × � � ×

[126] � × × ×

[130] � � × ×

[128] � × × ×

[139] × × × �

[138] × × × �

[140] � × × ×

[174] � × × ×

[156] � × × ×

[158] � � × ×

[170] � × × ×

[15] � × × ×

[142] × × � �

[38] × × � �

[13] � × × ×

[141] � × × ×
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Fig. 2  Comparison of KNN and RF Imputed values with the actual values on Sepal Length at 15% ratio

Fig. 3  Comparison of KNN and RF imputed values with the actual values on Petal width at 15%

Table 4  RMSE of KNN and RF imputation at different ratios on the Iris dataset

Missing ratio% KNN RF

5 0.6693 0.6486

10 0.2382 0.2860

15 0.1932 0.2578

Table 5  RMSE of KNN and RF imputation at different ratios on the ID fan dataset

Missing ratio% KNN RF

5 0.2099 0.0549

10 0.1581 0.0416

15 0.1487 0.0654
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We present  the different performances of the  KNN and RF algorithms  on  imputed 
values with the actual values at a missing rate of 15% on Figs. 2 and 3 on the Iris data-
set.  Table  4 represents the RMSE of the KNN and RF algorithms at different imputa-
tion ratios on the Iris data set. The experiment demonstrated that the KNN imputation 
performed better than the RF  imputation on the Iris dataset at 10% and 15% miss-
ingness ratios. While the RF performed better than the KNN at 5% on the Iris data-
set.  While,  Fig.  4 shows the  comparison of KNN and RF algorithms on imputed and 
actual values at a missing rate of 15% on the ID fan dataset. Table 5 shows that the RF 
performed better than the KNN on the ID fan data sets at all missing value percentages. 

Conclusion and future work
This paper provides a comprehensive review on the problem of missing values, includ-
ing missing data mechanisms, missingness types and a considerable number of miss-
ing data handling approaches, for different applications and scenarios. It also provides 
reference for researchers on choosing an appropriate method for handling missing 
values. Also, an imputation experiment was done on the KNN and RF algorithms for 
imputation on the Iris and novel ID fan datasets to demonstrate how popular impu-
tation algorithms perform. KNN imputation performed better than the  RF imputa-
tion using RMSE as an evaluation measure on the Iris data on two missingness ratios 
and the RF performed better than the KNN on the ID fan data on all missingness 
ratios. This has led to a conclusion that, the precision and accuracy of machine learn-
ing imputation algorithms depend strongly on the type of data being analysed, and 
that there is no clear indication that favours one method over the other. The review 
demonstrated existence of many limitations on existing missing vales methods. It was 
notable that RSME is mostly used as an evaluation metrics and metrics are not mostly 
used together, which is one of the main limitations of current literature and should 

Fig. 4  Comparison of KNN and RF imputed and actual values at 15% on the Id fan dataset
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be considered in future research. Also, most reviewed works show different domain 
datasets that are not as big as real world datasets, which often contain a very large 
number of diverse features. Therefore, further work is needed to explore the possibili-
ties of new methods of handling missing data in real world big data.

Appendix
The table explains some notations used on the manuscript. Table  6 illustrates the 
summary of the notations and definitions used on the paper.

Abbreviations
AUC​: Area under the curve; CART​: Classification and Regression Trees; FNDE: Fan non-drive end; FDE: Fan drive end; MEA: 
Mean Absolute Error; MDE: Motor drive end; MSE: Mean Squared Error; MNDE: Motor non-drive end; KNN: K nearest 
neighbor; MAR: Missing at random; MCAR​: Missing completely at random; MNAR: Missing not at random; RF: Random 
Forests; RMSE: Root Mean Squared Error; UCI: University of California; SVM: Support vector machines.
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b The Bias
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n The number of observed data

p The probability of missing data

q The vector indicating the missingness association
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w The weight vector
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x The input vector
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Y The matrix of an entire data set

Ym The missing data in R

Yo The observed data in R

ȳ The predicted data
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