
An empirical study on the evaluation
of the RDF storage systems
Bilal Ben Mahria*  , Ilham Chaker and Azeddine Zahi 

Introduction
We are witnessing a paradigm shift, where the ever-growing of huge amount of data
has created unprecedented challenges for traditional data processing systems [5]. In
fact, managing and processing this huge and growing volume of data represents a tre-
mendous challenge, considering their size and complexity, load time, and the desirable
response time [18]. Consequently, such challenges made the traditional systems need
new strategies to efficiently storing and retrieving data at an impressive rate [15]. As a
response to this call, the semantic repositories systems (SR) has been proposed, which
combine the characteristics of database management systems (DBMS) and the inference
engines to support efficient managing of data [18].

A semantic repository is a database management system that allows storing, query-
ing, and managing structured data. Indeed, semantic repository is still not a largely
adopted term and it is often referred to semantic graph database, reasoner, ontology
server, semantic store, metadata store, RDF database, and RDF triplestore [41]. Com-
pared to the traditional DBMSs such as relational databases, the major benefit of using

Abstract 

In this paper, we introduce three new implementations of non-native methods for stor-
ing RDF data. These methods named RDFSPO, RDFPC and RDFVP, are based respec-
tively on the statement table, property table and vertical partitioning approaches. As
important, we consider the issue of how to select the most relevant strategy for storing
the RDF data depending on the dataset characteristics. For this, we investigate the
balancing between two performance metrics, including load time and query response
time. In this context, we provide an empirical comparative study between on one hand
the three proposed methods, and on the other hand the proposed methods versus
the existing ones by using various publicly available datasets. Finally, in order to further
assess where the statistically significant differences appear between studied meth-
ods, we have performed a statistical analysis, based on the non-parametric Friedman
test followed by a Nemenyi post-hoc test. The obtained results clearly show that the
proposed RDFVP method achieves highly competitive computational performance
against other state-of-the-art methods in terms of load time and query response time.

Keywords:  RDF data, Non-native methods, Statement table, Property table, Vertical
portioning, Friedman test, Nemenyi test, Load time, Query response time

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Ben Mahria et al. J Big Data (2021) 8:100
https://doi.org/10.1186/s40537-021-00486-y

*Correspondence:
bilal.benmahria@usmba.ac.ma
Sidi Mohamed Ben Abdellah
University, 2202 Fez, Morocco

http://orcid.org/0000-0003-0208-8416
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00486-y&domain=pdf

Page 2 of 20Ben Mahria et al. J Big Data (2021) 8:100

the semantic repositories is the usage of semantic data paradigm, called RDF data model
[50]. In fact, the RDF data model gives the ability to change the data schema on the
fly without interfering with the data, discover new facts and build new data based on
semantic rules using the inference capability, and seamlessly integrate data that comes
from diverse sources [26].

Generally, semantic repository can be categorized into two categories: native and non-
native storage systems [43]. More precisely, the native storage systems can be broadly
classified as persistent disk-based [32, 36, 51] and main-memory based systems [6, 39,
52]. Within the non-native systems, the developed methods fall roughly into one of three
categories [22]: statement tables [7, 20, 29, 42], property table [4, 30, 53], and vertical
partitioning [2, 38, 47]. Even though all these approaches have been successfully applied
for storing RDF data, the problem of selecting the most appropriate system for storing
and querying the RDF data, has not been sufficiently addressed and it is a subject of
much interest currently.

In the context of this paper, we consider the issue of how to choose an appropriate
strategy for storing the RDF data. Generally, different RDF datasets and queries often
require different storage solutions. Therefore, the choice of the most appropriate and
efficient storage strategy needs balancing between loading and query response time
performance, considering several factors, related to the data scalability and the reason-
ing capability [18]. In this respect, several works have been developed to study the per-
formance of RDF stores [8, 9, 11, 19, 28, 35, 43, 45, 55] and all these studies suggested
the use of query response time as a performance metric for choosing the appropriate
RDF storage systems. However, selecting the most suitable storage system is essentially
related not only to the query response time metric but also to the load time metric.

Different from the previous research efforts, a key benefit of our work is that it allows
to categorize and empirically compare the non-native and native systems, based on dif-
ferent performance metrics, namely, the query response time and load time. What is
more, three implementations for storing RDF data based on the non-native approach,
named RDFSPO, RDFPC and RDFVP, have been proposed in this paper. These methods
are respectively based on the statement table, property table and vertical partitioning
approaches.

Thus, to demonstrate the usefulness and the performance of the proposed implemen-
tations, we have conducted several comparative experiments between the proposed
methods and the existing ones. In this respect, we have considered the native and non-
native store systems. On one hand, the non-native systems used in this study are three
proposed implementations, which are the RDFSPO, the RDFPC and the RDFVP as well
as the existing method Jena SDB.1 On the other hand, the representatives of the native
systems that have been chosen for comparison are RDF4JM,2 RDF4JD2, and TDB.3 In
addition, to ensure different reasoning capabilities and data scalability, these systems dif-
fer in their storage mechanisms and query response manner. More precisely, we have
evaluated one memory-based system (RDF4JM), two disk-based systems (RDF4JD and

1  https://​jena.​apache.​org/​docum​entat​ion/​sdb/.
2  https://​rdf4j.​eclip​se.​org/.
3  https://​jena.​apache.​org/​docum​entat​ion/​tdb/.

https://jena.apache.org/documentation/sdb/
https://rdf4j.eclipse.org/
https://jena.apache.org/documentation/tdb/

Page 3 of 20Ben Mahria et al. J Big Data (2021) 8:100 	

TDB), and four systems with persistent storage (RDFSPO, RDFPC, RDFVP and SDB).
The experimental results are evaluated in term of the load time and query response time.
Furthermore, to bring a significant reason to the obtained results, we have applied a sta-
tistical analysis based on the Friedman Test [16, 17] followed by a Nemenyi post hoc
test [16, 17] to further explore which method performs statistically. To the best of our
knowledge, no other studies report such statistical analysis for supporting the validity of
the obtained results in this field.

To summarize, the major contribution of this paper includes the following aspects: (1)
Introduce three proposed non-native implementations for storing the RDF data. (2) We
present the most appropriate performance aspects for selecting the relevant RDF stor-
age strategies, and analyze their advantages and drawbacks. (3) We provide an empirical
study based on the statistical analysis, including Friedman and Nemenyi post hoc Test.

The outline of this paper is demonstrated as follows. In “Classification Of RDF stor-
age systems” Section, we start by providing a classification of RDF storage systems. In
“Our proposed implementations” Section, we detail our proposed implementations
for Storing RDF data. In “Experiments setup” Section, we describe the aforementioned
experiments. “Experimental results and discussion” Section is devoted to introduce the
experiment studies and discussions. Finally, “Conclusion” Section concludes the paper
and suggests directions for future works.

Classification of RDF storage systems
Among the plethora of existing systems for storing the RDF data, we can distinguish
between solutions that are implementing their own storage backend, denoted as native
systems, and those that are using an existing database management system, denoted as
non-native systems. A classification of RDF data storage techniques is proposed in Fig. 1.

Fig. 1  A taxonomy of RDF storage approaches adopted from [22]

Page 4 of 20Ben Mahria et al. J Big Data (2021) 8:100

Native systems

Native systems denote systems that avoid the benefit from existing systems for storing
the RDF data. They are constructed from scratch based on indexing technique specific
to RDF data model [43]. In fact, the native systems provide greater flexibility than tra-
ditional databases and reduce the data load time. In addition, the native systems offer
many other traditional database functions, such as transaction processing, access con-
trol, logging and data recovery. More precisely, these systems can be broadly classified as
persistent disk-based and main-memory systems [43].

The persistent disk-based storage is a way to store RDF data permanently on file sys-
tem by using the most influential indexing techniques, such as B  +  tree [48], AVL[54]
and B − tree[31]. Among the existing solutions we can mention [1, 10, 12, 32, 36, 51]. It
is important to notice that, reading from and writing to disks slow the search process to
an unacceptable level and induce an important performance bottleneck [15].

To overcome this issue, the in-memory solutions were used. The in-memory based
storage allocates a certain amount of the main memory (RAM) to store the whole RDF
data. When working on RDF data stored in main memory, some of the most factors that
must be covered are the loading and parsing of RDF file [15]. Therefore, the RDF store
that uses the in-memory approach must have a memory efficient data representation
that leaves enough space for the operation of search algorithms. The following works fall
in this category [6, 10, 23, 27, 34, 44, 52, 53].

Non‑native systems

The non-native stores refer particularly to systems that use the relational database man-
agement systems (RDBMS) or other related systems to store RDF data permanently.
Currently, RDBMS is widely considered to be the best performing place for persistent
RDF data due to the great effort achieved in developing solutions that make the storage
of RDF data efficient, scalable and robust [37]. In order to discuss the RDF stores over
RDBMS, the first issue to be covered is how to map RDF data to relational tables. In this
respect, there are three storage strategies that are: statement table, property table, and
vertical partitioning [15].

The Statement table [35] is the most straightforward way to map RDF data to a rela-
tional database. As depicted in Fig. 2, it consists of creating a table with three columns
(subject, predicate, object), where each row separately corresponds to an RDF statement.
In fact, the way that all the data is combined into a large single table brings the problem
of low efficiency of the query, since a simple SELECT query needs a large number of self-
joins. Specifically, if the number of RDF statements increase, the query response time
will increase with the increment of self-joins times. In order to improve the efficiency of
queries, the indexes techniques are then added for each of the column for reducing the
cost of self-join query [35]. However, the storage of RDF triples in a single table make the
queries very slow to execute and may overtake the size of the main memory as indicated
in [36]. Many early RDF stores use statement table approach, such as [7, 20, 27, 29, 40].

Property table (PT) [3, 35] has been proposed later and can be classified into two
types: clustered property table (CP) and property-class table (PC). The former contains
clustered of properties that tend to describe the same subject (Fig. 3). The latter exploits
the “rdf: type” predicate to cluster similar sets of subjects in the same table (Fig. 4).

Page 5 of 20Ben Mahria et al. J Big Data (2021) 8:100 	

Fig. 2  Statement table approach

Fig. 3  Clustered property table (CP)

Fig. 4  Property class approach (PC)

Generally, the main idea is to discover clusters of subjects often appearing with the same
set of properties. This approach has been presented in several works like [4, 10, 30, 53].
In fact, the immediate consequence of applying PT is that the complex SPARQL que-
ries can be retrieved without an expensive self-joins. However, as indicated in [3] the PT
approach has three major drawbacks. The first one is the problem of generating many
null values, which enforces a substantial performance overhead. The second one is that
the PT cannot handle the multi-valued properties. The third one refers to the complex
queries that prove that the PT is still expensive, because most of these queries need
union clauses and joins to collect data from several tables. In this respect, an alternative
solution has been proposed, which is vertical partitioning approach.

Page 6 of 20Ben Mahria et al. J Big Data (2021) 8:100

Vertical partitioning (VP) [3, 35] refers to the vertical division of RDF statement based
on predicate. As depicted in Fig. 5, the RDF triples are divided on n tables with two col-
umns, where n is the number of unique predicate in the RDF dataset. In each of these
tables, the first column involves the subjects that are defined by the predicate and the
second column consist of the object values of those subjects. It is important to mention
that the name of predicate can be used as the table name. Compared to the PT approach,
the VP approach provides a support for multi-valued attributes, and the null values are
simply omitted from the table. In addition, for a given query only the table correspond-
ing to the properties involved in that query requires to be read, and no clustering algo-
rithm is needed to split the RDF triples into two-column. The VP approach is used in
several works as [3, 21, 38].

Our proposed implementations
In this work, we proposed an implementation of the three approaches presented in the
previous section. These implementations are named RDFSPO, RDFPC, and RDFVP,
which are based respectively on the statement table, Property tables and vertical parti-
tioning approaches.

RDF subject‑predicate‑object method (RDFSPO)

The RDFSPO method is a non-native store that consists of storing the RDF data using
the relational database as backend. Concisely, the main algorithm for implementing the
RDFSPO method is depicted in Algorithm 1. Generally, the RDFSPO method mapped
the RDF data directly onto a three column wide table SPO (subject-predicate-object).
It important to mention that our algorithms for mapping RDF data onto the relational
database are automatic and generic.

Fig. 5  Vertical partitioning approach (VP)

Page 7 of 20Ben Mahria et al. J Big Data (2021) 8:100 	

RDF property clustering method (RDFPC)

As we aforementioned in the previous section, the statement table approach has several
obvious drawbacks. More specifically, the RDFSPO method generates large amount of
unnecessary replication of information that is appeared in several rows. In this respect, in
order to bypass all the limitations introduced by the RDFSPO, another implementation is
proposed. The proposed algorithm for this implementation is given in Algorithm 2.

Page 8 of 20Ben Mahria et al. J Big Data (2021) 8:100

RDF vertical partitioning method (RDFVP)

The RDFVP method is an alternative to the RDFPC implementation, where we can omit
all the limitation of the RDFPC method (based on the property table approach) and
speed up queries over the RDF dataset. The implementation of the RDFVP method is
depicted in Algorithm 3.

Experiments setup
A set of appropriate experiments have been arranged in order to study the performance
characteristics of the RDF data management systems, analyzed in the previous sections.
For this reason, a set of well-known from the literature datasets are selected. The infor-
mation detailed of these datasets is summarized in Table 1. As proof of concept, we ran
our experimental study against four popular RDF stores including Jena TDB [15], Jena
SDB [15], RDF4jM [10], and RDF4jD [10] in addition to three proposed methods that use
the MYSQL backend, which are RDFSPO, RDFPC and RDFVP. In this context, we have
collected 17 datasets for testing the dimensional performance of these systems. Finally, it
is important to note that all the experimental simulations were conducted on a personal
computer under Windows 10, with Intel core i7 2.70 GHZ processor and 16 GB RAM.

Page 9 of 20Ben Mahria et al. J Big Data (2021) 8:100 	

Description of existing RDF storage systems

This subsection is devoted to describe the four existing systems that we have used to
demonstrate the efficiency of our proposed methods. These systems are: Jena TDB, Jena
SDB, RDF4J main memory-based (RDF4JM), and RDF4J Disk-Based (RDF4JD). Table 2
is an overview of the existing storage systems that we used in this study.

The Jena SDB [15] is the non-native persistent triple store that uses a relational database
for the storage and query RDF data. It adopts the statement table approach and basically
used for several RDBMS, such as MYSQL, PostgreSQL, Oracle, SQL server and DB2.
More precisely, the RDF statements stored are combined in tables with respectively three
or four columns. In the former (i.e., table with three columns), an SPO (subject-predicate-
object) primary key is created and additional PO and OS indexes are defined. In the latter
(i.e., table with four columns), the primary key refers to GSPO where G represents the
named graph and five additional indexes are presented: GPO, GOS, SPO, OS, and PO.

Table 2  Characteristics of proposed RDF storage systems

RDF storage system Approach Category Reasoning strategy Query language

Jena SDB Statement table Non-native Backward chaining SPARQL

Jena TDB Disk-based Native Backward chaining SPARQL

RDF4JD Disk-based Native Forward chaining SPARQL

RDF4JM Main memory-based Native Forward chaining SPARQL

Table 1  The basic statistics of datasets

a https://​www.​wikid​ata.​org
b https://​www.​cdc.​gov/​tobac​co/​data_​stati​stics/​surve​ys/​nats/​index.​htm
c https://​www.​unipr​ot.​org/
d https://​www.​cdc.​gov/​nchs/​nvss/​vsrr/​drug-​overd​ose-​data.​htm
e https://​healt​hdata.​gov/​search/​type/​datas​et
f https://​www.​cdc.​gov/​cdi/​index.​html
g https://​lod-​cloud.​net/​datas​et/​seman​tic-​web-​dog-​food
h https://​wiki.​dbped​ia.​org/​Datas​ets

Datasets #Triples #Subjects #Predicates #Objects

allSWGroupsa 345 56 19 165

Wikimoviesa 505 157 22 121

NATSb 4036 266 33 568

Tissuesc 4113 1426 7 2663

Locationsc 5374 949 17 2885

VSRRd 6221 500 13 1387

AQMNEHTNe 8000 500 16 1456

CDIf 13,462 1000 29 1493

DHDSe 14,802 1000 30 2477

DASHe 16,152 1000 33 4635

Journalsc 37,581 4473 12 29,358

Diseasesc 69,487 18,061 8 36,185

Enzymec 84,398 14,633 14 47,391

GeneSymbolc 1,19,485 17,077 7 85,345

Proteinb 1,60,537 14,635 8 1,17,034

swdfg 2,42,249 23,308 171 76,529

Geo_coordinates_enh 1,569,180 4,96,990 4 1,045,824

https://www.wikidata.org
https://www.cdc.gov/tobacco/data_statistics/surveys/nats/index.htm
https://www.uniprot.org/
https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm
https://healthdata.gov/search/type/dataset
https://www.cdc.gov/cdi/index.html
https://lod-cloud.net/dataset/semantic-web-dog-food
https://wiki.dbpedia.org/Datasets

Page 10 of 20Ben Mahria et al. J Big Data (2021) 8:100

The Jena TDB [15] is the native persistent triple store that uses the disk-based
approach for retrieving and storing RDF data. It holds three composite indexes in the
form of B  +  trees: subject-predicate-object (SPO), Predicate-object-subject (POS),
object-subject-predicate (OSP). A dataset backed by TDB is stored in a single directory
in the filing systems. This dataset consists of three components. The first one is the node
table that stores the of RDF terms. The node table is also called a dictionary. The second
one is the triple and quad indexes. Quad indexes are used for named graphs, while triple
indexes for the default graph. The third one is the prefixes table that uses a node table
and index for mapping prefixes to URIs.

RDF4J (formerly known as Sesame) [10] is an open source Java framework for storing,
querying, and reasoning with RDF and RDF Schema. It can be used as a database for
RDF and RDF Schema, or as a Java library for applications that need to work with RDF
internally. It defined the necessary tools to parse, interpret, query, and store the RDF
data, embedded in a separate database or in a remote server. Generally, RDF4J is a native
RDF store that defined a set of database implementations including the main memory
store (RDFJM) and disk-based store (RDF4JD).

Query implementation details

To test the query response time in the different RDF storage systems, we used 12 queries
that we will detail later. There are two different ways to create a query. The first method
is designing a query based on certain features and thereby evaluating the how those fea-
tures work. The second method of designing the query is based more on the real world
use cases. For our experimental study, we adopt some queries from the SP2Bench [46]
that are based on the second way combined with other queries that are constructed with
the first way. Table 3 summarizes all the tested queries in this experimental study. Gen-
erally, these queries also vary according to their characteristics as shown in Table 4.

As depicted in Table 4, the tested queries fall in one of the three following categories:
(1) star query: is the most frequently used type, it only consists of subject-subject joins
where a join variable is represented by the subject piece of all the triple patterns involved
in the query; (2) chain query: comprises subject-object joins where the triple patterns

Table 3  The tested queries implemented in this experimental study

Q1. Return the list of authors and titles of papers that have a rdf: type value proceeding

Q2. Select all proceedings papers with property swrc: pages or swrc: month or swrc: isbn

Q3. Extract all proceedings papers with properties dc: creator, swrc: booktitle, swrc: isPartOf, rdfs: seeAlso, dc: title,
swrc: homepage, dc: subject and optionally swrc: abstract, considering their values

Q4. Return all proceedings papers that they are accepted in iswc conference 2008

Q5. Select all distinct pairs of paper author names for authors that have published in the same journal

Q6. Return all full papers and short papers accepted in the rule-ML conference 2011

Q7. Extract all proceedings papers with the machine learning topic

Q8. Extract 10 resources that are somehow related to each other

Q9. Return all the proceedings papers accepted in all conferences described in swdf dataset with the semantic
web or machine learning topics

Q10. Return all subjects that stand in any relation to person “Annabel Bourde”

Q11. Compute authors that have published with Annabel Bourde or with an author that has published with
Annabel Bourde

Q12. Extract all the name of persons and their papers including the type and the subject

Page 11 of 20Ben Mahria et al. J Big Data (2021) 8:100 	

are consecutively linked like a chain. (3) Tree query: includes subject-subject joins and
subject-object joins [33].

Experimental results and discussion
The main goal of this work is to evaluate the different RDF data storage systems whether
native or non-native, to choose the most appropriate strategy for storing the RDF data
based on specific characteristics. In this context, the experimental results are discussed
as the following. Firstly, the evaluation of our proposed implementations in terms
of loading time and query response time. Secondly, the evaluation of the existing sys-
tems always in terms of loading time and query response time. Finally, the compari-
son between the proposed and existing systems. More precisely, the load time metric
is repeated 10 times and the average elapsed CPU time is computed, while the query
response time is calculated by taking the average of response time of executing each
query ten times consecutively. In our study, we used 12 queries that were defined to
answer the real life questions. The dataset used in our analysis is the SWDF, which con-
tains 2,42,249 triples.

Evaluation of the proposed RDF data storage systems

In the first part of this subsection, we present an evaluation of the three proposed sys-
tems, namely RDFSPO, RDFPC and RDFVP in terms of the loading time and query
response time.

Load time metric

Considering the result presented in Fig. 6a, it is clearly seen that the RDFVP performs
considerably better than the RDFPC and RDFSPO. On one hand, the fundamental idea
behind the VP is partitioning data using fully decomposed storage model [13, 14]. Since
the data comes from different tables of the same database is more manageable than a
situation in which the same datasets are stored in a single table as in the case of the
RDFSPO.

Table 4  Characteristics of tested queries

SQ start query; TQ tree query; CQ chain query

Characteristic Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Simple query × – – – – – – × – × – –

filters – × – – × – – – – × –

More than 6 patterns – – × – × × – – × – – ×
Optional operator – – × – – – – – – – – –

Limit modifier – – – – – – – × – – – –

Offset modifier – – – – – – – × – – – –

Union operator – – – – – × – – × – × –

Distinct operator – – – × × – × – × – × ×
Order by – – × – – – – – – – – –

And operator × × × × × × × × × – × ×
Or operator – × – – – – – – – – – –

Type of query SQ SQ SQ SQ TQ ST TQ – TQ – CQ CQ

Page 12 of 20Ben Mahria et al. J Big Data (2021) 8:100

On the other hand, the reason behind why RDFVP performs better than the RDFPC is
associated with the process used by RDFPC to load data. In fact, the RDFPC uses a clus-
tering strategy based on the “rdf: type” property for storing the RDF data in relational
database. This means that before loading the data, the RDFPC takes into consideration
the RDF data clustering based on the rdf: type property. Consequently, the load time is
computed as the sum of the time of clustering the RDF data and loading time.

Query response time

Considering the results presented in Fig. 7, RDFSPO is very slow to answer all queries
compared to RDFPC and RDFVP. This is essentially due to the use of a single table for
the storage of all triples. Indeed, when the number of triples increases, this single table
may exceed main memory size [3]. Additionally, the complex queries with multiple pat-
terns require many self-joins, resulting in poor performance. Another interesting obser-
vation that we can make about the RDFSPO is that it uses table scanning search to find
the appropriate records, which leads to slowing the query execution time [3].

As depicted in Fig. 7, the RDFPC method performs better than the other tested meth-
ods. At the same time, it closely follows the proposed RDFVP method, which gives the
best results for all the queries. The immediate consequence of the RDFPC method is
that it can avoid the excessive number of self-joins generated by RDFSPO method. More
precisely, while RDFPC method improves performance by reducing the number of self-
joins and rdf: type predicate, it introduces complexity by storing useless information like
null values, and can cause the loss of information with regard to handling the many-
to-many relationship. Therefore, we can clearly see that the RDFVP method performs
better than RDFPC method. On the whole, RDFVP provides a significant performance
improvement by overcoming the limitations encountered in the RDFPC method. Conse-
quently, it could be introduced as the best promising alternative to the existing models
for retrieving data from repositories.

Evaluation of the existing RDF data storage systems

In a similar way to the previous section, in this second section, we will compare the load
time and query response time for storing the RDF data by using the existing systems,
namely, TDB, SDB, RDF4JM and RDF4JD.

Fig. 6  Load time. a The load time of the proposed methods. b The existing methods

Page 13 of 20Ben Mahria et al. J Big Data (2021) 8:100 	

Load time metric

By analyzing the results of Fig. 6b, it turns out that SDB showed a poor load performance
while RDF4JM is fast for small datasets when compared to the TDB and RDF4JD. We
have tested both RDF4JM and RDF4JD on larger scale datasets. We observe that they
did not scale good in data loading, as can be seen from Fig. 6b. For instance, for loading
2,42,249 triples, RDFJM, RDF4JD, and TDB took respectively 64,231 ms, 1,05,764 ms,
and 5,551,87 ms. This lead to an interesting remark that can be made about the per-
formance of these repositories in terms of scalability: the disk-based (RDF4JD) and
memory-based (RDF4JM) scale good with small datasets, whereas the persistent system
(TDB) can scale with both small and large datasets.

In fact, the obtained performances of these systems can be justified by the following
reason: the applicability of the different strategies for reasoning. More precisely, the
RDF4JD and RDF4JM systems use the forward chaining strategy. This means that the
loading of data gets slower because the repository is extending the inferred closure after
each transaction. In other words, during the loading, the inferred data should be stored.

On the other hand, the TDB uses the backward chaining strategy, and therefore its
loading of the data is quite faster when compared to those of other repositories using
forward chaining, since less time is required for the computation and maintenance of
the inferred data [18]. Finally, we can remark that even though the SDB system also uses

Fig. 7  Query response time comparison between the proposed methods and existing ones

Page 14 of 20Ben Mahria et al. J Big Data (2021) 8:100

the backward chaining strategy, it exhibits higher computation time on the contrary to
the TDB method. Indeed, this increase in loading time can be related to the fact that the
SDB involves additional steps, namely, loading data in the java virtual machine and then
on the database for storing data [15].

Query response time

Concerning the query response time of the existing methods (Fig. 7), we can observe
that RDF4JD and RDF4JM give better performance when compared with the SDB and
TDB. This is due to the inference strategy used for retrieving the data. More specifi-
cally, the RDF4JM and RDF4JD use the forward chaining strategy, which means that no
deduction and satisfiability checking are required when we query the repository [18].
Whilst, the TDB and SDB methods use the backward chaining. In this case, the query
response time is slower because extensive query rewriting (expansion and reformula-
tion) has to be performed [18].

In fact, SDB is not able to compete with any of the other existing systems and shows a
poor performance.

Since, it uses the relational database backend for storing the RDF data. This indicates
that we must adopt the SPARQL-to-SQL rewriting [49]. Hence, the query response time
computed takes into consideration also the rewriting time.

Comparison of the proposed methods versus the existing ones

In order to compare the proposed RDF storage systems against the existing ones, we
consider only the two best methods of each group: RDFPC and RDFVP represent the
group of the proposed systems and TDB and RDF4JM for the existing ones.

Load time metric

By analyzing the results of the Fig. 8, it is noticeable that the RDFVP, is the best choice
when the storage concerns small datasets. Whereas, for a higher number of triples, it is
very obvious that the TDB performs better than all the tested systems.

To further justify the efficiency and effectiveness of the proposed methods against
the existing ones, we have performed another detailed experimental analysis using the
DBPedia (geo_coordinate) dataset that contains 1,569,180 triples. In this respect, Fig. 9
shows the load time in ms for an increasing number of triples starting from 10 to 100%
with the interval of 10% of the original number of the triples. From the result we can
confirm that the RDFVP gives a good performance load time on small number of triples,
whereas as the number of triples increases the TDB proves its robustness in terms of
scalability and can be useful for loading a large dataset.

Query response time

Now by comparing the existing systems, the obtained results by RDFVP are more stable
than those produced by the other existing ones. In addition, the RDFVP method exhibits
the best query response time, which ensures the usefulness of the proposed implementa-
tion. The reason behind these results is related to two important aspects. The first one
is that RDFVP does not support the reasoning strategy, which means that the systems
that adopt the reasoning applicability may lead to an increase in the response time. The

Page 15 of 20Ben Mahria et al. J Big Data (2021) 8:100 	

second one is about the query language that RDFVP uses, which is SQL. In fact, it is
certainly not always true that SQL is fast than the SPARQL because it depends on the
system that is used to perform the query as well as the characteristics of the dataset [18].
Basically, the RDFVP is capable of providing a useful implementation for exploratory
analysis and other semantic web applications.

Discussion

To give the statistical significance of the differences in load time and query response time
of the seven tested methods, a nonparametric Friedman test is performed. The Friedman
test [24, 25] is a statistical test that uses the rank of each method on each sample. The
Friedman statistic χ2

F is given by

χ2
F =

12N

k(k + 1)





k
�

j=1

R2
j −

k(k + 1)
2

4



,

Fig. 9  Comparison of the proposed methods against the existing ones in terms of scalability

Fig. 8  Load time of the proposed methods against the existing ones

Page 16 of 20Ben Mahria et al. J Big Data (2021) 8:100

where k = 7 is the number of tested methods, N is the number of samples, which is
represented by data sets in the case of load time metric ( N = 17 ) and queries in case of
query response time ( N = 12 ). Rj is the average rank of the method j among all the test-
ing samples. FF follows a Fisher distribution with k − 1 and (k − 1)(N − 1) degrees of
freedom.

To conduct the Freidman test, Tables 5, 6 show respectively the load time and query
response time metrics using seven methods. In addition, we have reported on each table
and for each method the corresponding rank, which is displayed between brackets (⋅).

The null hypotheses of the Friedman consider that the seven methods are equivalent in
terms of computational performance, including load time and query response time. We
consider a confidence level α = 0.05 . According to the Friedman test, the test results p
value for load time and query response time are 7.62× 10−16 and 2.91× 10−13 , respec-
tively. Therefore, it is evident to reject the null hypotheses, and the seven tested meth-
ods are different in terms of computational performance for both load time and query
response time.

Then, we use the post-hoc test, namely the Nemenyi test [16, 17], to further analyze
the relative performance among the test systems. The performance of two methods is
significantly different if the corresponding average ranks differ by at least the critical dif-
ference (CD):

FF =
(N − 1)χ2

F

N (k − 1)− χ2
F

,

Table 5  Comparison of load time (ms) metric of the proposed and existing methods on 17 data sets

The ranks in the parentheses (⋅) are used in the computation of the Friedman test

Data set RDFSPO RDFVP RDFPC TDB SDB RDF4JM RDF4JD

All SW
groups

581.1 (5) 280.63 (1) 525.8 (4) 611 (6) 1275.14 (7) 359.9 (2) 404.7 (3)

Wikimovies 545.7 (4) 357.42 (1) 580.6 (5) 650 (6) 1300.34 (7) 463.7 (2) 505.5 (3)

NATS 950 (6) 420.42 (1) 670.6 (4) 866.75 (5) 1999.45 (7) 569.7 (2) 593 (3)

Tissues 998.1 (5) 604.31 (1) 895.3 (4) 1084 (6) 2010.23 (7) 648.8 (2) 854.7 (3)

Locations 1217.5 (6) 608.16 (1) 898.8 (4) 1093.12 (5) 3500.56 (7) 659.7 (2) 862.5 (3)

VSRR 2535.5 (6) 616.21 (1) 900.3 (4) 1114.5 (5) 4024.45 (7) 664.6 (2) 870.5 (3)

AQMNEHTN 2744.4 (6) 623.14 (1) 950.2 (4) 1133.5 (5) 85,000.56 (7) 697.5 (2) 886.9 (3)

CDI 6280.8 (6) 800.35 (1) 1410.8 (4) 1562.37(5) 109,958 (7) 807.9 (2) 899 (3)

DHDS 6438.3 (6) 896.42 (2) 1420.4 (5) 1354.37 (4) 115,987.7 (7) 866.8 (1) 984.8 (3)

DASH 6841 (6) 1001.63 (2) 1460.8 (4) 1781.87 (5) 132,024.4 (7) 914.4 (1) 1300.5 (3)

Journals 7214.4 (6) 2576.49 (3) 3790.3 (5) 2055.5 (2) 160,546.5 (7) 1467.5 (1) 3215.5 (4)

Diseases 13,954.7 (6) 4200.14 (3) 6200.5 (5) 2545.5 (2) 180,045.5 (7) 2311.2 (1) 4444.5 (4)

Enzyme 19,885.8 (6) 4410.35 (3) 6700.5 (5) 2668.625 (2) 200,560.7 (7) 2500.8 (1) 5158 (4)

Gene symbol 24,986.3 (6) 6090.42 (3) 9025.6 (5) 4273.375 (2) 1,300,022 (7) 3480.4 (1) 8202.8 (4)

protein 32,154.7 (6) 7788.2 (3) 15,125.8 (5) 4802.75 (2) 1,662,363 (7) 3878.8 (1) 10,162.8 (4)

swdf 38,508.8 (6) 9488.78 (3) 17,644.3 (5) 5551.875 (1) 2,756,740 (7) 6423.1 (2) 10,576.4 (4)

geo_coordi-
nates_en

300,167.7 (6) 119,178.7 (3) 190,222.2 (5) 15,625.25 (1) 26,891,431
(7)

17,549 (2) 123,199.8 (4)

Average rank (5.76) (1.94) (4.53) (3.76) (7.00) (1.59) (3.41)

Page 17 of 20Ben Mahria et al. J Big Data (2021) 8:100 	

For the Nemeyi test, we have the critical tabulated value is qα = 2.949 at a significance
level α = 0.05 . Hence, the CDs for the load time and query response time are respec-
tively equal to 2.1850 (k  =  7, N  =  17) and 2.6007 (k  =  7, N  =  12).

To visually depict the relative performance of the proposed methods (RDFSPO,
RDFPC and RDFVP) compared to the other existing ones, the CD diagrams on the dif-
ferent evaluation metrics are shown in Fig. 10a, b, where the average rank of each com-
paring method is signed along the axis (higher ranks to the right). In each subfigure, a
thick line is used to connect the methods whose average ranks are smaller than the criti-
cal difference. Otherwise, all systems that are not connected with each other are recog-
nized to have apparently different performances.

The statistical test shown in Fig. 10a reveals that the load time with RDF4JM is statisti-
cally better than those with RDFPC, RDFSPO and RDFSDB (as RDFPC  −  RDF4JM  = 
4.52  −  1.58  >  2.18, RDFSPO  −  RDF4JM  =  5.76  −  1.58  >  2.18 and SDB  −  RDF4JM  = 
7.00  −  1.58  >  2.18). Moreover, it is worth noting that there is no consistent evidence
to indicate statistical load time differences between the proposed RDFVP and RDF4JM
(as RDFVP  −  RDF4JM  =  1.94  −  1.58  <  2.18), the same conclusion holds for VP with
RDF4JD and with TDB.

The results are shown in Fig. 10b indicates that the query response time of our pro-
posed RDFVP method is statistically better than those with RDF4JM, SDB, TDB and
RDFSPO (as RDF4JM  −  RDFVP  =  4.00  −  1.00  >  2.600, SDB  −  RDFVP  =  6.00  − 
1.00  >  2.600, TDB-RDFVP  =  5.00–1.00  >  2.600 and RDFSPO-RDFVP  =  7.00–1.00  > 
2.600). However, there is no consistent evidence to indicate statistical query response
time differences between RDFVP, RDFPC and RDF4JD (as RDFPC  − RDFVP  =  2.50  − 
1.00  <  2.600 and RDF4JD-RDFVP  =  2.50–1.00  <  2.600).

CDα = qα

√

k(k + 1)

6N
.

Table 6  Comparison of query response time (ms) metric of the proposed and existing methods on
12 queries

The ranks in the parentheses (⋅) are used in the computation of the Friedman test

Queries RDFSPO RDFVP RDFPC TDB SDB RDF4JM RDF4JD

Q1 820.4 (7) 128.5 (1) 130.45 (3) 360.2 (5) 400.6 (6) 138.2 (4) 130.4 (2)

Q2 835.66 (7) 133.9 (1) 140.2 (3) 368.6 (5) 457.8 (6) 145.2 (4) 135.8 (2)

Q3 831.33 (7) 130.4 (1) 137.8 (3) 367 (5) 452.6 (6) 143.2 (4) 134.2 (2)

Q4 836.2 (7) 131.4 (1) 135.6 (2) 352.4 (5) 469.33 (6) 147.8 (4) 136 (3)

Q5 847.6 (7) 135.5 (1) 138.47 (2) 362 (5) 480.5 (6) 154.8 (4) 138.8 (3)

Q6 833.77 (7) 129.4 (1) 133.22 (3) 357 (5) 423 (6) 146.8 (4) 131.6 (2)

Q7 828.21 (7) 118 (1) 125.56 (2) 358.4 (5) 460.21 (6) 148.8 (4) 128.6 (3)

Q8 890.31 (7) 128.34 (1) 136.6 (3) 356 (5) 443.5 (6) 147 (4) 131.2 (2)

Q9 895.34 (7) 133.3 (1) 135.22 (2) 363 (5) 476 (6) 155.6 (4) 137.4 (3)

Q10 822.2 (7) 124.76 (1) 129.5 (2) 369.6 (5) 460.43 (6) 145.6 (4) 134.6 (3)

Q11 860,8 (7) 129,4 (1) 137,2 (3) 361,5 (5) 448,1 (6) 145,1 (4) 132,7 (2)

Q12 828,0 (7) 127,1 (1) 131,4 (2) 363,3 (5) 441,7 (6) 146,2 (4) 133,1 (3)

Average rank (7.00) (1.00) (2.50) (5.00) (6.00) (4.00) (2.50)

Page 18 of 20Ben Mahria et al. J Big Data (2021) 8:100

To summarize, the proposed RDFVP method achieve highly competitive computa-
tional performance against other state-of-the-art methods in terms of load time and
query response time.

Conclusion
In this paper, we proposed three new implementations of non-native methods for storing
the RDF data. These implementations are respectively based on statement table, property
table and vertical partitioning approaches. What is more, we consider the issue of how to
select a convenient and efficient storage solutions based on the dataset characteristics. In
this respect, two important performance metrics are provided, which include load time
and query response time for evaluating the RDF storage systems. In order to show effi-
ciency and the robustness of the proposed and existing RDF storage systems, the experi-
mental studies have been divided into three sections. The first one consisted of evaluating
the proposed RDF storage systems. The second section has been devoted to evaluating the
existing RDF storage systems. In the third section, we provide a comparison between the
proposed and existing RDF storage systems. In addition, to bring a significant reason to the
obtained results, we have applied a statistical analysis based on the Friedman Test followed
by a Nemenyi post hoc test to further explore which system perform statistically. In future
works, we aim to adopt a machine learning algorithms to predict the most appropriate sys-
tem for a specific dataset. More specifically, we plan to bypass the traditional approaches
for estimating the load time and the query response time that are based on statistics about
the underlying RDF dataset. In this context, we will show how to model these two metrics
as feature vectors to accurately use them as input for a machine learning algorithms.

Abbreviations
SRS: Semantic repository system; DBMS: Data base management system; RDF: Resource description framework; RDFSPO:
RDF subject-predicate-object; RDFSPO: RDF subject-predicate-object; RDFPC: RDF property clustering; RDFVP: RDF verti-
cal partitioning; RDF4JM: RDF4J main memory-based; RDF4JD: RDF4J disk-based; PT: Property table; PC: Property class;
CP: Clustered property; VP: Vertical partitioning; CD: Critical difference.

Fig. 10  Computational performance comparison of the proposed RDFVP, RDFSPO and RDFPC against the
existing methods with Nemenyi Test. a Load time, b query response time

Page 19 of 20Ben Mahria et al. J Big Data (2021) 8:100 	

Acknowledgements
Not applicable.

Authors’ contributions
BBM, IC and AZ conceived of the presented idea. BBM developed the theory, performed the algorithms in addition to
writing the manuscript with support from IC and AZ. IC and AZ verified the analytical methods and they helped super-
vise the project. Finally, all authors discussed the results and contributed to the final manuscript. All authors read and
approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The data that support the findings of this study are available from the corresponding author (Bilal Ben Mahria).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Received: 5 February 2021 Accepted: 17 June 2021

References
	1.	 Aasman J. Allegro graph: RDF triple database. Oakland: Franz Incorporated; 2006. p. 17.
	2.	 Abadi DJ, Marcus A, Madden SR, Hollenbach K. SW-Store: a vertically partitioned DBMS for semantic web data

management. VLDB J. 2009;18:385–406.
	3.	 Abadi DJ, Marcus A, Madden SR, Hollenbach K. Scalable semantic web data management using vertical partitioning.

In: Proceedings of the 33rd International Conference Very Large Data Bases. VLDB Endowment; 2007. p. 411–22.
	4.	 Alexaki S, Christophides V, Karvounarakis G et al The ICS-FORTH RDFSuite: managing voluminous RDF description

bases. In: SemWeb. 2001.
	5.	 Aluç G, Hartig O, Özsu MT, Daudjee K. Diversified stress testing of RDF data management systems. In: International

Semantic Web Conference. Berlin: Springer; 2014. p. 197–212.
	6.	 Atre M, Srinivasan J, Hendler JA. BitMat: a main memory RDF triple store. Tetherless world constellation. Troy: Rens-

selar Plytehcnic Institute; 2009.
	7.	 Beckett D. The design and implementation of the Redland RDF application framework. Comput Netw.

2002;39:577–88.
	8.	 Bizer C, Schultz A. The berlin sparql benchmark. Int J Semant Web Inf Syst. 2009;5:1–24.
	9.	 Bornea MA, Dolby J, Kementsietsidis A et al. Building an efficient RDF store over a relational database. In: Proceed-

ings of the 2013 ACM SIGMOD International Conference on Management of Data. New York: ACM; 2013. p. 121–32.
	10.	 Broekstra J, Kampman A, Van Harmelen F. Sesame: a generic architecture for storing and querying rdf and rdf

schema. In: International Semantic Web Conference. Berlin: Springer; 2002. p. 54–68.
	11.	 Butt AS, Khan S. Scalability and performance evaluation of semantic web databases. Arab J Sci Eng.

2014;39:1805–23.
	12.	 Chen JX, Reformat MZ. Learning categories from linked open data. In: International Conference on Information

Processing and Management of Uncertainty in Knowledge-Based Systems. Berlin: Springer; 2014. p. 396–405.
	13.	 Copeland GP, Khoshafian SN. A decomposition storage model. In: Acm Sigmod Record. New York: ACM; 1985. p.

268–79.
	14.	 Corwin J, Silberschatz A, Miller PL, Marenco L. Dynamic tables: an architecture for managing evolving, heterogene-

ous biomedical data in relational database management systems. J Am Med Inform Assoc. 2007;14:86–93.
	15.	 Curé O, Blin G. RDF database systems: triples storage and SPARQL query processing. Burlington: Morgan Kaufmann;

2014.
	16.	 Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30.
	17.	 Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodol-

ogy for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput. 2011;1:3–18.
	18.	 Domingue J, Fensel D, Hendler JA. Handbook of semantic web technologies. Berlin: Springer; 2011.
	19.	 Duan S, Kementsietsidis A, Srinivas K, Udrea O. Apples and oranges: a comparison of RDF benchmarks and real RDF

datasets. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data. New York:
ACM; 2011. p. 145–56.

	20.	 Erling O, Mikhailov I. RDF support in the virtuoso DBMS. In: Networked knowledge-networked media. Berlin:
Springer; 2009. pp 7–24.

	21.	 Faye D, Curé O, Blin G, Thiam C. RDF triples management in roStore. In: IC 2011, 22èmes Journées francophones
d’Ingénierie des Connaissances. 2012; p. 755–70.

Page 20 of 20Ben Mahria et al. J Big Data (2021) 8:100

	22.	 Faye DC, Cure O, Blin G. A survey of RDF storage approaches. Rev Afr Rech Inform Math Appl. 2012;15:11–35.
	23.	 Fletcher GH, Beck PW. Scalable indexing of RDF graphs for efficient join processing. In: Proceedings of the 18th ACM

Conference on Information and Knowledge Management. New York: ACM; 2009. p. 1513–16.
	24.	 Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat

Assoc. 1937;32:675–701.
	25.	 Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat.

1940;11:86–92.
	26.	 Gayo JEL, Prud’Hommeaux E, Boneva I, Kontokostas D. Validating RDF data. Synth Lect Semant Web Theory Technol.

2017;7:1–328.
	27.	 Guha RV. Rdfdb: an rdf database. Disponível. 2000. http://​rdfdb.​sourc​eforge.​net/. Accessed 15 Nov 2003.
	28.	 Guo Y, Pan Z, Heflin J. LUBM: a benchmark for OWL knowledge base systems. Web Semant Sci Serv Agents World

Wide Web. 2005;3:158–82.
	29.	 Harris S, Gibbins N. 3store: Efficient bulk RDF storage. In: 1st International Workshop on Practical and Scalable

Semantic Systems (PSSS’03), Sanibel Island, Florida; 2003. p. 1–15.
	30.	 Harris S, Lamb N, Shadbolt N. 4store: the design and implementation of a clustered RDF store. In: 5th International

Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2009). 2009; p. 94–109.
	31.	 Harth A, Decker S. Optimized index structures for querying rdf from the web. In: Third Latin American Web Congress

(LA-WEB’2005). New Jersey: IEEE; 2005. p. 10.
	32.	 Harth A, Umbrich J, Hogan A, Decker S. Yars2: a federated repository for querying graph structured data from the

web. In: The semantic web. Berlin: Springer; 2007. p. 211–224.
	33.	 Hassan M, Bansal SK. RDF data storage techniques for efficient SPARQL query processing using distributed compu-

tation engines. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI). New Jersey: IEEE;
2018. p. 323–30.

	34.	 Janik M, Kochut K. BRAHMS: a workbench RDF store and high performance memory system for semantic associa-
tion discovery. In: International Semantic Web Conference. Berlin: Springer; 2005. p. 431–45.

	35.	 Karvinen P, Díaz-Rodríguez N, Grönroos S, Lilius J. RDF stores for enhanced living environments: an overview. In:
Enhanced living Environments. Berlin: Springer; 2019. p. 19–52.

	36.	 Kolas D, Emmons I, Dean M. Efficient linked-list rdf indexing in parliament. SSWS. 2009;9:17–32.
	37.	 Ma Z, Capretz MA, Yan L. Storing massive resource description framework (RDF) data: a survey. Knowl Eng Rev.

2016;31:391–413.
	38.	 MahmoudiNasab H, Sakr S. AdaptRDF: adaptive storage management for RDF databases. Int J Web Inform Syst.

2012;8:234–50.
	39.	 McBride B. Jena: a semantic web toolkit. IEEE Internet Comput. 2002;6:55–9.
	40.	 McGlothlin J, Khan L. RDFJoin: a scalable data model for persistence and efficient querying of RDF datasets. Data-

base. 2009.
	41.	 Modoni GE, Sacco M, Terkaj W. A survey of RDF store solutions. In: 2014 International Conference on Engineering,

Technology and Innovation (ICE). New Jersey: IEEE; 2014. p. 1–7.
	42.	 Murray C, Alexander N, Das S, et al. Oracle spatial. Resource description framework (RDF) 10g Release 2 (10.2). Oracle

com 186. 2005.
	43.	 Pan Z, Zhu T, Liu H, Ning H. A survey of RDF management technologies and benchmark datasets. J Ambient Intell

Humaniz Comput. 2018;9:1693–704.
	44.	 Reggiori A, van Gulik D-W, Bjelogrlic Z. Indexing and retrieving semantic web resources: the RDFStore model. In:

SWAD-Europe workshop on semantic web storage and retrieval. Citeseer; 2003. p. 13–4.
	45.	 Schmidt M, Görlitz O, Haase P, et al. Fedbench: a benchmark suite for federated semantic data query processing. In:

International Semantic Web Conference. Berlin: Springer; 2011. p. 585–600.
	46.	 Schmidt M, Hornung T, Lausen G, Pinkel C. SP^ 2Bench: a SPARQL performance benchmark. In: 2009 IEEE 25th

International Conference on Data Engineering. New Jersey: IEEE; 2009. p. 222–33.
	47.	 Sidirourgos L, Goncalves R, Kersten M, et al. Column-store support for RDF data management: not all swans are

white. Proc VLDB Endow. 2008;1:1553–63.
	48.	 Singh G, Upadhyay D, Atre M. Efficient RDF dictionaries with B+ trees. In: Proceedings of the ACM India Joint Inter-

national Conference on Data Science and Management of Data. New York: ACM; 2018. p. 128–36.
	49.	 Soussi N, Bahaj M. Semantics preserving SQL-to-SPARQL query translation for nested right and left outer join. J Appl

Res Technol. 2017;15:504–12.
	50.	 Thakker D, Osman T, Gohil S, Lakin P. A pragmatic approach to semantic repositories benchmarking. In: Extended

Semantic Web Conference. Berlin: Springer; 2010. p. 379–93.
	51.	 Tran T, Ladwig G, Rudolph S. Istore: efficient rdf data management using structure indexes for general graph struc-

tured data. Institute AIFB, Karlsruhe Institute of Technology. 2009.
	52.	 Weiss C, Karras P, Bernstein A. Hexastore: sextuple indexing for semantic web data management. Proc VLDB Endow.

2008;1:1008–19.
	53.	 Wilkinson K, Sayers C, Kuno H, Reynolds D. Efficient RDF storage and retrieval in Jena2. In: Proceedings of the First

International Conference on Semantic Web and Databases. Citeseer; 2003. p. 120–39.
	54.	 Wood D, Gearon P, Adams T. Kowari: a platform for semantic web storage and analysis. In: XTech 2005 Conference. p.

5–402.
	55.	 Zhang Y, Duc PM, Corcho O, Calbimonte J-P. SRBench: a streaming RDF/SPARQL benchmark. In: International

Semantic Web Conference. Berlin: Springer; 2012. p. 641–57.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://rdfdb.sourceforge.net/

	An empirical study on the evaluation of the RDF storage systems
	Abstract
	Introduction
	Classification of RDF storage systems
	Native systems
	Non-native systems

	Our proposed implementations
	RDF subject-predicate-object method (RDFSPO)
	RDF property clustering method (RDFPC)
	RDF vertical partitioning method (RDFVP)

	Experiments setup
	Description of existing RDF storage systems
	Query implementation details

	Experimental results and discussion
	Evaluation of the proposed RDF data storage systems
	Load time metric
	Query response time

	Evaluation of the existing RDF data storage systems
	Load time metric
	Query response time

	Comparison of the proposed methods versus the existing ones
	Load time metric
	Query response time

	Discussion

	Conclusion
	Acknowledgements
	References

