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Introduction
Graph-based data is found almost everywhere, with examples such as analysing the 
structure of the World Wide Web [1–3], bio-informatics data representation via de 
Bruijn graphs [4] in metagenomics [5, 6], atoms and covalent relationships in chemis-
try [7], the structure of distributed computation itself [8], massive parallel learning of 
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digital representations. Extracting information from graphs involves processing all 
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ments. Many distributed systems (such as Flink, Spark) and libraries (e.g. Gelly, 
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communication overhead) to exploring trade-offs between delaying computation and 
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tree ensembles [9] and parallel topic models [10]. Academic research centres in collabo-
ration with industry players like Facebook, Microsoft and Google have rolled out their 
own graph processing systems, contributing to the development of several open-source 
frameworks [11–14]. They need to deal with huge graphs, such as the case of the Face-
book graph with billions of vertices and hundreds of billions of edges [15].

Domains

We list some of the domains of human activity that are best described by relations 
between elements—graphs:

Social networks

They make up a large portion of social interactions in the Internet. We name some of 
the best-known ones: Facebook (2.50 billion monthly active users as of December 2019 
[16]), Twitter (330 million monthly active users in Q1’19 [17]) and LinkedIn (330 million 
monthly active users as of December 2019 [18]). In these networks, the vertices repre-
sent users and edges are used to represent friendship or follower relationships. Further-
more, they allow the users to send messages to each other. This messaging functionality 
can be represented with graphs with associated time properties.

World Wide Web

Estimates point to the existence of over 1.7 billion websites as of October 2019 [19], with 
the first one becoming live in 1991, hosted at CERN. Commercial, educational and rec-
reational activities are just some of the many facets of daily life that gave shape to the 
Internet we know today. With the advent of business models built over the reachability 
and reputation of websites (e.g. Google, Yahoo and Bing as search engines), the applica-
tion of graph theory as a tool to study the web structure has matured during the last two 
decades with techniques to enable the analysis of these massive networks [1, 2].

Telecommunications

These networks have been used for decades to enable distant communication between 
people and their structural properties have been studied using graph-based approaches 
[20, 21]. The vertices in these networks represent user phones, whose study is relevant 
for telecommunications companies wishing to assess closeness relationships between 
subscribers, calculate churn rates, enact more efficient marketing strategies [22] and also 
to support foreign signals intelligence (SIGINT) activities [23].

Recommendation systems

Graph-based approaches to recommendation systems have been heavily explored in 
the last decades [24–26]. Companies such as Amazon and eBay provide suggestions to 
users based on user profile similarity in order to increase conversion rates from targeted 
advertising. The structures underlying this analysis are graph-based [27–29].

Transports, smart cities and IoT

Graphs have been used to represent the layout and flow of information in transport 
networks comprised of people circulating in roads, trains and other means of transport 
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[30–32]. The Internet-of-Things (IoT) will continue to grow as more devices come into 
play and 5G proliferates. The way IoT devices engage for collaborative purposes and 
implement security frameworks can be represented as graphs [33].

Epidemiology

The analysis of disease propagation and models of transition between states of health, 
infection, recovery and death are very important for public health and for ensuring 
standards of practices between countries to protect travellers and countries’ popula-
tions [34–37]. These are represented as graphs, which can also be applied to localized 
health-related topics like reproductive health, sexual networks and the transmission of 
infections [38, 39]. Real-life epidemics are perhaps at the forefront of examples of this 
application of graph theory for health preservation, with the most recent example as 
COVID-19 [40].

Other types of data represented as graphs can be found [41]. To illustrate the growing 
magnitude of graphs, we focus on web graph sizes of different web domains in Fig. 1, 
where we show the number of edges for web crawl graph datasets made available by the 
Laboratory of Web Algorithmics [42] and by Web Data Commons [43].

Motivation

We include this section in this survey to highlight three reasons. Firstly, the recent years 
have seen a positive tendency in the field of all things related to graph processing. As its 
aspects are further explored and optimized, with new paradigms proposed, there has 
been a proliferation of multiple surveys [44–50]. They have made great contributions in 
systematizing the field of graph processing, by working towards a consensus of termi-
nology and offering discussion on how to present or establish hierarchies of concepts 
inherent to the field. Effectively, we have seen vast contributions capturing the maturity 
of different challenges of graph processing and the corresponding responses developed 
by academia and industry.

Fig. 1  Web graph edge counts for domain crawls since the year 2000 (in log scale)
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The value-proposition of this document is therefore, on a first level, the identification 
of the dimensions we observe to be relevant with respect to graph processing. This is 
more complex than, for example, merely listing the types of graph processing system 
architectures or the types of communication and types of coordination within the class 
of distributed systems for graph processing. Many of these dimensions, if not all, are 
interconnected in many ways. As the study of each one is deepened, its individual over-
lap with the others is eventually noted. For example, using distributed systems, it is nec-
essary to distribute the graph across several machines. This necessity raises the question 
of how to partition the graph to distribute it. Afterwards, as a natural consequence, it is 
necessary to define the coordination (e.g. synchronous versus asynchronous) between 
nodes of the system. Orthogonally to this, the relation between data and computation in 
graph processing must be defined. The vertices of a graph may represent posts in a social 
network, while the edges dictate follower relationships. But to the systems that process 
them, one could specify the units of computation to be solely the vertices, exclusively the 
edges or components of the graph (and the definition of component in this case would be 
required too). Herein, we first note the cornerstone aspects of the graph processing field 
from individual works and from existing surveys: dimensions and definitions.

Secondly, we provide an exhaustive list of systems for graph processing, sharing their 
year of debut and distinctive features. We explore the different types that exist:

Single‑machine

They may simply require copious amounts of memory, or instead employ compression 
techniques for graph processing. Orthogonal to this is, and depending on the machine 
configuration, the processing time for large graphs is also an important challenge. There 
are techniques that rely on heuristics on the graph to improve execution time, taking 
advantage of graph structure as well as specific properties of popular algorithms. Exam-
ples include increasing the speed of the Louvain community detection method [51] by 
using heuristics such as informing the vertex community-joining decision process with 
information above the level of specific vertices, or assigning a colouring scheme so that 
vertices of the same colour are processed in parallel without adjacent vertices being pro-
cessed concurrently. Other approaches make use of heuristics such as differentiating 
processing of vertices based on vertex degree, or to rely on the application of partition-
ing techniques to enable the processing of graphs which are larger than single-machine 
memory capacity.

Multi‑machine

Distributed systems which can be a cluster of machines (either homogeneous or het-
erogeneous) or special-purpose high-performance computing systems (HPC), requiring 
coordination at different levels. There are systems in the literature with different design 
principles which influence the granularity with which parallelism and coordination 
are performed. General-purpose data processing systems which also have libraries for 
graph processing do not consider the fine details of graph-structured data, while systems 
designed with a focus on graph processing enable fine-grained techniques to increase 
performance.
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On the third level, and also considering a scope of meta-analysis, we discuss the struc-
turing of the field that is presented in existing surveys. We complement it with our own 
highlight of important relations between graph processing concepts and a chronological 
analysis of the field of graph processing.

Document roadmap  This rest of the paper is organized around the following main sec-
tions. Graph Algorithms: Natures and Types highlights relevant aspects of graph-process-
ing tasks and different types of graph algorithms. Computational Representations details 
important computational representations of graphs which typically use compression 
techniques. Graph Processing: Computational Units and Models analyses how graphs are 
conceptually manipulated in many contributions of the field’s state of the art, and the dif-
ferent levels of granularity. Dimension: Partitioning presents the most-known approaches 
to decomposing graph-based data into computational units for parallelism and distri-
bution, showcasing models with different levels of granularity. Dimension: Dynamism 
enumerates scenarios with different definitions of dynamism in graph processing, from 
the graph representing temporal data to the manipulated graph representation being 
constantly updated with new information. Dimension: Workload discusses the nature of 
graph processing workloads and different scopes such as analytics and storage. Single-
Machine and Shared-Memory Parallel Approaches presents these types of architecture 
and describes important state-of-the-art marks. High-Performance Computing is focused 
on multi-core and multi-processor architectures. Distributed Graph Processing Systems 
enumerates systems which focus on distributing the graph across machines to enable 
processing. We finish with Conclusion and final remarks.

Graph algorithms: natures and types
There are several aspects inherent to graph-processing tasks. Graphs have properties 
which may be extrapolated using specific algorithms, from computing the most impor-
tant vertices (e.g. using an arbitrary function like PageRank [52]), finding the biggest 
communities (for which there is a choice of many algorithms) or the most relevant paths 
(for a definition of relevancy). An algorithm that processes the whole graph (as opposed 
to localized information queries expressed with graph query languages seen previously) 
is typically executed in parallel fashion when the resources for parallelism are available. 
When implementing these algorithms, whether the developer manually implements the 
parallelism or merely uses such a functionality offered by an underlying framework (e.g. 
Apache Spark [53] or Apache Flink [14]), some challenges must be considered. 
This means that while the field of graph processing is developed with the goal of improv-
ing how we manipulate and extract value from graph-based data, as the techniques to 
achieve this end become more refined, other aspects of graph structures gain promi-
nence as challenges to them.

We list and comment here the major types of challenges of parallel graph processing 
identified in a previous study [54]: 

1.	 Data-driven computations: A graph has vertices and edges which establish how com-
putations are performed by algorithms, making graph applications data-driven. We 
see this observation shift the focus to data—what should the elementary unit of com-
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putation be? In this survey we go over multiple solutions in the literature, consider-
ing the computation from the perspective of vertices [8, 14, 53, 55], edges [56] and 
sub-graphs [57].

2.	 Irregular problems: The distribution of edges and vertices usually does not constitute 
uniform graphs that form embarrassingly parallel problems, whose benefits from 
simple parallelism are easier to achieve [58]. We note that after defining the unit of 
computation in a graph, care needs to be taken when assigning parts of the graph 
to different processing units. Skewed data will negatively impact load balance [46] 
unless tailored approaches are undertaken, which take into account different types of 
graph properties such as scale-free [59] in their designs [60, 61].

3.	 Poor locality: Locality-based optimizations offered by many processors are hard to 
apply to the inherently irregular characteristics of graphs due to poor locality during 
computation. We believe it is important to mention how this manifests when using 
distributed systems (clusters) to process the graphs. To mitigate this, techniques may 
be used for example to replicate specific vertices based on properties such as their 
degree, or to use specific graph partitioning strategies when working with vertex-
centric approaches [50].

4.	 High data-access-to-computation ratio: The authors note that a large portion of 
graph processing is usually dedicated to data access in graph algorithms and so wait-
ing for memory or disk fetches is the time-most consuming phase relative to the 
actual computation on a vertex or edge itself. We note one approach [62] to this 
problem that focused on balancing network and storage latencies with computation 
time to minimize the impact of underlying data accesses in a cloud computing set-
ting.

Algorithms

Graph algorithms that execute globally over all elements of a graph have a distinct nature 
from those solved with graph query languages—the scope of computation is drastically 
different with respect to the computational resources needed to satisfy it. We note, 
however, some graph databases such as Neo4j have extensions like the Neo4j APOC 
Library for languages like Cypher to start algorithms with global computation from 
the graph query language [63].

A previous survey on the scalability of graph processing frameworks [64, Sec. 3.3] 
defines a categorization of graph algorithms, which we reproduce here: Traversals. Start-
ing from a single node, they employ recursive exploration of the neighbourhood until 
a termination criteria is met, like reaching a desired node or a certain depth. Instances 
of this are for example calculating single-source shortest-paths (SSSP), k-hop neigh-
bourhood or breadth-first searches (BFS). Graph analysis. Algorithms falling into this 
scope aim at understanding the structural properties and topology of the graph. They 
may be executed to grasp properties like the diameter (greatest distance between any 
pair of vertices), density (ratio of the number of edges |E| with respect to the maximum 
possible edges) or degree distribution. Component identification. Concept: a connected 
component is a subset of graph vertices for which there is a path between any pair of ver-
tices. Finding connected components is relevant to detect frailties in the networks that 
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graphs represent. The connections between these components are called bridges, which 
if removed, will separate connected components. Communities detection. The groups 
called communities consist of sets of vertices that are close to each other within a com-
munity than to those outside it. There are different techniques to compute them such as 
minimal-cut sets and label propagation, among others. Centrality measures calculation. 
These represent the importance of a vertex with respect to the rest of the network. Many 
definitions exist such as PageRank and betweenness centrality, for example. There also 
heuristics to measure the relevance of edges such as spanning edge betweenness [65]. 
Pattern matching. Related to algorithms aimed at recognizing or describing patterns, 
known as graph matching in this context. Graph anonymization. To produce a graph 
with similar structure but making it so the entities represented by vertices and edges are 
not identifiable. Two examples of anonymization procedures are k-degree and k-neigh-
bourhood anonymity.

Underlying the computations that take place to solve graph-specific tasks lies the gran-
ularity. How are the vertices, edges and properties of graphs processed or stored? This 
required building a bridge from these mathematically-defined elements to the bits and 
bytes of computers.

Computational representations
Here we detail terms and concepts which are known in graph theory. We include pre-
liminary notions that serve as a basis to familiarize the reader with the language used in 
scientific documents on graph applications, processing systems and novel techniques. 
In the literature [66], a graph G is written as G = (V ,E)—it is usually defined by a set 
of vertices V of size n = |V | and a set of edges E of size m = |E| . Vertices are sometimes 
referred to as nodes and edges as links. An undirected graph G is a pair (V, E) of sets 
such that E ⊆ V × V  is a set of unordered pairs. If E is a set of ordered pairs, then we 
say that G is a directed graph. Between the same two vertices there is usually at most one 
edge; if there are more, then the graph is called a multigraph (note: an ordered graph in 
which a pair of vertices share two edges in opposite direction is not necessarily a multi-
graph). Multigraphs are more common when looking at the applications and use-cases 
for graph databases such as Neo4j [67], where one may model more than one relation 
type between the same vertices. Additionally, given a graph G = (V ,E) , the set of ver-
tices of G is written as V(G) and the set of edges as E(G). More commonly, we write 
V (G) = V  and E(G) = E.

Underlying all the ways to extract information from graphs is their digital representa-
tion. It is important to understand the set of operations to be performed over the graph 
and its size in order to guide the choice of representation. To represent the edges, per-
haps the two most well-known approaches are the adjacency list and adjacency matrix. 
The choice of using an adjacency list or a matrix usually depends on the amount of edges 
in the graph.

Consider a given graph G = (V ,E) . If |E| is close to the maximum number of edges 
that a graph can sustain ( |E| ≃ |V |2 ), then it is a dense graph and it makes more sense 
to choose the adjacency matrix (performance-wise). However, if the graph is sparse 
( |E| ≪ |V |2 ), where most nodes are not connected, it can be efficiently represented 
(storage-wise) with an adjacency list. While the matrix consumes more space than the 
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adjacency list, it allows for constant-time access. We show in Fig. 2 an example of differ-
ent representations for the same graph.

Figure 2a shows a sample graph G, for which the adjacency matrix is shown in Fig. 2b 
and the corresponding adjacency list in Fig. 2c. The first row of the adjacency matrix A 
represents the outgoing edges of vertex 1, which is connected to vertex 2. It is common 
in the literature [68, Ch. 22] to use the subscript notation Ai,j to refer to the presence of 
a specific edge in matrix A (the notation is relevant for theoretical purposes even if using 
another type of representation) starting from vertex i and targeting vertex j:

Matrix A also takes on a particular configuration depending on the graph being directed 
or undirected. In the later case, there is no explicit sense of source or target of an edge, 
leading to symmetry in matrix A. Implementations of graph processing systems often 
represent undirected graphs as directed graphs such that the undirected edge between a 
pair of vertices is represented by two directed edges in opposite directions between the 
pair.

There are more space-efficient ways to represent a graph, and they become a necessity 
when exploring the realm of big graphs. The choice between an adjacency list or matrix 
is bound to the density of the graph. But to justify other representation types, factors 
such as graph size, storage limitations and performance requirements need special 
focus. The compressed sparse row (CSR), also known as the Yale format, is able to repre-
sent a matrix using three arrays: one containing non-zero values; the second containing 
the extents of rows; the third storing column indices. Figure 2d shows a representation 
in this format (we omit the array the array containing the non-zero values as they are all 
one in this case).

Let us consider that indices are zero-based. The array on the left side is the column 
index array, where the pipe character | separates groups which belong to each row of 
A. The second row (index 1) of A has elements at position indexes 0 and 3 in A. There-
fore, the second group of the column index array has elements [0, 3]. The array on the 

(1)Ai,j =

{

1 if there is an edge from i to j,
0 otherwise.

a b c

d
Fig. 2  Simple computational representations of sample directed graph G shown in a 



Page 9 of 41Coimbra et al. J Big Data            (2021) 8:55 	

right is the row index array which has one element per row in matrix A and an element 
which is the count of non-zero elements of A at the end of the array (there are varia-
tions without this count). For a given row i, it encodes the start index of the row group 
in the column index array (on the left in Fig. 2d). This way, for example, the second row 
of matrix A (Fig. 2b) has row index 1 in A. Then, looking at the row index array (the one 
on the right), as the second row of matrix A has row index 1, we access the elements with 
indices [1, 2] in the row index array, which returns the pair (1, 3), indicating that the sec-
ond row (index one) of A is represented in the column index array starting (inclusive) at 
index 1 and ending at index 3 (exclusive). If we look at the column index array and check 
the elements from index 1 (inclusive) to 3 (exclusive), we get the set of values {0, 3} . And 
if we look at the second row in A, column index 0 and column index 3 are exactly the 
positions of the edges in A for that row. Generally, for a matrix M’s row index i, we access 
indices [i, i + 1] in the row index array, and the returned pair dictates the starting (inclu-
sive) and ending (exclusive) index interval in the column index array. The set of elements 
in that interval in the column index array contains the indices of the columns with value 
1 for row index i in M. We point the reader to [69] for details on its representation and 
construction. There is also the compressed sparse column (CSC), which is similar but 
focused on the columns, as the name suggests.

Other approaches take advantage of domain-specific properties of graphs. Such is 
the case of WebGraph [1], which exploits certain properties of web graphs to repre-
sent them with increased compression. An important property they exploit is locality, 
as many links stay within the same domain, that is, if the web graph is lexicographi-
cally ordered, most links point close by. Another property is similarity: pages that are 
close by in the lexicographical order are likely to have sets of neighbours that are similar. 
The study performed with WebGraph also highlighted, among other facts, the follow-
ing: similarity was found to be much more concentrated than previously thought; con-
secutivity is common regarding web graphs. The properties of ordering (and different 
techniques to produce them) have also been exploited by the same authors to obtain 
compression with social networks. WebGraph was used in an extensive analysis of many 
different data sets, which were made available online by the Laboratory for Web 
Algorithmics [1, 42, 70–72].

The k2-tree is another data structure employed to represent and efficiently store graphs 
[73]. It may be used to represent static graphs and binary relations in general. It has 
been used to represent binary relations like web graphs, social networks and RDF data 
sets by internally using compressed bit vectors. Conceptually, we recursively subdivide 
each block of a graph’s adjacency matrix until we reach the level of individual cells of 
the matrix. The idea is to divide (following an MX-Quadtree strategy [74, Sec. 1.4.2.1]) 
the matrix in blocks and then assign 0 to the block if it only contains zeros (no edges) or 
1 if it contains at least an edge. We show in Fig. 3 a sample adjacency matrix on the left 
and the corresponding k2-tree representation of the decomposition. This representation 
of the adjacency matrix is actually a k2-tree of height h = ⌈logk n⌉ , where ( n = |V | and) 
each node contains a single bit of data. It is 1 for internal nodes and 0 for leaves, except 
for the last level, in which all nodes are leaves representing values from the adjacency 
matrix. It is a data structure that also efficiently matches the properties of sparseness 
and clustering of web graphs.
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Another proposal, Log(Graph) [75] is a graph representation that combines high 
compression ratios with low overhead to enable competitive processing performance 
while making use of compression. It achieved compression ratios similar to WebGraph 
while reaching speedups of more than 2x. The authors achieve results by applying log-
arithm-based approaches to different graph elements. They describe its application on 
fine elements of the adjacency array (the basis of Log(Graph): vertex IDs, offsets and 
edge weights. From information theory, the authors note that a simple storage lower 
bound can be the number of possible instances of an entity, meaning the number of bits 
required to distinguish them. Using this type of awareness on the different elements 
that represent an adjacency array and by incorporating bit vectors, the authors present 
a C++ library for the development, analysis and comparison of graph representations 
composed of the many schemes described in their work.

There were relevant techniques for graph compression the literature on graph com-
pression [76–81] with the WebGraph framework [1, 2] as one of the most well-known, 
and more recently the k2-tree structure [73, 82–84], only later was the focus cast on 
being able to represent big graphs with compression while allowing for updates. Fur-
thermore, if we add the possibility of dynamism of the data (the graph is no longer a 
static object that one wishes to analyse) to the factors guiding representation choice, 
then it makes sense to think about how to represent a big graph in common hardware 
not only for storage purposes but also for efficient access with mutability. Works such 
as VeilGraph [85] approach the concepts of efficient representations by for example 
incorporating summary graph structures to reduce the total performed computations in 
the context of graph updates.

A dynamic version of the k2-tree structure was proposed for this purpose [86]. Using 
compact representations of dynamic bit vectors to implement this data structure, the 
k2-tree was used to provide a compact representation for dynamic graphs. However, 
this representation with dynamic compact bit vectors suffers from a known bottleneck 
in compressed dynamic indexing [87]. It suffers a logarithmic slowdown from adopt-
ing dynamic bit vectors. A recent comparative study on the graph operations supported 
by different k2-tree implementations has also been performed [88]. This work also pre-
sented an innovative take on implementing dynamic graphs by employing the k2-tree 
data structure with a document collection dynamization technique [89], avoiding the 
bottleneck in compressed dynamic indexing.

a b 8

Fig. 3  A sample adjacency matrix ( n = |V | = 64 ) and corresponding k2-tree representation
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Graph processing: computational units and models
Here we detail the most relevant paradigms and computational units used to express 
computation in graph processing systems. Programming models for graph process-
ing have been studied and documented in the literature [47, 48]. They define prop-
erties such as the granularity of the unit of computation, how to distribute it across 
the cluster and how communication is performed to synchronize computational state 
across machines.

Unit: Vertex‑Centric (TLAV)

The vertex-centric paradigm, also known as think-like-a-vertex (TLAV), debuted with 
Google’s Pregel system [8]. An open-source implementation of this model known as 
Apache Giraph [12] was then offered to the public. Other example systems that were 
created using that model are GraphLab [90], PowerGraph [60], PowerLyra [61]. As 
the unit of computation is the vertex itself, the user algorithm logic is expressed from the 
perspective of vertices. The idea is that a vertex-local function will receive information 
from the vertex’s incoming neighbours, perform some computation, potentially update 
the vertex state and then send messages through the outgoing edges of the vertex. A 
vertex is the unit of parallelization and a vertex program receives a directed graph and 
a vertex function as input. It was then extended to the concept of vertex scope, which 
includes the adjacent edges of the vertex. The order of these steps will vary depending on 
the type of vertex-centric model used (scatter-gather, gather-apply-scatter).

Model: Superstep Paradigm

In a superstep S, a user-supplied function is executed for each vertex v (this can be done 
in parallel) that has a status of active. When S terminates, all vertices may send messages 
which can be processed by user-defined functions at step S + 1.

Model: Scatter‑Gather

Scatter-gather shares the same idea behind vertex-centric but separates message send-
ing from message collecting and update application [91]. In the scatter phase, vertices 
execute a user-defined function that sends messages along outgoing edges. In the gather 
phase, each vertex collects received messages and applies a user-defined function to 
update vertex state.

Model: Gather‑Apply‑Scatter

Gather-Sum-Apply-Scatter (GAS) was introduced by PowerGraph [60] and was aimed 
at solving the limitations encountered by vertex-centric or scatter-gather when oper-
ating on power-law graphs. The discrepancy between the ratios of high-degree and 
low-degree vertices leads to imbalanced computational loads during a superstep, with 
high-degree vertices being more computationally-heavy and becoming stragglers. GAS 
consists of decomposing the vertex program in several phases, such that computa-
tion is more evenly distributed across the cluster. This is achieved by parallelizing the 
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computation over the edges of the graph. In the gather phase, a user-defined function is 
applied to each of the adjacent edges of each vertex in parallel.

Unit: Edge‑Centric (TLEV)

The edge-centric approach, also referred as think-like-an-edge (TLEV), was popularized 
by systems like X-Stream [56] and Chaos [62] which specify the computation from 
the point-of-view of edges. These systems made of use of this paradigm to optimize the 
usage of secondary storage and network communication with cloud-based machines to 
process large graphs.

Unit: Sub‑graph‑Centric (TLAG)

The previous models are subjected to higher communication overheads due to being 
fine-grained. It is possible to use sub-graph structure to reduce these overheads (also 
known as component-centric [48]). In this category, the work of [47] denotes two sub-
graph-centric approaches: partition-centric and neighbourhood-centric. Partition-centric 
instead of focusing on a collection of unassociated vertices, considers sub-graphs of the 
original graph. Information from any vertex can be freely propagated within its physi-
cal partition, as opposed to the vertex-centric approach where a vertex only accesses 
the information of its most immediate neighbours. This allows for reduction in com-
munication overheads. Ultimately, the partition becomes the unit of parallel execution, 
with each sub-graph being exposed to a user function. This sub-graph-centric approach 
is also known as think-like-a-graph [57] (TLAG). neighbourhood-centric, on the other 
hand, allows for a physical partition to contain more than one sub-graph. Shared state 
updates exchange information between sub-graphs of the same partition, with replicas 
and messages for sharing between sub-graphs that aren’t in the same partition. For com-
pletion, we refer the reader to an analysis of distributed algorithms on sub-graph centric 
graph platforms [92].

Model: MEGA

The MEGA model was introduced by Tux2 [93], a system designed for graph compu-
tations in machine learning. The model is composed of four functions defined by the 
user: an exchange function which is applied to each edge and can change the value of the 
edge and adjacent vertices; an apply function to synchronize the value of vertices with 
their replicas; a global sync function to perform shared computations and update values 
shared among partitions; a mini-batch function to indicate the execution sequence of 
other functions in each round.

There are graph processing systems that offer more than one type of model. To achieve 
parallelism and harness multiple machines in clusters, it is necessary to define how to 
break down the graph—we provide a high-level overview of methods employed in most 
well-known graph processing solutions

Dimension: partitioning
Graph partitioning is an important problem in graph processing, and this importance 
manifests in two formats. The first, is out of a user’s domain application with the goal 
of splitting the graph in parts which provide a relevant view of the data. The second, 
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is when partitioning may be considered as a hyper-algorithm, that is, it is employed to 
divide the parts of the graph across a computational infrastructure, typically within 
the distributed systems’ coordination layer, or across processing units or cores within 
machines. Machine loads in distributed graph processing systems depend on the way 
computational units are distributed across workers. The communication between them 
then depends on the number of units that are replicated, or the number of edges which 
are cut in the edge-cut partitioning approach. We observe that partitioning has a cycli-
cal nature to itself in the scope of distributed processing: one may wish to execute graph 
partitioning over a distributed system as part of a domain-specific problem; however, 
before that graph algorithm can execute, the graph data also incurs partitioning followed 
by distribution in the underlying (distributed) computational infrastructure. While the 
study of graph partitioning is not recent, it gained additional depth in the last decade 
as the number of factors guiding optimization of partitioning increased with the com-
plexity of graph processing systems. We explore partitioning as a relevant dimension 
to classify graph processing systems as they must approach it in order to enable par-
allel computation over graphs. The way it is approached becomes a distinctive feature 
between the systems.

Graph partitioning aims to divide the nodes of the graph into mutually-exclusive 
groups and to minimize the edges between partitions. This is effectively a grouping of the 
node set of the graph, which can represent a minimization of communication between 
partitions, with each partition for example assigned to a specific worker in a distributed 
system. Partitioning is a task that produces groups of nodes, but grouping nodes is not 
only achieved with partitioning. We note that other terms exist in the literature such 
as clustering and community detection. They are not interchangeable, for if a cluster-
ing algorithm breaks down the graph into three clusters, it does not necessarily hold 
true that each cluster represents its own community. As an example, executing a clus-
tering algorithm over a social network graph will result in a number of clusters. If each 
cluster represents for example a different continent, that does not necessarily mean each 
cluster represents one single community. Community detection algorithms, on the other 
hand, consider properties such as the density and interconnections within communities. 
While clustering and community detection aim to identify similarities between nodes, 
their underlying assumptions of the graph are not equal, even though proposals have 
been made to map between these two tasks [94]. Graph clustering shares similarities 
with graph partitioning in the sense that both produce groups of nodes. However, the 
objective functions they use are defined differently and subject to different constraints. 
Graph partitioning, on which we focus, for example, requires that the number of groups 
(partitions) is known beforehand and is typically subject to more constraints.

An earlier work on balanced graph partitioning [95] defines the problem as (k, v)-
balanced partitioning: to divide the vertices of the graph into k components of 
almost equal size, with each of size less than c · n

k  for a given constant c > 1 . It is a 
balanced k-way partitioning problem which has been studied in the literature [96]. 
To consider the partitioning problem as a challenge to enabling distributed process-
ing, it is necessary to ask if the goal is to distribute the vertices (edge cut model—EC) 
or the edges (vertex cut model—VC) of the graph across machines in order perform 
it. We provide detail into these problem formulations with an example of vertex-cut 
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and edge-cut in Fig. 4. Furthermore, different combinations between computational 
unit and cut model are possible: vertex-cut can be used to process in a vertex-centric 
[97] or edge-centric [60] way, and the same is possible using edge-cut used to parti-
tion a graph where computation is vertex-specific [98, 99] or edge-specific.

Edge‑Cut (EC)

Balanced k-way partitioning may be defined for edge-cut partitioning, which is asso-
ciated to vertex-centric (TLAV) systems, the most common computational model 
in graph processing systems [8, 53, 55]. We reproduce the definition of [50, Sec. 2] 
for this case, where for a given graph G = (V ,E) , we wish to find a set of partitions 
P = {P1,P2, . . . ,Pk} . These partitions must be pairwise disjoint and their union is 
equal to V while following these conditions [50]:

Depending on the application objective for which this partitioning type will be per-
formed, Eq. 3 should be adapted. For example, in the case of machines having different 
characteristics, it should be considered that the load of any machine will be less than 
the maximum computing power. Or if the graph structure is stored in secondary mem-
ory, the interest is on having balanced size partitions with high speed sequential storage 
access and decreasing the number of cut edges is no longer a focus.

(2)min
P

|{e|e = (vi, vj) ∈ E, vi ∈ Px, vj ∈ Py, x �= y}|

(3)
s.t.

maxi |Pi|

1

k

∑k
i=1 |Pi|

≤ ǫ.

a b

c d
Fig. 4  Depiction of vertex-cut and edge-cut over the sample graph G 
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Vertex‑Cut (VC)

In the vertex-cut model, the goal is to distribute edges across partitions. They are placed 
in different partitions, with vertices being copied in partitions which have their adjacent 
edges. Care must be taken to balance the number of edges per partition (its measure of 
size) and to minimize the number of vertex copies. This objective may be formulated as 
such [50]:

Vertex-cut achieves better performance than edge-cut for natural graphs such as those 
representing web structure and social networks [50].

Hybrid‑Cut (HC)

Hybrid strategies can be employed to perform the cuts. They can for example be guided 
with heuristics such as vertex degree in order to decide what to do with them. The Pow-
erLyra [61] system for example allocates the incoming edges of vertices with low 
degree in a worker. It uses edge-cut for vertices of low-degree and vertex-cut for high-
degree vertices.

Stream‑based partitioning

In these methods of partitioning, vertices or edges in the graph are analysed in succes-
sion in a stream. Placement decisions are made online, that is, when the vertices or edges 
appear in the stream, and the decisions are based on the location of previous elements. 
This is done under the assumption that there will be no information on the edges or ver-
tices that will arrive in the flow of the stream. This type of method can rely on edge-cut 
partitioning (e.g. Random heuristic and the Linear Deterministic Greedy 
[100], Gemini which uses chunk-based assuming adjacency list model [101], Fennel 
[102]), vertex-cut partitioning (e.g. Grid heuristic [103], PowerGraph greedy heuris-
tic [60], Graphbuilder [103] placing the edge in the smallest partition, HDRF [104] 
method which takes into consideration vertex degrees) and there are aspects of these 
methods that will have different approaches regarding how this is achieved with parallel 
and distributed execution. Stream-based partitioning is also used as a good choice for 
loading the graph as it does not have to be fully loaded in memory for partitioning.

Distributed partitioning

Many distributed partitioning algorithms are based on label propagation [70, 105–
107], with variations such as how the specific labelling of a vertex should be influenced 
by its neighbours, if it should also be influenced by the label’s global representation in 
the graph and also constraints on the minimum and maximum sizes required for par-
titions. For example, Revolver, which performs vertex-centric graph partitioning 
with reinforcement learning, assigns an agent to each vertex, with agents assigning 
vertices to partitions based on their probability distribution (these are then refined 

(4)min
P

1

|V |

∑

v∈V

|P(v)|

(5)s.t. max
pi

|{e ∈ E|P(e) = pi}| ≤ ǫ
|E|

k
.
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based on feedbacks [97]). The authors of [50] note that other approaches consider 
the partitioning problem as a multi-objective and multi-constraint problem, achiev-
ing better results compared to one-phase methods [108]. Distributed partitioning 
systems are good for when partitioning is performed once and then calculations are 
repeatedly performed.

Dynamic graph partitioning

When the graph is no longer static, vertex and edges may be added or removed as 
time passes—this is especially true in social networks. This implies that for graphs 
from which we need to perform computations as they evolve, the original partition-
ing may become inefficient. With predictable algorithm runtime characteristics, it 
becomes feasible to keep close the vertices which will be used together in the same 
supersteps, using for example graph traversal algorithms. But when this is not the 
case, systems can be designed for example to monitor the load and communication 
of the machines and migrate vertices as appropriate, with different techniques having 
been proposed for that purpose (among others, xDGP [109] to repartition massive 
graphs to adapt to structural changes, GPS [110] which reassigns vertices based on 
communication patterns, X-Pregel [98] with reduction of message exchanges and 
dynamic repartitioning). Dynamic partitioning methods have the advantage of out-
putting very good load balancing and communication cost reductions due to consid-
ering heterogeneous hardware and runtime characteristics.

Partitioning: summary

Employed graph partitioning strategies vary, with different systems offering different 
solutions. Among performance-impacting factors [50], we have the number of active 
vertices and edges influencing machine load. At the same time, communication will be 
more expensive depending on how replication of edges and vertices is performed. Par-
titioning must balance communication and machine loads. The partitioning challenge 
in vertex-centric systems is relevant due to how widespread this model is. The authors 
of [50] note three major approaches for big graph partitioning: a) partitioning the graph 
serially in a single pass and permanently assigning the partition on the first time an edge 
or vertex is assigned (stream-based); b); methods that partition in a distributed way; c) 
dynamic methods that adapt the partitions based on monitoring the load and commu-
nication of machines during algorithm execution. The way the distribution is achieved 
and data is represented will be a factor in going beyond the read-eval-write loop. In this 
scope, a dynamic method would be necessary as a basis to develop the properties we 
described. For an in-depth analysis of partitioning methods, vertex cut models and their 
relation to the dynamic nature of data, we invite the reader to read [50].

Being able to decompose the graph is a cornerstone for efficient and distributed 
computation of graphs. An equally-important aspect that determines how we must 
approach the computation is the possible dynamism of the graph. A static graph over 
which we want to perform analytics is a scenario different from maintaining a large 
graph available for separate queries and susceptible to updates.
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Dimension: Dynamism
We include and consider dynamism a relevant dimension of graph processing due to 
there existing different meanings associated to it in the literature and for which dif-
ferent systems can be attributed. While one may consider static graphs to be com-
pletely unrelated to dynamism, there is in fact a relation to it due to what is known as 
stream processing. For example, a graph processing system may ingest an unbounded 
stream of edges and update statistics over the stream (e.g., keeping a triangle count 
updated [111]), but stream processing may also take place in static graph processing. 
This is the case with approaches that process a static graph but process its elements 
from a stream perspective (e.g., Chaos [62] and X-Stream [56] with their edge-cen-
tric approach). Considering if a system targets graphs that change or are immutable 
(static) is an obvious way to separate graph processing systems when classifying them. 
However, this dimension is actually a spectrum between the immutable (e.g. stream-
based perspectives to process static graphs) and the changing—for example, is the 
whole graph structure kept in memory (or secondary storage) in a single machine (or 
across cluster nodes), or is it discarded by proxy of some criteria (and thus one sim-
ply updates mathematical properties of the graph using only recent information from 
the stream)? For this spectrum, the authors of [112] cover definitions found in the 
literature:

Temporal graphs

These are, in essence, static graphs which have annotated temporal information 
which allows for recreating the domain represented by the graph at any given point 
in time. It is not structurally-changed while doing so; it means that for a given time 
range or event, only the elements with valid timestamps under required constraints 
are considered for computation. The work of [113] introduces the temporal graph as 
a representation encoding temporal data into the graph while retaining the tempo-
ral information of the original data. They present metrics that can be used to study 
temporal graphs and use the representation to explore dynamic temporal properties 
of data using graph algorithms without requiring data-driven simulations. Immor-
talGraph [114] is a storage and execution engine designed with temporal graphs in 
mind, having achieved greater efficiency than database solutions for graph queries. 
ImmortalGraph schedules common bulk operations in a way to maximize the ben-
efit of in-memory data locality. It explores the relation between locality, parallelism 
and incremental computation while enabling mining tasks on temporal graphs. For 
more information and reach on the topic of temporal graphs, we direct the reader to 
[115].

Streaming graph algorithms

[116] With these, the common scenario starts from an empty graph without edges 
(and a fixed set of vertices). For each algorithm step, a new edge is inserted into the 
graph or an edge is removed. It is desired that these algorithms are developed to min-
imize parameters such as graph data structure storage, the time to process an edge 
or the time to recover the final solution. There exist several systems which process 
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streaming graph computations—we note also for the reader a recent framework for 
comparing the systems aimed at this type of dynamism [117]. The STINGER data 
structure has been used for streaming graphs as well [118].

Sketching and dynamic graph streams

Sketching techniques [119] may be applied to the edge incidence matrix of the input 
graph to approximate cut structure and connectivity. The idea is to consume a stream of 
events in order to generate a probabilistic data structure representing properties of the 
graph.

Multi‑pass streaming graph algorithms

In this type of algorithm, all updates are streamed more than once in order to approxi-
mate the computation quality of the solution. Additional complexity can emerge on how 
the streaming model behaves—it can for example allow for the stream to be manipulated 
across passes [120] or to stream sorting passes [121].

Dynamic graph algorithms

For these types, the focus is cast on being able to approximate combinatorial properties 
of the graph [112] (e.g., connectivity, shortest path distance, cuts, spectral properties) 
while processing insertions and deletions. The objective with this type of algorithm is to 
quickly integrate graph updates. Ringo [122] is a single-machine analytics system that 
supports dynamic graphs.

While partitioning and dynamism are relevant aspects, the scope of graph processing 
solutions in both industry and academia was shaped by the type of executed workloads.

Dimension: workload
The type of workload performed by a graph processing system also plays an important 
role in classifying them. The type of task performed by graph databases is different from 
the systems that run global algorithms over them. The concept of analysing a graph takes 
on different contexts depending on user needs. We note that when a graph is to be pro-
cessed, the scope of its data analysis usually falls in these two categories:

(a) To retrieve instances of domain-specific relations in the graph (e.g. pattern match-
ing, multi-hop queries). These are usually found in graph databases, with an emphasis on 
optimization of data query and storage for online transaction processing scenarios. This 
is often accompanied with the use of graph query languages (GQLs) to execute queries 
that return a view on the graph and also potentially producing effects on it. (b) To exe-
cute an algorithm over the whole graph (e.g. PageRank, connected components, detect-
ing communities, finding shortest paths). The solutions for this task, performance-wise, 
aim to achieve high-performance computational throughput, whether using distributed 
systems or a single-machine configuration. It is a focus leaning on the data analytics 
aspect.

The former (a) is a common scenario in graph databases such as Neo4j [123] and 
JanusGraph [124], among others. These databases offer graph query languages 
(usually even allowing interchangeability between languages) such as Cypher or 
Gremlin [125]. They are built to store the graph, some with sharding (horizontal 
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scaling) to distribute the graph across the storage/computational infrastructure (some 
outsource the storage medium to database technologies such as HBase [126] or 
Cassandra [127]), others in a centralized server (but allowing cluster nodes for the 
specific purpose of redundancy). They employ schemes to store the graph efficiently 
while offering transaction mechanisms to operate over the graph and to perform 
queries. The latter type (b) is seen in big (graph) data processing systems like Spark 
(GraphX library) [13] and Flink (Gelly library) [14]. The mentioned 
names are all distributed processing frameworks that can take advantage of multi-
core machines and clusters. These systems and their libraries allow for expressive 
computation over graphs in few lines of code. Many of the systems come with their 
sets of graph algorithms, allowing for the composition of workflows while abstracting 
away many details from the programmer (regarding distributed computation orches-
tration and the internal implementation of the graph algorithms).

It is important to consider two definitions regarding the nature of computational 
tasks: online analytical processing (OLAP) and online transaction processing (OLTP). 
OLAP is an approach to enable answering multi-dimensional analytical queries 
quickly. Among its instances we may find tasks such as business reporting for sales, 
management reporting, business process management [128], financial reporting and 
others. OLTP, on the other hand, refers to systems that enable and manage transac-
tion-oriented applications, with transaction meaning in a computational context the 
atomic state changes that take place in database systems. OLTP examples include 
retails sales and financial transaction systems, and applications of this type tend to 
be high-throughput and update/insertion-intensive in order to provide availability, 
speed, recoverability and concurrency [129].

The earlier type (a) of graph processing task may be associated to OLTP systems as 
the goal is to store representations of graphs by quickly ingesting new information, 
efficiently representing it regarding space consumption and access speed, and being 
able to execute updates under ACID properties (or a subset of those). For this type 
of task (a), one may find numerous graph databases to match the description, such 
as those for designed for semantic representations, or for property graph models, 
both and also other specific purposes. The latter type of task (b) may be associated to 
OLAP, where there is a focus on extracting value from the data and the nature of the 
task is typically read-only. We include graph processing systems (not databases) in 
this group of OLAP-type tasks, even the systems which support mutability in graphs 
due to supporting dynamism in any form.

There is a considerable overlap between OLTP-type tasks and graph databases, 
and there is also an overlap between OLAP-type tasks and graph processing systems. 
While the distinction between OLAP and OLTP task types is not a dimension that 
perfectly divides systems in the graph processing landscape, we note that such a dis-
tinction holds value in guiding future taxonomies of the graph processing system 
landscape, and for that reason we include it as a dimension.

The way these three dimensions are accounted for influence the design of graph 
processing systems. Many different architectures exist, for which we share an exhaus-
tive list of specific solutions, from single-machine systems to parallel processing in 
clusters and storage in tailor-made graph databases.
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Single‑machine and shared‑memory parallel approaches
GraphLab [130] was published as a framework (implemented in C++) for paral-
lel machine learning and later extended to support distributed settings while retaining 
strong data consistency guarantees [90]. The authors evaluate it on Amazon EC2, out-
performing equivalent MapReduce implementations by over 20X and match the per-
formance of specifically-crafted MPI implementations. GraphLab requires the whole 
graph and program state to reside in RAM. It uses a chromatic engine so that no adja-
cent vertices have the same colour and to enable the efficient use of network bandwidth 
and processor time. The authors evaluate it for applications such as Netflix movie rec-
ommendation, video co-segmentation and named entity recognition. It is open-source 
[131] under the Apache License 2.0.

GRACE [132] is a synchronous iterative graph programming model, with separation of 
application logic and execution policies. Its design includes the implementation (C++) 
of a parallel execution engine for both synchronous and user-specified asynchronous 
execution policies. GRACE stores directed graphs, and in its model and the computation 
is expressed and performed in a way similar to Pregel. It provides additional flexibility, 
by allowing the user to relax synchronization of computation. This is achieved with user-
defined functions which allow updating the scheduling priority of vertices that receive 
messages (the vertex order in which computation will take place within an iteration). 
GRACE’s design targets both shared-memory and distributed system scenarios, but the 
initial prototype focuses on shared-memory. We did not find the source code available.

Ligra [133] is a C++ lightweight graph processing framework targeting shared-mem-
ory parallel/multi-core machines, easing the writing of graph traversal algorithms. This 
framework offers two map primitives to operate a given logic on vertices (VertexMap) 
and edges (EdgeMap) and supports two data types: the traditional graph G = (V ,E) as 
we described in an earlier section, and another one to represent subsets of vertices. The 
interface is designed to enable the processing of edges in different orders depending on 
the situation (as opposed to Pregel or Giraph). The code of Ligra represents in-
edges and out-edges as arrays, with in-edges for all vertices being partitioned by their 
target vertex and storing the source vertices, and the out-edges are in an array parti-
tioned by source vertices and storing the target vertices. While the authors claim to have 
achieved good performance results, they mention Ligra does not support algorithms 
based on modifying the input graph. It is available [134] under the MIT License.

Ringo [122] is an approach for multi-core single-machine big-memory configura-
tions. It is a high-performance interactive analytics system using a Python front-end 
on a scalable parallel C++ back-end, representing the graph as a hash table of nodes. It 
supports fast execution times with exploratory and interactive use, offering graph algo-
rithms in a high-level language and rich support for transformations of input data into 
graphs. Ringo is open-source and available [135] under the BSD License.

Polymer [136] is a NUMA-aware graph analytics system on multi-core machines that 
is open-source [137] under the Apache License 2.0 and implemented in C++. 
It innovated by differentially allocating and placing topology data, application-defined 
data and mutable run-time graph system states according to access patterns to mini-
mize remote accesses. Polymer also deals with random accesses by converting the ran-
dom ones into sequential remote accesses using lightweight vertex replication across the 
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NUMA nodes. It was built with a hierarchical barrier for increased parallelism and local-
ity. The design also includes edge-oriented balanced partitioning for skewed graphs and 
adaptive data structures in function of the fraction of active vertices. It was compared to 
Ligra, X-Stream and Galois on an 80-core Intel machine (no hyper-threading) and 
on a 64-core AMD machine. For different algorithms across several data sets, Polymer 
consistently almost always achieved the lowest execution time.

GraphMat [138] is a framework written in C++ aimed at bridging the user-friendly 
graph analytics and native hand-optimized code. It presents itself as a vertex-centric 
framework without sacrificing performance, as it takes vertex programs and maps them 
to exclusively use sparse matrix high-performance back-end operations. GraphMat 
takes graph algorithms expressed as vertex programs and performs generalized sparse 
matrix vector multiplication on them. It achieved greater performance than other frame-
works such as 5-7X faster than GraphLab, Galois and ComBLAS. It also achieved 
multi-core scalability, being over 10X faster than single-threaded implementation on a 
24-core machine. It is open-source and available [139] under specific conditions by Intel.

Mosaic [140] is a system for single heterogeneous machines with fast storage media 
(e.g., NVMe and SSDs) and massively-parallel co-processors (e.g., Xeon Phi) developed 
to enable the processing of trillion-edge graphs. The system is designed explicitly sepa-
rating graph processing engine components into scale-up and scale-out goals. It is writ-
ten in C++ uses a compact representation of the graph using Hilbert-ordered tiles for 
locality, load balancing and compression and uses a hybrid computation model that uses 
both vertex-centric operations (on host processors) and edge-centric operations (on co-
processors). Mosaic is open-source [141] under the MIT License.

High‑performance computing
These systems are hallmarks of high-performance computing solutions applied to graph 
processing. Their merits encompass algebraic decomposition of the major graph opera-
tions, implementing them and translating them across different homogeneous layers of 
parallelism (across cores, across CPUs). Here we mention what are, to the best of our 
knowledge, the most relevant works:

Parallel Boost Graph Library (PBGL) [142] . It is an extension (C++) of Boost’s 
graph library. It is a distributed graph computation library, also offering abstractions 
over the communication medium (e.g. MPI). The graph is represented as an adjacency 
list that is distributed across multiple processors. In PBGL, vertices are divided among 
the processors, and each vertex’s outgoing edges are stored on the processor storing that 
vertex. PBGL was evaluated on a system composed of 128 compute nodes connected via 
Infiniband. It is available [143] under a custom Boost Software License 1.0.

CombBLAS [144]. A parallel graph distributed-memory library in C++ offering lin-
ear algebra primitives based on sparse arrays for graph analytics. This system considers 
the adjacency matrix of the graph as a sparse matrix data structure. CombBLAS is edge-
based in the sense that each element of the matrix represents an edge and the compu-
tation is defined over it. It decouples the parallel logic from the sequential parts of the 
computation and makes use of MPI. However, its MPI implementation does not take 
advantage of flexible shared-memory operations. Its authors targeted hierarchical paral-
lelism of supercomputers for future work. It is available [145] under a custom license.
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HavoqGT [146] is a C++ system with techniques for processing scale-free graphs 
using distributed memory. To handle the scale-free properties of the graph, it uses edge 
list partitioning to deal with high-degree vertices (hubs) and dummy vertices to repre-
sent them to reduce communication hot spots. HavoqGT allows algorithm designers to 
define vertex-centric procedures in a distributed asynchronous visitor queue. This queue 
is part of an asynchronous visitor pattern designed to tackle load imbalance and mem-
ory latencies. HavoqGT targets supercomputers and clusters with local NVRAM. It is 
available [147] under the GNU Lesser General Public License 2.1.

Distributed graph processing systems
While the previous systems we detailed performed analytics and enabled the execution 
of graph algorithms, they did so with a focus on specific hardware and distributed mem-
ory. We list here some of the most relevant state-of-the-art systems used for graph pro-
cessing in the scope of analytics (OLAP). Their use of different architectures (from using 
local commodity clusters to cloud-based execution) and greater flexibility of deployment 
scenarios differentiate them from those of the previous section. The following systems 
are relevant names in the literature, with Giraph being the first open-source imple-
mentation of the Pregel approach to graph processing, and Spark and Flink being 
open-source general distributed processing systems with graph processing APIs:

Apache Giraph [12] is an open-source Java implementation of Pregel [8], tailor-
made for graph algorithms, supporting the GAS model and licensed [148] under the 
Apache License 2.0. It was created as an efficient and scalable fault-tolerant 
implementation on clusters with thousands of commodity hardware, hiding implemen-
tation details underneath abstractions. Work has been done to extend Giraph from the 
think-like-a-vertex (TLAV) model to think-like-a-graph (TLAG) [57]. It uses Hadoop’s 
MapReduce implementation to process graphs. Giraph [148] allows for master com-
putation, sharded aggregators (relevant when computing a final result comprised of 
intermediate data from nodes), has edge-oriented input, and also uses out-of-core com-
putation—limited partitions in memory. Partitions are stored in local disks, and for 
cluster computing settings, the out-of-core partitions are spread out across all disks. 
Giraph attempts to keep vertices and edges in memory and uses only the network for 
the transfer of messages. Improving Giraph’s performance by optimizing its messaging 
overhead has also been studied [149]. It is interesting to note that single-machine large-
memory systems such as Ringo highlight the message overhead as one of the major 
reasons to avoid a distributed processing scheme.

Naiad is an open-source [150] (Apache License 2.0) dataflow processing sys-
tem [151] offering different levels of complexity and abstractions to programmers. It 
allows programmers to implement graph algorithms such as weakly connected com-
ponents, approximate shortest paths and others while achieving better performance 
than other systems. Naiad is implemented in C# and allows programmers to use 
common high-level APIs to express algorithm logic and also offers a low-level API 
for performance. Its concepts are important and other systems could benefit from 
offering tiered programming abstraction levels as in Naiad. Its low-level primitives 
allow for the combination of dataflow primitives (similar to those VeilGraph uses 
from Flink) with finer-grained control on iterative computations. An extension to 
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Flink’s architecture to offer this detailed control would enrich the abilities that our 
framework is able to offer to users.

Apache Flink [14], formerly known as Stratosphere [152], it is a framework 
which supports built-in iterations [14] (and delta iterations) to efficiently aid in graph 
processing and machine learning algorithms. It is licensed [153] under the Apache 
License 2.0 and has a graph processing API called Gelly, which comes pack-
aged with algorithms such as PageRank, single-source shortest paths and community 
detection, among others. Flink supports Java, Python and Scala. It explic-
itly supports three vertex-based programming models: think-like-a-vertex (TLAV) 
described as the most generic model, supporting arbitrary computation and messag-
ing for each vertex; Scatter-Gather, which separates the logic of message production 
from the logic of updating vertex values, which may typically make these programs 
have lower memory requirements (concurrent access to the inbox and outbox of a 
vertex is not required) while at the same time potentially leading to non-intuitive 
computation patterns; Gather-Sum-Apply-Scatter (GAS), which is similar to Scatter-
Gather but the Gather phase parallelizes the computation over the edges, the messag-
ing phase distributes the computation over the vertices and vertices work exclusively 
on neighbourhood, where in the previous two models a vertex can send a message to 
any vertex provided it knows its identification. It supports all Hadoop file systems as 
well as Amazon S3 and Google Cloud storage, among others. Delta iterations are 
also possible with Flink, which is quite relevant as they take advantage of computa-
tional dependencies to improve performance. It also has flexible windowing mecha-
nisms to operate on incoming data (the windowing mechanism can also be based on 
user-specific logic). Researchers have also looked into extending its DataStream 
constructs and its streaming engine to deal with applications where the incoming 
flow of data is graph-based [154].

Apache Spark [155] and its GraphX [13] graph processing library, licensed [156] 
under the Apache License 2.0. It is a graph processing framework built on top 
of Spark (a framework supporting Java, Python and Scala), enabling low-cost 
fault-tolerance. The authors target graph processing by expressing graph-specific 
optimizations as distributed join optimizations and graph views’ maintenance. In 
GraphX, the property graph is reduced to a pair of collections. This way, the authors 
are able to compose graphs with other collections in a distributed dataflow frame-
work. Operations such as adding additional vertex properties are then naturally 
expressed as joins against the collection of vertex properties. Graph computations 
and comparisons are thus an exercise in analysing and joining collections.

GraphTau [157] is a time-evolving graph processing framework on top of Spark 
(Java, Scala). It represents computations on time evolving graphs as a stream of 
consistent and resilient graph snapshots and a small set of operators that manipu-
late such streams. GraphTau builds fault-tolerant graph snapshots as each small 
batch of new data arrives. It is also able to periodically load data from graph databases 
and reuses many operators from GraphX and Spark Streaming. For algorithms 
(based on label propagation) that are not resilient to graph changes, GraphTau intro-
duced an online rectification model, where errors caused by underlying graph modifi-
cations are corrected in online fashion with minimal state. Its API frees programmers 
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from having to implement graph snapshot generation, windowing operators and dif-
ferential computation mechanisms. We did not find its source code available.

Tink [158] is a library for distributed temporal graph analytics. It is built on Flink 
(Java, Scala) and focuses on interval graphs, where each edge has an associated start-
ing time and ending time. The author created different graphs with information pro-
vided by Facebook and Wikipedia in order to evaluate the framework. Tink defines a 
temporal property graph model. It is available online [159], although we did not find 
information pertaining licensing.

To the best of our knowledge, currently both Flink and Spark are the most widely-
known distributed processing frameworks (we note GraphTau, although its code is 
not available, is built over Spark) based on dataflow programming. While the use of 
dataflows grants flexibility to program implementation and execution by decoupling the 
program logic from how it is translated to the workers of a cluster, the graph libraries of 
these systems do not allow in an efficient way for a graph to be updated using stream-
processing semantics while also maintaining the graph structure during computation. It 
is possible to update graphs using these systems, but they make use of batch processing 
APIs for which the dataflow graphs must not become excessively big (or else dataflow 
plan optimizers may be locked in the phase of exploring the optimization space of the 
execution plan) and graph must be periodically written to secondary storage (as a solu-
tion to avoid having progressively bigger execution plans).
Flink’s Gelly library has been used in GRADOOP, which is an open-source [160] 

(Apache License 2.0) distributed graph analytics research framework [161] under 
active development and providing higher-level operations. GRADOOP extends Gelly 
with additional specialized operators such as a graph pattern matching operator (which 
abstracts a cost-based query engine) and a graph grouping operator (implemented as 
a composition of map, filter, group and join transformations on Flink’s DataSet). 
GRADOOP also adopts the Cypher query language (typically found in graph databases 
like Neo4j) to express logic that is translated to the relational algebra that underlies 
Flink’s DataSet [162].

In a similar way, Spark has its graph processing library GraphX which was built 
over the system’s batch processing API, like the case of Flink’s Gelly and also 
suffering from the same previously mentioned limitations. A higher-level API was 
designed to extend the functionalities of GraphX while harnessing Spark’s Data-
Frame API. For this, the GraphFrames open-source [163] (Apache License 

Fig. 5  Contrast of the Flink and Spark distributed dataflow ecosystems for graph processing
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2.0) library was created [164]. A look at its implementation reveals that it has less 
high-level operations than Gelly. Effectively, without simulating some of Gelly’s 
API, equivalent programs in GraphX lend themselves to more conceptual verbosity 
due to the lack of syntactic sugar.

We display in Fig. 5 parallels between Flink, Spark and the graph processing 
ecosystems built on top of them. Gelly’s equivalent in Spark is GraphX, imple-
mented in Scala. Vertices and edges are manipulated by using Spark’s Resilient 
Distributed Datasets (RDDs), which can be viewed as a conceptual precur-
sor to Flink’s DataSet. Spark also offers the DataFrame API to enable tabular 
manipulation of data. GraphFrames is another graph processing library for Spark. 
While it has interoperability and a certain overlap with the functionality offered in 
GraphX, it integrates the tabular perspective supported by Spark’s DataFrame API 
and also supports performing traversal-like queries of the graph via SparkSQL. In 
this way, GraphFrames provides graph analytics capabilities in Spark much the 
same way GRADOOP does in Flink.

The next two examples, X-Stream and Chaos are grouped together as they 
brought relevance to the edge-centric (TLAE) model and employed it to explore novel 
ways to balance network latencies and use of SSDs to increase performance:

X-Stream [56]. A system that provided an alternative view to the traditional ver-
tex-centric approach. It is based on considering computation from the perspective 
of edges instead of vertices and experiments optimized the use of storage I/O both 
locally and on the cloud. X-Stream is an open-source system written in C++ which 
introduced the concept of edge-centric graph processing via streaming partitions. 
X-Stream exposes an edge-centric scatter-gather programming model that was 
motivated by the lack of access locality when traversing edges, which makes it dif-
ficult to obtain good performance. State is maintained in vertices. This tool uses the 
streaming partition, which works well with RAM and secondary (SSD and Magnetic 
Disk) storage types. It does not provide any way by which to iterate over the edges or 
updates of a vertex. A sequential access to vertices leads to random access of edges 
which decreases performance. X-Stream is innovative in the sense that it enforces 
sequential processing of edges (edge-centric) in order to improve performance. It is 
available [165] under the Apache License 2.0.

Chaos [62]. A system written in C++ which had its foundations on XStream. 
On top of the secondary storage studies performed in the past, graph processing in 
Chaos achieves scalability with multiple machines in a cluster computing system. It is 
based on different functionalities: load balancing, randomized work stealing, sequen-
tial access to storage and an adaptation of X-Stream’s streaming partitions to enable 
parallel execution. Chaos is composed of a storage sub-system and a computation 
sub-system. The former exists concretely as a storage engine in each machine. Its con-
cern is that of providing edges, vertices and updates to the computation sub-system. 
Previous work on X-Stream highlighted that the primary resource bottleneck is the 
storage device bandwidth. In Chaos, the storage and computation engines’ commu-
nication is designed in a way that storage devices are busy all the time—thus optimiz-
ing for the bandwidth bottleneck. It was released [166] under the Apache License 
2.0.
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The following graph processing systems were grouped together because each of the 
improvements they proposed are important concerns to be aware of in designing graph 
processing systems.

PowerLyra [61] is a graph computation engine written in C++ which adopts different 
partitioning and computing strategies depending on vertex types. The authors note that 
most systems use a one-size-fits-all approach. They note that Pregel and GraphLab 
focus in hiding latency by evenly distributing vertices to machines, making resources 
locally accessible. This may result in imbalanced computation and communication for 
vertices with higher degrees (frequent in scale-free graphs). Another provided design 
example is that of PowerGraph and GraphX which focus on evenly parallelizing the 
computation by partitioning edges among machines, incurring communication costs 
on vertices, even those with low degrees. PowerLyra was released under the Apache 
License 2.0 [167].

Kineograph [168] is a system which combines snapshots allowing full processing in the 
background and explicit alternative/custom functions that, besides assessing updates’ 
impact, also apply them incrementally, propagating their outcome across the graph. It 
is a distributed system to capture the relations in incoming data feeds, built to maintain 
timely updates against a continuous flow of new data. Its architecture uses ingest nodes 
to register graph update operations as identifiable transactions, which are then distrib-
uted to graph nodes. Nodes of the latter type form a distributed in-memory key/value 
store. Kineograph performs computation on static snapshots, simplifying algorithm 
design. We did not find its source code online.

Tornado [169] is a system for real-time iterative analysis over evolving data. It was 
implemented over Apache Storm and provides an asynchronous bounded itera-
tion model, offering fine-grained updates while ensuring correctness. It is based on the 
observations that: 1) loops starting from good enough guesses usually converge quickly; 
2) for many iterative methods, the running time is closely related to the approximation 
error. From this, an execution model was built where a main loop continuously gath-
ers incoming data and instantly approximates the results. Whenever a result request is 
received, the model creates a branch loop from the main loop. This branch loop uses the 
most recent approximations as a guess for the algorithm. We did not find its source code 
online.

KickStarter [170] is a system that debuted a runtime technique for trimming approxi-
mation values for subsets of vertices impacted by edge deletions. The removal of edges 
may invalidate the convergence of approximate values pertaining monotonic algorithms. 
KickStarter deals with this by identifying values impacted by edge deletions and 
adapting the network impacts before the following computation, achieving good results 
on real-world use-cases. Despite this, by focusing on monotonic graph algorithms, its 
scope is narrowed to selection-based algorithms. For this class, updating a vertex value 
implies choosing a neighbour under some criteria. KickStarter is now known as 
GraphBolt, a recent work [171, 172] licensed under the MIT License [171] which 
offers a generalized incremental programming model enabling development of incre-
mental versions of complex aggregations. Both were written in C++.

Pixie [173] is a graph-based scalable real-time recommendation system used at Pin-
terest. Using a set of user-specific pins (in Pinterest, users have boards in which they 
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store pins, where each pin is a combination of image and text), Pixie chooses in 
real-time the pins that are most related to the query, out of billions of candidates. 
With this system, Pinterest was able to execute a custom (Pixie Random Walk) algo-
rithm on an object graph of 3 billion vertices and 17 billion edges. On a single server, 
they were able to serve around 1200 recommendation requests per seconds with 60 
millisecond latency. The authors note that the deployment of Pixie benefited from 
large RAM machines, using a cluster of Amazon AWS r3.8xlarge machines with 
244GB RAM. They fitted the pruned Pinterest graph (3 billion vertices, 17 billion 
edges) in around 120GB of RAM, in a setup that yielded the following advantages: 
random walk not forced to cross machines, which increases performance; multiple 
walks can be executed on the graph in parallel; the system can be parallelized and 
scaled by adding more machines to the cluster. This system is a relevant case study (of 
applying graph theory to recommendation systems at scale) as a scalable system for 
processing on large graphs a biased random walk algorithm (with user-specific pref-
erences) while using graph pruning techniques to disregard large boards that are too 
diverse and diffuse the random walk (the non-pruned graph has 7 billion vertices and 
100 billion edges). We did not find the source code available online.

FlowGraph [174] is a system that proposes a syntax for a language to detect tempo-
ral patterns in large-scale graphs and introduces a novel data structure to efficiently 
store results of graph computations. This system is a unification of graph data with 
stream processing considering the changes of the graph as a stream to be processed 
and offering an API to satisfy temporal patterns. We did not find its source code 
available.

GPS [110] is an open-source (BSD License) scalable graph processing system 
written in Java and allowing fault-tolerant and easy-to-program algorithm execu-
tion on very large graphs. It adopts Pregel’s vertex-centric API and extends it with: 
features to make global computations easier to express and more efficient; dynamic 
repartitioning scheme to reassign vertices to different workers during computation 
based on messaging patterns; distribution of high-degree vertex adjacency lists across 
all computer nodes to improve performance (something that PowerGraph and 
PowerLyra later adopted). It was designed to run on a cluster of machines such as 
Amazon EC2, over which the authors tested their work. GPS’s initial version was run 
on up to 100 Amazon EC2 large instances and on graphs of up to 250 million vertices 
and 10 billion edges. It is open-source and available under the BSD License [175].

GoFFish [176] is a sub-graph centric programming abstraction and framework 
co-designed with a distributed persistent graph storage for large scale graph analyt-
ics on commodity clusters, aiming to combine the scalability of the vertex-centric 
(TLAV) approach with flexibility of shared-memory sub-graph computation (TLAG). 
It is written in Java. GoFFish states that two sub-graphs many not share the same 
vertex, but they can have remote edges that connect their vertices, provided that 
the sub-graphs are on different partitions. If two sub-graphs in the same partition 
share an edge, by definition they are merged into a single-sub-graph. It was evalu-
ated with a cluster of 12 nodes each with 8-core Intel Xeon CPUs, 16 GB RAM and 
1 TB SATA HDD. The authors compare the execution of GoFFish (one worker per 
node) with Giraph (default two workers per node), achieving faster execution times 
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for algorithms such as PageRank, connected components and single-source shortest-
paths. Its source code is available though we did not find any information pertaining 
licensing. While its source code is available [177], we did not find information regard-
ing licensing.

FBSGraph [178] presents a forward and backward sweeping execution method to 
accelerate state propagation for asynchronous graph processing. In asynchronous graph 
processing, each vertex maintains a state which can be asynchronously updated in an 
iterative fashion. The method presented in FBSGraph relies on the observation that 
state can be propagated faster by processing vertices sequentially along the graph path 
in each round. They achieve greater execution speed when analysing several graph algo-
rithms across a set of datasets, comparing against systems such as PowerGraph and 
GraphLab. We did not find its source available.

GrapH [179] is a graph processing system written in Java that uses vertex-cut graph 
partitioning that takes into consideration the diversity of vertex traffic and the het-
erogeneous costs of the network. It relies on a strategy of adaptive edge migration to 
reduce the frequency of communication across expensive network links. For this work, 
the authors focused on vertex-cut as it has better partitioning properties for real-world 
graphs that have power-law degree distributions. GrapH has two partitioning tech-
niques, H-load which is used for the initial partitioning of the graph so that each cluster 
worker can load it into local memory, and H-adapt, a distributed edge migration algo-
rithm to address the dynamic heterogeneity-aware partitioning problem. In evaluation, 
GrapH outperformed PowerGraph’s vertex-cut partitioning algorithm with respect to 
communication costs. While its source code is available [180], we found no information 
on licensing.

Julienne [181] is built over Ligra (C++) and provides an interface to maintain a col-
lection of buckets under vertex insertions and bucket deletions. They evaluated under 
bucketing algorithms such as weighted breadth-first search, k-core and approximate set 
cover. The authors describe as bucketing-based algorithms those that maintain vertices 
in a set of unordered buckets—and in each round, the algorithm extracts the vertices 
contained in the lowest (or highest) bucket to perform computation on them. Then, it 
can update the buckets containing the extracted vertices or their neighbours. For exam-
ple, weighted breadth-first search processes vertices level by level, where level i contains 
all vertices at distance i from the source vertex. The system was tested in a multi-core 
machine with 72 cores (4 CPUs at 2.4GHz) and 1TB of main memory, achieving perfor-
mance improvements on several data sets when compared to systems such as Galois, 
base Ligra and Galois. We did not find its source code available.

GraphD [182] is an out-of-core system inspired by Pregel and targeting effi-
cient big graph processing using a small cluster of commodity machines connected 
by Gigabit Ethernet, contrasting with other out-of-core works that focus on spe-
cialized hardware. The authors focus on a setting that sees vertex-centric programs 
being data-intensive, as the CPU cost of computing a message is small when com-
pared to the network transmission cost. GraphD masks disk I/O overhead with 
message transmission though parallelism of computation and communication. It 
eliminates the need for (expensive) external-memory join or group-by operations, 
which are required in other systems such as Chaos. It was evaluated on PageRank, 
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single-source shortest-paths and connected components. GraphD was evaluated 
against distributed out-of-core systems Pregelix, HaLoop and Chaos, against sin-
gle-machine systems GraphChi and X-Stream and representative in-memory sys-
tems Pregel and Giraph, achieving better performance in some scenarios. We did 
not find its source available.

TurboGraph++ [183] is a graph analytics system that exploits external memory for 
scale-up without compromising efficiency. It introduced an abstraction called nested 
windowed streaming to achieve scalability and increase efficiency in processing neigh-
bourhood-centric analytics (in which the total size of neighbourhoods around vertices 
can exceed the available memory budget). This streaming model regards a sequence of 
vertex values and an adjacency list stream. The goal is to efficiently support the k-walk 
neighbourhood query (a class of graph queries defined by the authors, where walks are 
enumerated and then computation is done for each one) with fixed size memory. In 
the model, during user computation, they define an update stream as the sequence of 
updates generated to the ending vertex of each walk, with each update represented as 
a pair of target vertex ID and update value. TurboGraph++ has the goal of balanc-
ing the workloads across machines, which requires balancing the number of edges and 
the number of high-degree and low-degree vertices among machines. It also focuses on 
balancing the number of vertices on each machine so that each one requires the same 
memory budget. We did not find its source code available online.

GraphIn [184] is a dynamic graph analytics framework proposed to handle the scale 
and evolution of real-world graphs. It aimed to improve over approaches to process-
ing dynamic graphs which repeatedly run static graph analytics on stored snapshots. 
GraphIn proposes an adaptation of gather-apply-scatter (GAS) called I-GAS which 
enables the implementation of incremental graph processing algorithms across mul-
tiple CPU cores. It also introduces an optimization heuristic to choose between static 
or dynamic execution based on built-in and user-defined graph properties. Native and 
benchmarking code were implemented in C++ and for experimental evaluation it 
was compared to GraphMat and STINGER. The heuristic-base computation made 
GraphIn faster than systems using fixed strategies. We did not find its source code 
available.

The following works focus on specific techniques such as using specific hardware 
such as SSDs or GPUs. We first list frameworks and systems that were proposed in 
the last years to use the single-instruction multiple-data (SIMD) capabilities of GPUs 
for graph processing:

MapGraph [185] is a high-performance parallel graph programming framework, 
able to achieve up to 3 billion traversed edges per second using a GPU. It represents 
the graph with a compressed sparse row (CSR) data structure and chooses different 
scheduling strategies depending on the size of the frontier (the set of vertices that are 
active in a given iteration). It encapsulates the complexity of the GPU architecture 
while enabling dynamic runtime decisions among several optimization strategies. 
Users need only to write sequential C++ code to use the framework. The early Map-
Graph work was first available as an open-source project [186] licensed under the 
Apache License 2.0, but it has been integrated in the former line of products of 
Blazegraph, also available online [187].
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CuSha [188] is a CUDA-based graph processing framework written in C++ which 
was motivated by the negative impact that irregular memory accesses have on the com-
pressed sparse row graph (CSR) representation. CuSha overcomes this by: 1) organ-
izing the graph into autonomous sets of ordered edges called shards (a representation 
they call G-Shards) unto which GPU hardware resources are mapped for fully coalesced 
memory accesses; 2) accounting for input graph properties such as sparsity (the sparser 
the graph, the smaller the computation windows) to avoid GPU under-utilization (Con-
catenated Windows, or CW). This framework allows users to define vertex-centric algo-
rithms to process large graphs on GPU. It is open-source [189] and available under the 
MIT License.

Gunrock [190, 191] is an open-source [192] (Apache License 2.0) CUDA library 
for graph processing targeting the GPU and written in C. It implements a data-centric 
abstraction focused on operations on a vertex or edge frontier. For different graph algo-
rithms, it achieved at least an order of magnitude speedup over PowerGraph and bet-
ter performance than any other high-level GPU graph library at the time. Its operations 
are bulk-synchronous and manipulate a frontier, which is a subset of the edges or verti-
ces within the graph that is relevant at a given moment in the computation. Gunrock 
couples high-performance GPU computing primitives and optimization strategies with 
a high-level programming model to quickly develop new graph primitives. It was eval-
uated using breadth-first search, depth-first search, single-source shortest paths, con-
nected components and PageRank.

Lux [193] is a distributed multi-GPU system written in C++ for fast graph process-
ing by exploiting aggregate memory bandwidth of multiple GPUs and the locality of 
the memory hierarchy of multi-GPU clusters. It proposes a dynamic graph repartition-
ing strategy to enable well-balanced distribution of workload with minimal overhead 
(improving performance by up to 50%), as well as a performance model providing insight 
on how to choose the optimal number of nodes and GPUs to optimize performance. 
Lux is aimed at graph programs that can be written with iterative computations. Vertex 
properties are read-only in each iteration, with updates becoming visible at the end of an 
iteration. It offers two execution models: pull which optimizes run-time performance of 
GPUs (enables optimizations like caching and locally aggregating updates in GPU shared 
memory); and push, which optimizes algorithmic efficiency (maintains a frontier queue 
and only performs computation over the out-edges of vertices in the frontier). Its source 
code is available [194] under Apache License 2.0.

Frog [195] is a light-weight asynchronous processing framework written in C. The 
authors note that common colouring algorithms may suffer from low parallelism due 
to a large number of colours being needed to process large graphs with billions of ver-
tices. Frog separates vertex processing based on colour distribution. They propose an 
efficient hybrid graph colouring algorithm, relying on a relaxed pre-partition method to 
solve vertex classification with a lower number of colours, without forcing all adjacent 
vertices to be assigned different colours. The execution engine of Frog scans the graph 
by colour, and all vertices under the same colour are updated in parallel in the GPU. 
For large graphs, when processing each partition, the data transfers are overlapped with 
GPU kernel function executions, minimizing PCIe data transfer overhead. It is open-
source [196] and licensed under the GNU General Public License 2.0.
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Aspen [197] is a graph-streaming extension of the Ligra interface, supporting graph 
updates. To support this, the authors developed and presented the C-tree data structure 
which achieves good cache locality, lowers space use and has operations which are effi-
cient from a theoretical perspective. It applies a chunking scheme over the tree, storing 
multiple elements in a tree-node. The scheme takes the ordered set of elements that are 
represented. More relevant elements are stored in tree nodes, while the remaining ones 
are associated in tails of the tree nodes. It employs compression and supports parallel-
ism. The authors evaluate it with the largest publicly-available graph, which has more 
than two hundred billion edges on a multi-core server with 1 TB memory. Source code is 
available online [198] albeit no license information was provided.

Gluon [199] was introduced as a new approach to create distributed-memory graph 
analytics systems able to use heterogeneity in partitioning policies, processor types 
(GPU and CPU) and programming models. To use Gluon, programmers implement 
applications in shared-memory programming systems of their choice and then inter-
face the applications with Gluon to enable execution on heterogeneous clusters. Gluon 
optimizes communication by taking advantage of temporal and structural invariants of 
graph partitioning policies. It runs on shared-memory NUMA platforms and NVIDIA 
GPUs. Its programming model offers a small number of programming patterns imple-
mented in C++, its library offers concurrent data structures, schedulers and memory 
allocators and the runtime executes programs in parallel, using parallelization strategies 
as optimistic and round-based execution. Gluon is available [200] under the 3-Clause 
BSD License.

Hornet [201] is a data structure for efficient computation of dynamic sparse graphs and 
matrices using GPUs. It is platform-independent and implements its own memory allo-
cation operation instead of standard function calls. The implementation uses an internal 
data manager which makes use of block arrays to store adjacency lists, a bit tree for find-
ing and reclaiming empty memory blocks and B+ trees to manage them. It was evalu-
ated using an NVIDIA Tesla GPU and experiments targeted the update rates it supports, 
algorithms such as breadth-first search (BFS) and sparse matrix-vector multiplication. 
Hornet is available [202] under the 3-Clause BSD License.

faimGraph [203] introduced a fully-dynamic graph data structure performing auton-
omous memory management on the GPU. It enables complete reuse of memory and 
reduces memory requirements and fragmentation. The implementation has a vertex-
centric update scheme that allows for edge updating in a lock-free way. It reuses free 
vertex indices to achieve efficient vertex insertion and deletion, and does not require 
restarting as a result of a large number of edge updates. faimGraph was benchmarked 
against Hornet on an NVIDIA GeForce GTX Titan Xp GPU using algorithms such as 
PageRank and triangle counting. Source code is available online [204] without a speci-
fied license.

GraphCage [205] is a cache-centric optimization framework to enable highly efficient 
graph processing on GPUs. It was motivated by the random memory accesses which 
are generated by sparse graph data structures, which increase memory access latency. 
The authors note that conventional cache-blocking suffers from repeated accesses when 
processing large graphs on GPUs, and propose a throughput-oriented cache blocking 
scheme (TOCAB). GraphCage applies the scheme to both push and pull directions 
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and coordinates with load balancing strategies by considering sparsity of sub-graphs. 
This technique is applied to traversal-based algorithms by considering the benefit and 
overhead in different iterations with working sets of different sizes. In its evaluation, 
GraphCage achieved in average lower execution times for one PageRank iteration com-
pared to both Gunrock and CuSha. We did not find its source code available.

For more information on GPU use cases for graph processing approaches, we point 
the readers to [206].

FlashGraph [207] is a graph processing engine implemented in C++ over a user-space 
SSD file system designed for high IOS and very high levels of parallelism. Vertex state is 
stored in memory while edge lists are on SSDs. Latency is hidden by overlapping com-
putation with I/O, a concept similar to X-Stream and Chaos, and edges lists are only 
accessed if requested by applications from SSDs. FlashGraph has a vertex-centric 
(TLAV) interface, its designed to reduce CPU overhead and increase throughput by 
conservatively merging I/O requests, and the authors demonstrate that FlashGraph 
in semi-external memory executes many algorithms with a performance of up to 80% 
of the in-memory implementation and It also outperformed PowerGraph. It is open-
source [208] under the Apache License 2.0.

GraphSSD [209] is a semantic-aware SSD framework and full system solution to store, 
access and execute graph analytics. Instead of considering storage as a set of blocks, it 
accounts for graph structure while choosing graph layout, access and update mecha-
nisms. GraphSSD innovates by considering a vertex-to-page mapping scheme and uses 
advanced knowledge of flash properties to reduce page accesses. It offers a simple API 
to ease development of applications accessing graphs as native data and its evaluation 
showcased average performance gains for basic graph data fetch functions on breadth-
first search, connected components, random-walk, maximal independent set and Pag-
eRank. We did not find its source available.

In Table 1 we summarize distinguishing features and licenses for the graph process-
ing systems detailed in this section. The last reference in front of every system name is 
its open-source code repository, when available. The second group from the top (PBGL, 
CombBLAS and HavoqGT) contains systems which use multiple machines for computa-
tion but not in the typical cluster scenario. Instead, they are characterized by using spe-
cific machines for high-performance computing.

Conclusion
This survey explores different aspects of the graph processing landscape and highlights 
vectors of research. We cover dimensions that enable the classification of graph pro-
cessing systems according to the mutability of data (dynamism [112] and its modali-
ties), the nature of the tasks (workloads where the focus may be efficient storage [129] 
or swift computation [210] over transient data) and how the data is associated to differ-
ent computing agents (e.g., distributed via partitioning [50] to threads in a CPU, CPUs 
in a machine, machines in a cluster). Each of these dimensions constitutes a different 
branch of the study of graph processing, and herein we group their recent literature 
surveys and draw on their relationships. On drawing a line between graph processing 
systems and those that also focus on the storage, the graph databases, we found most 
commercial graph solutions to fall on the category of graph database. Graph databases, 
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Table 1  Summary of graph system distinctive features

Circle · on the Multi-core, GPU and Cluster columns indicate that option is supported. Languages lists the programming 
languages the systems were written in. License lists the licenses of the open-source project or of the free edition of a 
commercial product: AL 2.0 is Apache License 2.0, CC 1.0 is Commons Clause 1.0, (GPL) v3 is GNU 
General Public License (GPL) v3. Notes covers additional information, with Copyright meaning that it may be 

System Multi-core GPU Cluster Languages License Notes

GraphLab [130, 131] · · C++ AL 2.0 N/A

GRACE [132] · · C++ Unavailable N/A

Ligra [133, 134] · C++ MIT N/A

Ringo [122, 135] · C++, Python BSD N/A

Polymer [136, 137] · C++ AL 2.0 N/A

GraphMat [138, 139] · C++ Custom N/A

Mosaic [140, 141] · C++ MIT Fast storage

PBGL [142, 143] · C++ Custom Hardware

CombBLAS [144, 145] · C++ Custom Hardware

HavoqGT [146, 147] · C++ GNU LGPL 2.1 Hardware

Apache Giraph [12, 
148]

· · Java AL 2.0 N/A

Naiad [150, 151] · C# AL 2.0 N/A

Apache Flink [14, 
153]

· · Java, Python, 
Scala

AL 2.0 N/A

Apache Spark [155, 
156]

· · Java, Python, 
Scala

AL 2.0 N/A

GraphTau [157] · · Java, Scala Unavailable N/A

Tink [158, 159] · · Java, Scala AL 2.0 N/A

X-Stream [56, 165] · C++ AL 2.0 N/A

Chaos [62, 166] · · C++ AL 2.0 N/A

PowerLyra [61, 167] · · C++ AL 2.0 N/A

Kineograph [168, 
171]

· · Unknown Unavailable N/A

Tornado [169] · · Unknown Unavailable N/A

KickStarter [170] · · C++ MIT N/A

Pixie [173] · · Unknown Unavailable N/A

FlowGraph [174] · · Unknown Unavailable N/A

GPS [110, 175] · · Java BSD N/A

GoFFish [176, 177] · · Java Unknown Copyright

FBSGraph [178] · · Unknown Unavailable N/A

GrapH [179, 180] · · Java Unknown Copyright

Julienne [181] · C++ Unavailable N/A

GraphD [182] · · Unknown Unavailable N/A

TurboGraph++ 
[183]

· · Unknown Unavailable N/A

GraphIn [184] · C++ Unavailable N/A

MapGraph [185, 186] · C++ AL 2.0 Discontinued

CuSha [188, 189] · C++ MIT N/A

Gunrock [190–192] · C AL 2.0 N/A

Lux [193, 194] · · · C++ AL 2.0 N/A

Frog [195, 196] · C GPL 2.0 N/A

Gluon [199, 200] · · C++ 3C BSD N/A

GraphCage [205] · Unknown Unavailable N/A

FlashGraph [207, 
208]

C++ AL 2.0 SSDs

GraphSSD [209] Unknown Unavailable SSDs
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along the last decade, have continued to refine their efficiency in executing traversals 
and global graph algorithms over the graph representation stored in the database. We 
consider that a novel approach to extracting value from graph-based data will include 
the use of graph-aware data compression techniques on scalable distributed systems, 
potentially breaking the abstraction that these systems establish between the high-level 
graph data representations and the lower-level data distribution and transmission. We 
observe that the architecture of systems targeting graphs depend on how generic is the 
graph processing desired to be. Generic dataflow processing systems offer abstractions 
over their basic computational primitives in order to represent and process graphs, but 
in exchange abdicate from fine-tuning and graph-aware optimizations.

As part of our exhaustive analysis of existing contributions of different domains in the 
state-of-the-art of graph processing and storage, we provide direct links to source code 
repositories such as GitHub whenever they were available. Should the reader wish to 
delve into the implementation of a given contribution, a link to the contribution’s source 
code repository is to be found as part of the bibliography. We provide these so that other 
researchers and developers may look into them without need to engage in error-prone 
searches looking for up-to-date documentation and source-code.

This systematic analysis fosters some additional comments regarding data process-
ing. Data is abundant, big and evolving, and paradigms such as edge computing and the 
evolution of the Internet-of-Things come together to reshape our relationship with data. 
With an increase in smart devices and computational capabilities becoming more ubiq-
uitous for example in daily objects such as vehicles and smart homes, new graphs of data 
mapping interaction and purpose become available. This implies a continuous trend in 
the increasing size of data. At the same time, the dimension of dynamism (spread across 
the types we enumerate in this document) gains renewed importance as we move to a 
faster and ever-connected world. With the advent of 5G technologies and the alternative 
possibilities of space internet (among the private initiatives we count SpaceX’s Starlink, 
Jeff Bezos’ Blue Origin and the late Steve Jobs’ vision for an always-connected smart-
phone) becoming a closer reality, the temporal aspect will become even more granular.

One would not be wrong to speculate that we will have more devices which will gen-
erate data more frequently. In such a world, the graph processing dimensions we enu-
merate in this document will play a relevant role in building systems to handle these 
changing scenarios.
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