
An analysis of the graph processing
landscape
Miguel E. Coimbra1,2*  , Alexandre P. Francisco1,2  and Luís Veiga1,2   

Introduction
Graph-based data is found almost everywhere, with examples such as analysing the
structure of the World Wide Web [1–3], bio-informatics data representation via de
Bruijn graphs [4] in metagenomics [5, 6], atoms and covalent relationships in chemis-
try [7], the structure of distributed computation itself [8], massive parallel learning of

Abstract 

The value of graph-based big data can be unlocked by exploring the topology and
metrics of the networks they represent, and the computational approaches to this
exploration take on many forms. For the use-case of performing global computations
over a graph, it is first ingested into a graph processing system from one of many
digital representations. Extracting information from graphs involves processing all
their elements globally, which can be done with single-machine systems (with varying
approaches to hardware usage), distributed systems (either homogeneous or hetero-
geneous groups of machines) and systems dedicated to high-performance computing
(HPC). For these systems focused on processing the bulk of graph elements, common
use-cases consist in executing for example algorithms for vertex ranking or community
detection, which produce insights on graph structure and relevance of their ele-
ments. Many distributed systems (such as Flink, Spark) and libraries (e.g. Gelly,
GraphX) have been built to enable these tasks and improve performance. This is
achieved with techniques ranging from classic load balancing (often geared to reduce
communication overhead) to exploring trade-offs between delaying computation and
relaxing accuracy. In this survey we firstly familiarize the reader with common graph
datasets and applications in the world of today. We provide an overview of different
aspects of the graph processing landscape and describe classes of systems based on
a set of dimensions we describe. The dimensions we detail encompass paradigms to
express graph processing, different types of systems to use, coordination and commu-
nication models in distributed graph processing, partitioning techniques and different
definitions related to the potential for a graph to be updated. This survey is aimed at
both the experienced software engineer or researcher as well as the graduate student
looking for an understanding of the landscape of solutions (and their limitations) for
graph processing.

Keywords:  Graph processing, Distributed systems, Online processing, Graph
representation, Dataflow programming

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

SURVEY PAPER

Coimbra et al. J Big Data (2021) 8:55
https://doi.org/10.1186/s40537-021-00443-9

*Correspondence:
miguel.e.coimbra@tecnico.
ulisboa.pt
1 INESC-ID, R. Alves Redol 9,
1000‑029 Lisbon, Portugal
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-7191-5895
http://orcid.org/0000-0003-4852-1641
http://orcid.org/0000-0002-9285-0736
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00443-9&domain=pdf

Page 2 of 41Coimbra et al. J Big Data (2021) 8:55

tree ensembles [9] and parallel topic models [10]. Academic research centres in collabo-
ration with industry players like Facebook, Microsoft and Google have rolled out their
own graph processing systems, contributing to the development of several open-source
frameworks [11–14]. They need to deal with huge graphs, such as the case of the Face-
book graph with billions of vertices and hundreds of billions of edges [15].

Domains

We list some of the domains of human activity that are best described by relations
between elements—graphs:

Social networks

They make up a large portion of social interactions in the Internet. We name some of
the best-known ones: Facebook (2.50 billion monthly active users as of December 2019
[16]), Twitter (330 million monthly active users in Q1’19 [17]) and LinkedIn (330 million
monthly active users as of December 2019 [18]). In these networks, the vertices repre-
sent users and edges are used to represent friendship or follower relationships. Further-
more, they allow the users to send messages to each other. This messaging functionality
can be represented with graphs with associated time properties.

World Wide Web

Estimates point to the existence of over 1.7 billion websites as of October 2019 [19], with
the first one becoming live in 1991, hosted at CERN. Commercial, educational and rec-
reational activities are just some of the many facets of daily life that gave shape to the
Internet we know today. With the advent of business models built over the reachability
and reputation of websites (e.g. Google, Yahoo and Bing as search engines), the applica-
tion of graph theory as a tool to study the web structure has matured during the last two
decades with techniques to enable the analysis of these massive networks [1, 2].

Telecommunications

These networks have been used for decades to enable distant communication between
people and their structural properties have been studied using graph-based approaches
[20, 21]. The vertices in these networks represent user phones, whose study is relevant
for telecommunications companies wishing to assess closeness relationships between
subscribers, calculate churn rates, enact more efficient marketing strategies [22] and also
to support foreign signals intelligence (SIGINT) activities [23].

Recommendation systems

Graph-based approaches to recommendation systems have been heavily explored in
the last decades [24–26]. Companies such as Amazon and eBay provide suggestions to
users based on user profile similarity in order to increase conversion rates from targeted
advertising. The structures underlying this analysis are graph-based [27–29].

Transports, smart cities and IoT

Graphs have been used to represent the layout and flow of information in transport
networks comprised of people circulating in roads, trains and other means of transport

Page 3 of 41Coimbra et al. J Big Data (2021) 8:55 	

[30–32]. The Internet-of-Things (IoT) will continue to grow as more devices come into
play and 5G proliferates. The way IoT devices engage for collaborative purposes and
implement security frameworks can be represented as graphs [33].

Epidemiology

The analysis of disease propagation and models of transition between states of health,
infection, recovery and death are very important for public health and for ensuring
standards of practices between countries to protect travellers and countries’ popula-
tions [34–37]. These are represented as graphs, which can also be applied to localized
health-related topics like reproductive health, sexual networks and the transmission of
infections [38, 39]. Real-life epidemics are perhaps at the forefront of examples of this
application of graph theory for health preservation, with the most recent example as
COVID-19 [40].

Other types of data represented as graphs can be found [41]. To illustrate the growing
magnitude of graphs, we focus on web graph sizes of different web domains in Fig. 1,
where we show the number of edges for web crawl graph datasets made available by the
Laboratory of Web Algorithmics [42] and by Web Data Commons [43].

Motivation

We include this section in this survey to highlight three reasons. Firstly, the recent years
have seen a positive tendency in the field of all things related to graph processing. As its
aspects are further explored and optimized, with new paradigms proposed, there has
been a proliferation of multiple surveys [44–50]. They have made great contributions in
systematizing the field of graph processing, by working towards a consensus of termi-
nology and offering discussion on how to present or establish hierarchies of concepts
inherent to the field. Effectively, we have seen vast contributions capturing the maturity
of different challenges of graph processing and the corresponding responses developed
by academia and industry.

Fig. 1  Web graph edge counts for domain crawls since the year 2000 (in log scale)

Page 4 of 41Coimbra et al. J Big Data (2021) 8:55

The value-proposition of this document is therefore, on a first level, the identification
of the dimensions we observe to be relevant with respect to graph processing. This is
more complex than, for example, merely listing the types of graph processing system
architectures or the types of communication and types of coordination within the class
of distributed systems for graph processing. Many of these dimensions, if not all, are
interconnected in many ways. As the study of each one is deepened, its individual over-
lap with the others is eventually noted. For example, using distributed systems, it is nec-
essary to distribute the graph across several machines. This necessity raises the question
of how to partition the graph to distribute it. Afterwards, as a natural consequence, it is
necessary to define the coordination (e.g. synchronous versus asynchronous) between
nodes of the system. Orthogonally to this, the relation between data and computation in
graph processing must be defined. The vertices of a graph may represent posts in a social
network, while the edges dictate follower relationships. But to the systems that process
them, one could specify the units of computation to be solely the vertices, exclusively the
edges or components of the graph (and the definition of component in this case would be
required too). Herein, we first note the cornerstone aspects of the graph processing field
from individual works and from existing surveys: dimensions and definitions.

Secondly, we provide an exhaustive list of systems for graph processing, sharing their
year of debut and distinctive features. We explore the different types that exist:

Single‑machine

They may simply require copious amounts of memory, or instead employ compression
techniques for graph processing. Orthogonal to this is, and depending on the machine
configuration, the processing time for large graphs is also an important challenge. There
are techniques that rely on heuristics on the graph to improve execution time, taking
advantage of graph structure as well as specific properties of popular algorithms. Exam-
ples include increasing the speed of the Louvain community detection method [51] by
using heuristics such as informing the vertex community-joining decision process with
information above the level of specific vertices, or assigning a colouring scheme so that
vertices of the same colour are processed in parallel without adjacent vertices being pro-
cessed concurrently. Other approaches make use of heuristics such as differentiating
processing of vertices based on vertex degree, or to rely on the application of partition-
ing techniques to enable the processing of graphs which are larger than single-machine
memory capacity.

Multi‑machine

Distributed systems which can be a cluster of machines (either homogeneous or het-
erogeneous) or special-purpose high-performance computing systems (HPC), requiring
coordination at different levels. There are systems in the literature with different design
principles which influence the granularity with which parallelism and coordination
are performed. General-purpose data processing systems which also have libraries for
graph processing do not consider the fine details of graph-structured data, while systems
designed with a focus on graph processing enable fine-grained techniques to increase
performance.

Page 5 of 41Coimbra et al. J Big Data (2021) 8:55 	

On the third level, and also considering a scope of meta-analysis, we discuss the struc-
turing of the field that is presented in existing surveys. We complement it with our own
highlight of important relations between graph processing concepts and a chronological
analysis of the field of graph processing.

Document roadmap  This rest of the paper is organized around the following main sec-
tions. Graph Algorithms: Natures and Types highlights relevant aspects of graph-process-
ing tasks and different types of graph algorithms. Computational Representations details
important computational representations of graphs which typically use compression
techniques. Graph Processing: Computational Units and Models analyses how graphs are
conceptually manipulated in many contributions of the field’s state of the art, and the dif-
ferent levels of granularity. Dimension: Partitioning presents the most-known approaches
to decomposing graph-based data into computational units for parallelism and distri-
bution, showcasing models with different levels of granularity. Dimension: Dynamism
enumerates scenarios with different definitions of dynamism in graph processing, from
the graph representing temporal data to the manipulated graph representation being
constantly updated with new information. Dimension: Workload discusses the nature of
graph processing workloads and different scopes such as analytics and storage. Single-
Machine and Shared-Memory Parallel Approaches presents these types of architecture
and describes important state-of-the-art marks. High-Performance Computing is focused
on multi-core and multi-processor architectures. Distributed Graph Processing Systems
enumerates systems which focus on distributing the graph across machines to enable
processing. We finish with Conclusion and final remarks.

Graph algorithms: natures and types
There are several aspects inherent to graph-processing tasks. Graphs have properties
which may be extrapolated using specific algorithms, from computing the most impor-
tant vertices (e.g. using an arbitrary function like PageRank [52]), finding the biggest
communities (for which there is a choice of many algorithms) or the most relevant paths
(for a definition of relevancy). An algorithm that processes the whole graph (as opposed
to localized information queries expressed with graph query languages seen previously)
is typically executed in parallel fashion when the resources for parallelism are available.
When implementing these algorithms, whether the developer manually implements the
parallelism or merely uses such a functionality offered by an underlying framework (e.g.
Apache Spark [53] or Apache Flink [14]), some challenges must be considered.
This means that while the field of graph processing is developed with the goal of improv-
ing how we manipulate and extract value from graph-based data, as the techniques to
achieve this end become more refined, other aspects of graph structures gain promi-
nence as challenges to them.

We list and comment here the major types of challenges of parallel graph processing
identified in a previous study [54]:

1.	 Data-driven computations: A graph has vertices and edges which establish how com-
putations are performed by algorithms, making graph applications data-driven. We
see this observation shift the focus to data—what should the elementary unit of com-

Page 6 of 41Coimbra et al. J Big Data (2021) 8:55

putation be? In this survey we go over multiple solutions in the literature, consider-
ing the computation from the perspective of vertices [8, 14, 53, 55], edges [56] and
sub-graphs [57].

2.	 Irregular problems: The distribution of edges and vertices usually does not constitute
uniform graphs that form embarrassingly parallel problems, whose benefits from
simple parallelism are easier to achieve [58]. We note that after defining the unit of
computation in a graph, care needs to be taken when assigning parts of the graph
to different processing units. Skewed data will negatively impact load balance [46]
unless tailored approaches are undertaken, which take into account different types of
graph properties such as scale-free [59] in their designs [60, 61].

3.	 Poor locality: Locality-based optimizations offered by many processors are hard to
apply to the inherently irregular characteristics of graphs due to poor locality during
computation. We believe it is important to mention how this manifests when using
distributed systems (clusters) to process the graphs. To mitigate this, techniques may
be used for example to replicate specific vertices based on properties such as their
degree, or to use specific graph partitioning strategies when working with vertex-
centric approaches [50].

4.	 High data-access-to-computation ratio: The authors note that a large portion of
graph processing is usually dedicated to data access in graph algorithms and so wait-
ing for memory or disk fetches is the time-most consuming phase relative to the
actual computation on a vertex or edge itself. We note one approach [62] to this
problem that focused on balancing network and storage latencies with computation
time to minimize the impact of underlying data accesses in a cloud computing set-
ting.

Algorithms

Graph algorithms that execute globally over all elements of a graph have a distinct nature
from those solved with graph query languages—the scope of computation is drastically
different with respect to the computational resources needed to satisfy it. We note,
however, some graph databases such as Neo4j have extensions like the Neo4j APOC
Library for languages like Cypher to start algorithms with global computation from
the graph query language [63].

A previous survey on the scalability of graph processing frameworks [64, Sec. 3.3]
defines a categorization of graph algorithms, which we reproduce here: Traversals. Start-
ing from a single node, they employ recursive exploration of the neighbourhood until
a termination criteria is met, like reaching a desired node or a certain depth. Instances
of this are for example calculating single-source shortest-paths (SSSP), k-hop neigh-
bourhood or breadth-first searches (BFS). Graph analysis. Algorithms falling into this
scope aim at understanding the structural properties and topology of the graph. They
may be executed to grasp properties like the diameter (greatest distance between any
pair of vertices), density (ratio of the number of edges |E| with respect to the maximum
possible edges) or degree distribution. Component identification. Concept: a connected
component is a subset of graph vertices for which there is a path between any pair of ver-
tices. Finding connected components is relevant to detect frailties in the networks that

Page 7 of 41Coimbra et al. J Big Data (2021) 8:55 	

graphs represent. The connections between these components are called bridges, which
if removed, will separate connected components. Communities detection. The groups
called communities consist of sets of vertices that are close to each other within a com-
munity than to those outside it. There are different techniques to compute them such as
minimal-cut sets and label propagation, among others. Centrality measures calculation.
These represent the importance of a vertex with respect to the rest of the network. Many
definitions exist such as PageRank and betweenness centrality, for example. There also
heuristics to measure the relevance of edges such as spanning edge betweenness [65].
Pattern matching. Related to algorithms aimed at recognizing or describing patterns,
known as graph matching in this context. Graph anonymization. To produce a graph
with similar structure but making it so the entities represented by vertices and edges are
not identifiable. Two examples of anonymization procedures are k-degree and k-neigh-
bourhood anonymity.

Underlying the computations that take place to solve graph-specific tasks lies the gran-
ularity. How are the vertices, edges and properties of graphs processed or stored? This
required building a bridge from these mathematically-defined elements to the bits and
bytes of computers.

Computational representations
Here we detail terms and concepts which are known in graph theory. We include pre-
liminary notions that serve as a basis to familiarize the reader with the language used in
scientific documents on graph applications, processing systems and novel techniques.
In the literature [66], a graph G is written as G = (V ,E)—it is usually defined by a set
of vertices V of size n = |V | and a set of edges E of size m = |E| . Vertices are sometimes
referred to as nodes and edges as links. An undirected graph G is a pair (V, E) of sets
such that E ⊆ V × V is a set of unordered pairs. If E is a set of ordered pairs, then we
say that G is a directed graph. Between the same two vertices there is usually at most one
edge; if there are more, then the graph is called a multigraph (note: an ordered graph in
which a pair of vertices share two edges in opposite direction is not necessarily a multi-
graph). Multigraphs are more common when looking at the applications and use-cases
for graph databases such as Neo4j [67], where one may model more than one relation
type between the same vertices. Additionally, given a graph G = (V ,E) , the set of ver-
tices of G is written as V(G) and the set of edges as E(G). More commonly, we write
V (G) = V and E(G) = E.

Underlying all the ways to extract information from graphs is their digital representa-
tion. It is important to understand the set of operations to be performed over the graph
and its size in order to guide the choice of representation. To represent the edges, per-
haps the two most well-known approaches are the adjacency list and adjacency matrix.
The choice of using an adjacency list or a matrix usually depends on the amount of edges
in the graph.

Consider a given graph G = (V ,E) . If |E| is close to the maximum number of edges
that a graph can sustain ( |E| ≃ |V |2 ), then it is a dense graph and it makes more sense
to choose the adjacency matrix (performance-wise). However, if the graph is sparse
( |E| ≪ |V |2 ), where most nodes are not connected, it can be efficiently represented
(storage-wise) with an adjacency list. While the matrix consumes more space than the

Page 8 of 41Coimbra et al. J Big Data (2021) 8:55

adjacency list, it allows for constant-time access. We show in Fig. 2 an example of differ-
ent representations for the same graph.

Figure 2a shows a sample graph G, for which the adjacency matrix is shown in Fig. 2b
and the corresponding adjacency list in Fig. 2c. The first row of the adjacency matrix A
represents the outgoing edges of vertex 1, which is connected to vertex 2. It is common
in the literature [68, Ch. 22] to use the subscript notation Ai,j to refer to the presence of
a specific edge in matrix A (the notation is relevant for theoretical purposes even if using
another type of representation) starting from vertex i and targeting vertex j:

Matrix A also takes on a particular configuration depending on the graph being directed
or undirected. In the later case, there is no explicit sense of source or target of an edge,
leading to symmetry in matrix A. Implementations of graph processing systems often
represent undirected graphs as directed graphs such that the undirected edge between a
pair of vertices is represented by two directed edges in opposite directions between the
pair.

There are more space-efficient ways to represent a graph, and they become a necessity
when exploring the realm of big graphs. The choice between an adjacency list or matrix
is bound to the density of the graph. But to justify other representation types, factors
such as graph size, storage limitations and performance requirements need special
focus. The compressed sparse row (CSR), also known as the Yale format, is able to repre-
sent a matrix using three arrays: one containing non-zero values; the second containing
the extents of rows; the third storing column indices. Figure 2d shows a representation
in this format (we omit the array the array containing the non-zero values as they are all
one in this case).

Let us consider that indices are zero-based. The array on the left side is the column
index array, where the pipe character | separates groups which belong to each row of
A. The second row (index 1) of A has elements at position indexes 0 and 3 in A. There-
fore, the second group of the column index array has elements [0, 3]. The array on the

(1)Ai,j =

{

1 if there is an edge from i to j,
0 otherwise.

a b c

d
Fig. 2  Simple computational representations of sample directed graph G shown in a 

Page 9 of 41Coimbra et al. J Big Data (2021) 8:55 	

right is the row index array which has one element per row in matrix A and an element
which is the count of non-zero elements of A at the end of the array (there are varia-
tions without this count). For a given row i, it encodes the start index of the row group
in the column index array (on the left in Fig. 2d). This way, for example, the second row
of matrix A (Fig. 2b) has row index 1 in A. Then, looking at the row index array (the one
on the right), as the second row of matrix A has row index 1, we access the elements with
indices [1, 2] in the row index array, which returns the pair (1, 3), indicating that the sec-
ond row (index one) of A is represented in the column index array starting (inclusive) at
index 1 and ending at index 3 (exclusive). If we look at the column index array and check
the elements from index 1 (inclusive) to 3 (exclusive), we get the set of values {0, 3} . And
if we look at the second row in A, column index 0 and column index 3 are exactly the
positions of the edges in A for that row. Generally, for a matrix M’s row index i, we access
indices [i, i + 1] in the row index array, and the returned pair dictates the starting (inclu-
sive) and ending (exclusive) index interval in the column index array. The set of elements
in that interval in the column index array contains the indices of the columns with value
1 for row index i in M. We point the reader to [69] for details on its representation and
construction. There is also the compressed sparse column (CSC), which is similar but
focused on the columns, as the name suggests.

Other approaches take advantage of domain-specific properties of graphs. Such is
the case of WebGraph [1], which exploits certain properties of web graphs to repre-
sent them with increased compression. An important property they exploit is locality,
as many links stay within the same domain, that is, if the web graph is lexicographi-
cally ordered, most links point close by. Another property is similarity: pages that are
close by in the lexicographical order are likely to have sets of neighbours that are similar.
The study performed with WebGraph also highlighted, among other facts, the follow-
ing: similarity was found to be much more concentrated than previously thought; con-
secutivity is common regarding web graphs. The properties of ordering (and different
techniques to produce them) have also been exploited by the same authors to obtain
compression with social networks. WebGraph was used in an extensive analysis of many
different data sets, which were made available online by the Laboratory for Web
Algorithmics [1, 42, 70–72].

The k2-tree is another data structure employed to represent and efficiently store graphs
[73]. It may be used to represent static graphs and binary relations in general. It has
been used to represent binary relations like web graphs, social networks and RDF data
sets by internally using compressed bit vectors. Conceptually, we recursively subdivide
each block of a graph’s adjacency matrix until we reach the level of individual cells of
the matrix. The idea is to divide (following an MX-Quadtree strategy [74, Sec. 1.4.2.1])
the matrix in blocks and then assign 0 to the block if it only contains zeros (no edges) or
1 if it contains at least an edge. We show in Fig. 3 a sample adjacency matrix on the left
and the corresponding k2-tree representation of the decomposition. This representation
of the adjacency matrix is actually a k2-tree of height h = ⌈logk n⌉ , where ( n = |V | and)
each node contains a single bit of data. It is 1 for internal nodes and 0 for leaves, except
for the last level, in which all nodes are leaves representing values from the adjacency
matrix. It is a data structure that also efficiently matches the properties of sparseness
and clustering of web graphs.

Page 10 of 41Coimbra et al. J Big Data (2021) 8:55

Another proposal, Log(Graph) [75] is a graph representation that combines high
compression ratios with low overhead to enable competitive processing performance
while making use of compression. It achieved compression ratios similar to WebGraph
while reaching speedups of more than 2x. The authors achieve results by applying log-
arithm-based approaches to different graph elements. They describe its application on
fine elements of the adjacency array (the basis of Log(Graph): vertex IDs, offsets and
edge weights. From information theory, the authors note that a simple storage lower
bound can be the number of possible instances of an entity, meaning the number of bits
required to distinguish them. Using this type of awareness on the different elements
that represent an adjacency array and by incorporating bit vectors, the authors present
a C++ library for the development, analysis and comparison of graph representations
composed of the many schemes described in their work.

There were relevant techniques for graph compression the literature on graph com-
pression [76–81] with the WebGraph framework [1, 2] as one of the most well-known,
and more recently the k2-tree structure [73, 82–84], only later was the focus cast on
being able to represent big graphs with compression while allowing for updates. Fur-
thermore, if we add the possibility of dynamism of the data (the graph is no longer a
static object that one wishes to analyse) to the factors guiding representation choice,
then it makes sense to think about how to represent a big graph in common hardware
not only for storage purposes but also for efficient access with mutability. Works such
as VeilGraph [85] approach the concepts of efficient representations by for example
incorporating summary graph structures to reduce the total performed computations in
the context of graph updates.

A dynamic version of the k2-tree structure was proposed for this purpose [86]. Using
compact representations of dynamic bit vectors to implement this data structure, the
k2-tree was used to provide a compact representation for dynamic graphs. However,
this representation with dynamic compact bit vectors suffers from a known bottleneck
in compressed dynamic indexing [87]. It suffers a logarithmic slowdown from adopt-
ing dynamic bit vectors. A recent comparative study on the graph operations supported
by different k2-tree implementations has also been performed [88]. This work also pre-
sented an innovative take on implementing dynamic graphs by employing the k2-tree
data structure with a document collection dynamization technique [89], avoiding the
bottleneck in compressed dynamic indexing.

a b 8

Fig. 3  A sample adjacency matrix ( n = |V | = 64 ) and corresponding k2-tree representation

Page 11 of 41Coimbra et al. J Big Data (2021) 8:55 	

Graph processing: computational units and models
Here we detail the most relevant paradigms and computational units used to express
computation in graph processing systems. Programming models for graph process-
ing have been studied and documented in the literature [47, 48]. They define prop-
erties such as the granularity of the unit of computation, how to distribute it across
the cluster and how communication is performed to synchronize computational state
across machines.

Unit: Vertex‑Centric (TLAV)

The vertex-centric paradigm, also known as think-like-a-vertex (TLAV), debuted with
Google’s Pregel system [8]. An open-source implementation of this model known as
Apache Giraph [12] was then offered to the public. Other example systems that were
created using that model are GraphLab [90], PowerGraph [60], PowerLyra [61]. As
the unit of computation is the vertex itself, the user algorithm logic is expressed from the
perspective of vertices. The idea is that a vertex-local function will receive information
from the vertex’s incoming neighbours, perform some computation, potentially update
the vertex state and then send messages through the outgoing edges of the vertex. A
vertex is the unit of parallelization and a vertex program receives a directed graph and
a vertex function as input. It was then extended to the concept of vertex scope, which
includes the adjacent edges of the vertex. The order of these steps will vary depending on
the type of vertex-centric model used (scatter-gather, gather-apply-scatter).

Model: Superstep Paradigm

In a superstep S, a user-supplied function is executed for each vertex v (this can be done
in parallel) that has a status of active. When S terminates, all vertices may send messages
which can be processed by user-defined functions at step S + 1.

Model: Scatter‑Gather

Scatter-gather shares the same idea behind vertex-centric but separates message send-
ing from message collecting and update application [91]. In the scatter phase, vertices
execute a user-defined function that sends messages along outgoing edges. In the gather
phase, each vertex collects received messages and applies a user-defined function to
update vertex state.

Model: Gather‑Apply‑Scatter

Gather-Sum-Apply-Scatter (GAS) was introduced by PowerGraph [60] and was aimed
at solving the limitations encountered by vertex-centric or scatter-gather when oper-
ating on power-law graphs. The discrepancy between the ratios of high-degree and
low-degree vertices leads to imbalanced computational loads during a superstep, with
high-degree vertices being more computationally-heavy and becoming stragglers. GAS
consists of decomposing the vertex program in several phases, such that computa-
tion is more evenly distributed across the cluster. This is achieved by parallelizing the

Page 12 of 41Coimbra et al. J Big Data (2021) 8:55

computation over the edges of the graph. In the gather phase, a user-defined function is
applied to each of the adjacent edges of each vertex in parallel.

Unit: Edge‑Centric (TLEV)

The edge-centric approach, also referred as think-like-an-edge (TLEV), was popularized
by systems like X-Stream [56] and Chaos [62] which specify the computation from
the point-of-view of edges. These systems made of use of this paradigm to optimize the
usage of secondary storage and network communication with cloud-based machines to
process large graphs.

Unit: Sub‑graph‑Centric (TLAG)

The previous models are subjected to higher communication overheads due to being
fine-grained. It is possible to use sub-graph structure to reduce these overheads (also
known as component-centric [48]). In this category, the work of [47] denotes two sub-
graph-centric approaches: partition-centric and neighbourhood-centric. Partition-centric
instead of focusing on a collection of unassociated vertices, considers sub-graphs of the
original graph. Information from any vertex can be freely propagated within its physi-
cal partition, as opposed to the vertex-centric approach where a vertex only accesses
the information of its most immediate neighbours. This allows for reduction in com-
munication overheads. Ultimately, the partition becomes the unit of parallel execution,
with each sub-graph being exposed to a user function. This sub-graph-centric approach
is also known as think-like-a-graph [57] (TLAG). neighbourhood-centric, on the other
hand, allows for a physical partition to contain more than one sub-graph. Shared state
updates exchange information between sub-graphs of the same partition, with replicas
and messages for sharing between sub-graphs that aren’t in the same partition. For com-
pletion, we refer the reader to an analysis of distributed algorithms on sub-graph centric
graph platforms [92].

Model: MEGA

The MEGA model was introduced by Tux2 [93], a system designed for graph compu-
tations in machine learning. The model is composed of four functions defined by the
user: an exchange function which is applied to each edge and can change the value of the
edge and adjacent vertices; an apply function to synchronize the value of vertices with
their replicas; a global sync function to perform shared computations and update values
shared among partitions; a mini-batch function to indicate the execution sequence of
other functions in each round.

There are graph processing systems that offer more than one type of model. To achieve
parallelism and harness multiple machines in clusters, it is necessary to define how to
break down the graph—we provide a high-level overview of methods employed in most
well-known graph processing solutions

Dimension: partitioning
Graph partitioning is an important problem in graph processing, and this importance
manifests in two formats. The first, is out of a user’s domain application with the goal
of splitting the graph in parts which provide a relevant view of the data. The second,

Page 13 of 41Coimbra et al. J Big Data (2021) 8:55 	

is when partitioning may be considered as a hyper-algorithm, that is, it is employed to
divide the parts of the graph across a computational infrastructure, typically within
the distributed systems’ coordination layer, or across processing units or cores within
machines. Machine loads in distributed graph processing systems depend on the way
computational units are distributed across workers. The communication between them
then depends on the number of units that are replicated, or the number of edges which
are cut in the edge-cut partitioning approach. We observe that partitioning has a cycli-
cal nature to itself in the scope of distributed processing: one may wish to execute graph
partitioning over a distributed system as part of a domain-specific problem; however,
before that graph algorithm can execute, the graph data also incurs partitioning followed
by distribution in the underlying (distributed) computational infrastructure. While the
study of graph partitioning is not recent, it gained additional depth in the last decade
as the number of factors guiding optimization of partitioning increased with the com-
plexity of graph processing systems. We explore partitioning as a relevant dimension
to classify graph processing systems as they must approach it in order to enable par-
allel computation over graphs. The way it is approached becomes a distinctive feature
between the systems.

Graph partitioning aims to divide the nodes of the graph into mutually-exclusive
groups and to minimize the edges between partitions. This is effectively a grouping of the
node set of the graph, which can represent a minimization of communication between
partitions, with each partition for example assigned to a specific worker in a distributed
system. Partitioning is a task that produces groups of nodes, but grouping nodes is not
only achieved with partitioning. We note that other terms exist in the literature such
as clustering and community detection. They are not interchangeable, for if a cluster-
ing algorithm breaks down the graph into three clusters, it does not necessarily hold
true that each cluster represents its own community. As an example, executing a clus-
tering algorithm over a social network graph will result in a number of clusters. If each
cluster represents for example a different continent, that does not necessarily mean each
cluster represents one single community. Community detection algorithms, on the other
hand, consider properties such as the density and interconnections within communities.
While clustering and community detection aim to identify similarities between nodes,
their underlying assumptions of the graph are not equal, even though proposals have
been made to map between these two tasks [94]. Graph clustering shares similarities
with graph partitioning in the sense that both produce groups of nodes. However, the
objective functions they use are defined differently and subject to different constraints.
Graph partitioning, on which we focus, for example, requires that the number of groups
(partitions) is known beforehand and is typically subject to more constraints.

An earlier work on balanced graph partitioning [95] defines the problem as (k, v)-
balanced partitioning: to divide the vertices of the graph into k components of
almost equal size, with each of size less than c · n

k for a given constant c > 1 . It is a
balanced k-way partitioning problem which has been studied in the literature [96].
To consider the partitioning problem as a challenge to enabling distributed process-
ing, it is necessary to ask if the goal is to distribute the vertices (edge cut model—EC)
or the edges (vertex cut model—VC) of the graph across machines in order perform
it. We provide detail into these problem formulations with an example of vertex-cut

Page 14 of 41Coimbra et al. J Big Data (2021) 8:55

and edge-cut in Fig. 4. Furthermore, different combinations between computational
unit and cut model are possible: vertex-cut can be used to process in a vertex-centric
[97] or edge-centric [60] way, and the same is possible using edge-cut used to parti-
tion a graph where computation is vertex-specific [98, 99] or edge-specific.

Edge‑Cut (EC)

Balanced k-way partitioning may be defined for edge-cut partitioning, which is asso-
ciated to vertex-centric (TLAV) systems, the most common computational model
in graph processing systems [8, 53, 55]. We reproduce the definition of [50, Sec. 2]
for this case, where for a given graph G = (V ,E) , we wish to find a set of partitions
P = {P1,P2, . . . ,Pk} . These partitions must be pairwise disjoint and their union is
equal to V while following these conditions [50]:

Depending on the application objective for which this partitioning type will be per-
formed, Eq. 3 should be adapted. For example, in the case of machines having different
characteristics, it should be considered that the load of any machine will be less than
the maximum computing power. Or if the graph structure is stored in secondary mem-
ory, the interest is on having balanced size partitions with high speed sequential storage
access and decreasing the number of cut edges is no longer a focus.

(2)min
P

|{e|e = (vi, vj) ∈ E, vi ∈ Px, vj ∈ Py, x �= y}|

(3)
s.t.

maxi |Pi|

1

k

∑k
i=1 |Pi|

≤ ǫ.

a b

c d
Fig. 4  Depiction of vertex-cut and edge-cut over the sample graph G 

Page 15 of 41Coimbra et al. J Big Data (2021) 8:55 	

Vertex‑Cut (VC)

In the vertex-cut model, the goal is to distribute edges across partitions. They are placed
in different partitions, with vertices being copied in partitions which have their adjacent
edges. Care must be taken to balance the number of edges per partition (its measure of
size) and to minimize the number of vertex copies. This objective may be formulated as
such [50]:

Vertex-cut achieves better performance than edge-cut for natural graphs such as those
representing web structure and social networks [50].

Hybrid‑Cut (HC)

Hybrid strategies can be employed to perform the cuts. They can for example be guided
with heuristics such as vertex degree in order to decide what to do with them. The Pow-
erLyra [61] system for example allocates the incoming edges of vertices with low
degree in a worker. It uses edge-cut for vertices of low-degree and vertex-cut for high-
degree vertices.

Stream‑based partitioning

In these methods of partitioning, vertices or edges in the graph are analysed in succes-
sion in a stream. Placement decisions are made online, that is, when the vertices or edges
appear in the stream, and the decisions are based on the location of previous elements.
This is done under the assumption that there will be no information on the edges or ver-
tices that will arrive in the flow of the stream. This type of method can rely on edge-cut
partitioning (e.g. Random heuristic and the Linear Deterministic Greedy
[100], Gemini which uses chunk-based assuming adjacency list model [101], Fennel
[102]), vertex-cut partitioning (e.g. Grid heuristic [103], PowerGraph greedy heuris-
tic [60], Graphbuilder [103] placing the edge in the smallest partition, HDRF [104]
method which takes into consideration vertex degrees) and there are aspects of these
methods that will have different approaches regarding how this is achieved with parallel
and distributed execution. Stream-based partitioning is also used as a good choice for
loading the graph as it does not have to be fully loaded in memory for partitioning.

Distributed partitioning

Many distributed partitioning algorithms are based on label propagation [70, 105–
107], with variations such as how the specific labelling of a vertex should be influenced
by its neighbours, if it should also be influenced by the label’s global representation in
the graph and also constraints on the minimum and maximum sizes required for par-
titions. For example, Revolver, which performs vertex-centric graph partitioning
with reinforcement learning, assigns an agent to each vertex, with agents assigning
vertices to partitions based on their probability distribution (these are then refined

(4)min
P

1

|V |

∑

v∈V

|P(v)|

(5)s.t. max
pi

|{e ∈ E|P(e) = pi}| ≤ ǫ
|E|

k
.

Page 16 of 41Coimbra et al. J Big Data (2021) 8:55

based on feedbacks [97]). The authors of [50] note that other approaches consider
the partitioning problem as a multi-objective and multi-constraint problem, achiev-
ing better results compared to one-phase methods [108]. Distributed partitioning
systems are good for when partitioning is performed once and then calculations are
repeatedly performed.

Dynamic graph partitioning

When the graph is no longer static, vertex and edges may be added or removed as
time passes—this is especially true in social networks. This implies that for graphs
from which we need to perform computations as they evolve, the original partition-
ing may become inefficient. With predictable algorithm runtime characteristics, it
becomes feasible to keep close the vertices which will be used together in the same
supersteps, using for example graph traversal algorithms. But when this is not the
case, systems can be designed for example to monitor the load and communication
of the machines and migrate vertices as appropriate, with different techniques having
been proposed for that purpose (among others, xDGP [109] to repartition massive
graphs to adapt to structural changes, GPS [110] which reassigns vertices based on
communication patterns, X-Pregel [98] with reduction of message exchanges and
dynamic repartitioning). Dynamic partitioning methods have the advantage of out-
putting very good load balancing and communication cost reductions due to consid-
ering heterogeneous hardware and runtime characteristics.

Partitioning: summary

Employed graph partitioning strategies vary, with different systems offering different
solutions. Among performance-impacting factors [50], we have the number of active
vertices and edges influencing machine load. At the same time, communication will be
more expensive depending on how replication of edges and vertices is performed. Par-
titioning must balance communication and machine loads. The partitioning challenge
in vertex-centric systems is relevant due to how widespread this model is. The authors
of [50] note three major approaches for big graph partitioning: a) partitioning the graph
serially in a single pass and permanently assigning the partition on the first time an edge
or vertex is assigned (stream-based); b); methods that partition in a distributed way; c)
dynamic methods that adapt the partitions based on monitoring the load and commu-
nication of machines during algorithm execution. The way the distribution is achieved
and data is represented will be a factor in going beyond the read-eval-write loop. In this
scope, a dynamic method would be necessary as a basis to develop the properties we
described. For an in-depth analysis of partitioning methods, vertex cut models and their
relation to the dynamic nature of data, we invite the reader to read [50].

Being able to decompose the graph is a cornerstone for efficient and distributed
computation of graphs. An equally-important aspect that determines how we must
approach the computation is the possible dynamism of the graph. A static graph over
which we want to perform analytics is a scenario different from maintaining a large
graph available for separate queries and susceptible to updates.

Page 17 of 41Coimbra et al. J Big Data (2021) 8:55 	

Dimension: Dynamism
We include and consider dynamism a relevant dimension of graph processing due to
there existing different meanings associated to it in the literature and for which dif-
ferent systems can be attributed. While one may consider static graphs to be com-
pletely unrelated to dynamism, there is in fact a relation to it due to what is known as
stream processing. For example, a graph processing system may ingest an unbounded
stream of edges and update statistics over the stream (e.g., keeping a triangle count
updated [111]), but stream processing may also take place in static graph processing.
This is the case with approaches that process a static graph but process its elements
from a stream perspective (e.g., Chaos [62] and X-Stream [56] with their edge-cen-
tric approach). Considering if a system targets graphs that change or are immutable
(static) is an obvious way to separate graph processing systems when classifying them.
However, this dimension is actually a spectrum between the immutable (e.g. stream-
based perspectives to process static graphs) and the changing—for example, is the
whole graph structure kept in memory (or secondary storage) in a single machine (or
across cluster nodes), or is it discarded by proxy of some criteria (and thus one sim-
ply updates mathematical properties of the graph using only recent information from
the stream)? For this spectrum, the authors of [112] cover definitions found in the
literature:

Temporal graphs

These are, in essence, static graphs which have annotated temporal information
which allows for recreating the domain represented by the graph at any given point
in time. It is not structurally-changed while doing so; it means that for a given time
range or event, only the elements with valid timestamps under required constraints
are considered for computation. The work of [113] introduces the temporal graph as
a representation encoding temporal data into the graph while retaining the tempo-
ral information of the original data. They present metrics that can be used to study
temporal graphs and use the representation to explore dynamic temporal properties
of data using graph algorithms without requiring data-driven simulations. Immor-
talGraph [114] is a storage and execution engine designed with temporal graphs in
mind, having achieved greater efficiency than database solutions for graph queries.
ImmortalGraph schedules common bulk operations in a way to maximize the ben-
efit of in-memory data locality. It explores the relation between locality, parallelism
and incremental computation while enabling mining tasks on temporal graphs. For
more information and reach on the topic of temporal graphs, we direct the reader to
[115].

Streaming graph algorithms

[116] With these, the common scenario starts from an empty graph without edges
(and a fixed set of vertices). For each algorithm step, a new edge is inserted into the
graph or an edge is removed. It is desired that these algorithms are developed to min-
imize parameters such as graph data structure storage, the time to process an edge
or the time to recover the final solution. There exist several systems which process

Page 18 of 41Coimbra et al. J Big Data (2021) 8:55

streaming graph computations—we note also for the reader a recent framework for
comparing the systems aimed at this type of dynamism [117]. The STINGER data
structure has been used for streaming graphs as well [118].

Sketching and dynamic graph streams

Sketching techniques [119] may be applied to the edge incidence matrix of the input
graph to approximate cut structure and connectivity. The idea is to consume a stream of
events in order to generate a probabilistic data structure representing properties of the
graph.

Multi‑pass streaming graph algorithms

In this type of algorithm, all updates are streamed more than once in order to approxi-
mate the computation quality of the solution. Additional complexity can emerge on how
the streaming model behaves—it can for example allow for the stream to be manipulated
across passes [120] or to stream sorting passes [121].

Dynamic graph algorithms

For these types, the focus is cast on being able to approximate combinatorial properties
of the graph [112] (e.g., connectivity, shortest path distance, cuts, spectral properties)
while processing insertions and deletions. The objective with this type of algorithm is to
quickly integrate graph updates. Ringo [122] is a single-machine analytics system that
supports dynamic graphs.

While partitioning and dynamism are relevant aspects, the scope of graph processing
solutions in both industry and academia was shaped by the type of executed workloads.

Dimension: workload
The type of workload performed by a graph processing system also plays an important
role in classifying them. The type of task performed by graph databases is different from
the systems that run global algorithms over them. The concept of analysing a graph takes
on different contexts depending on user needs. We note that when a graph is to be pro-
cessed, the scope of its data analysis usually falls in these two categories:

(a) To retrieve instances of domain-specific relations in the graph (e.g. pattern match-
ing, multi-hop queries). These are usually found in graph databases, with an emphasis on
optimization of data query and storage for online transaction processing scenarios. This
is often accompanied with the use of graph query languages (GQLs) to execute queries
that return a view on the graph and also potentially producing effects on it. (b) To exe-
cute an algorithm over the whole graph (e.g. PageRank, connected components, detect-
ing communities, finding shortest paths). The solutions for this task, performance-wise,
aim to achieve high-performance computational throughput, whether using distributed
systems or a single-machine configuration. It is a focus leaning on the data analytics
aspect.

The former (a) is a common scenario in graph databases such as Neo4j [123] and
JanusGraph [124], among others. These databases offer graph query languages
(usually even allowing interchangeability between languages) such as Cypher or
Gremlin [125]. They are built to store the graph, some with sharding (horizontal

Page 19 of 41Coimbra et al. J Big Data (2021) 8:55 	

scaling) to distribute the graph across the storage/computational infrastructure (some
outsource the storage medium to database technologies such as HBase [126] or
Cassandra [127]), others in a centralized server (but allowing cluster nodes for the
specific purpose of redundancy). They employ schemes to store the graph efficiently
while offering transaction mechanisms to operate over the graph and to perform
queries. The latter type (b) is seen in big (graph) data processing systems like Spark
(GraphX library) [13] and Flink (Gelly library) [14]. The mentioned
names are all distributed processing frameworks that can take advantage of multi-
core machines and clusters. These systems and their libraries allow for expressive
computation over graphs in few lines of code. Many of the systems come with their
sets of graph algorithms, allowing for the composition of workflows while abstracting
away many details from the programmer (regarding distributed computation orches-
tration and the internal implementation of the graph algorithms).

It is important to consider two definitions regarding the nature of computational
tasks: online analytical processing (OLAP) and online transaction processing (OLTP).
OLAP is an approach to enable answering multi-dimensional analytical queries
quickly. Among its instances we may find tasks such as business reporting for sales,
management reporting, business process management [128], financial reporting and
others. OLTP, on the other hand, refers to systems that enable and manage transac-
tion-oriented applications, with transaction meaning in a computational context the
atomic state changes that take place in database systems. OLTP examples include
retails sales and financial transaction systems, and applications of this type tend to
be high-throughput and update/insertion-intensive in order to provide availability,
speed, recoverability and concurrency [129].

The earlier type (a) of graph processing task may be associated to OLTP systems as
the goal is to store representations of graphs by quickly ingesting new information,
efficiently representing it regarding space consumption and access speed, and being
able to execute updates under ACID properties (or a subset of those). For this type
of task (a), one may find numerous graph databases to match the description, such
as those for designed for semantic representations, or for property graph models,
both and also other specific purposes. The latter type of task (b) may be associated to
OLAP, where there is a focus on extracting value from the data and the nature of the
task is typically read-only. We include graph processing systems (not databases) in
this group of OLAP-type tasks, even the systems which support mutability in graphs
due to supporting dynamism in any form.

There is a considerable overlap between OLTP-type tasks and graph databases,
and there is also an overlap between OLAP-type tasks and graph processing systems.
While the distinction between OLAP and OLTP task types is not a dimension that
perfectly divides systems in the graph processing landscape, we note that such a dis-
tinction holds value in guiding future taxonomies of the graph processing system
landscape, and for that reason we include it as a dimension.

The way these three dimensions are accounted for influence the design of graph
processing systems. Many different architectures exist, for which we share an exhaus-
tive list of specific solutions, from single-machine systems to parallel processing in
clusters and storage in tailor-made graph databases.

Page 20 of 41Coimbra et al. J Big Data (2021) 8:55

Single‑machine and shared‑memory parallel approaches
GraphLab [130] was published as a framework (implemented in C++) for paral-
lel machine learning and later extended to support distributed settings while retaining
strong data consistency guarantees [90]. The authors evaluate it on Amazon EC2, out-
performing equivalent MapReduce implementations by over 20X and match the per-
formance of specifically-crafted MPI implementations. GraphLab requires the whole
graph and program state to reside in RAM. It uses a chromatic engine so that no adja-
cent vertices have the same colour and to enable the efficient use of network bandwidth
and processor time. The authors evaluate it for applications such as Netflix movie rec-
ommendation, video co-segmentation and named entity recognition. It is open-source
[131] under the Apache License 2.0.

GRACE [132] is a synchronous iterative graph programming model, with separation of
application logic and execution policies. Its design includes the implementation (C++)
of a parallel execution engine for both synchronous and user-specified asynchronous
execution policies. GRACE stores directed graphs, and in its model and the computation
is expressed and performed in a way similar to Pregel. It provides additional flexibility,
by allowing the user to relax synchronization of computation. This is achieved with user-
defined functions which allow updating the scheduling priority of vertices that receive
messages (the vertex order in which computation will take place within an iteration).
GRACE’s design targets both shared-memory and distributed system scenarios, but the
initial prototype focuses on shared-memory. We did not find the source code available.

Ligra [133] is a C++ lightweight graph processing framework targeting shared-mem-
ory parallel/multi-core machines, easing the writing of graph traversal algorithms. This
framework offers two map primitives to operate a given logic on vertices (VertexMap)
and edges (EdgeMap) and supports two data types: the traditional graph G = (V ,E) as
we described in an earlier section, and another one to represent subsets of vertices. The
interface is designed to enable the processing of edges in different orders depending on
the situation (as opposed to Pregel or Giraph). The code of Ligra represents in-
edges and out-edges as arrays, with in-edges for all vertices being partitioned by their
target vertex and storing the source vertices, and the out-edges are in an array parti-
tioned by source vertices and storing the target vertices. While the authors claim to have
achieved good performance results, they mention Ligra does not support algorithms
based on modifying the input graph. It is available [134] under the MIT License.

Ringo [122] is an approach for multi-core single-machine big-memory configura-
tions. It is a high-performance interactive analytics system using a Python front-end
on a scalable parallel C++ back-end, representing the graph as a hash table of nodes. It
supports fast execution times with exploratory and interactive use, offering graph algo-
rithms in a high-level language and rich support for transformations of input data into
graphs. Ringo is open-source and available [135] under the BSD License.

Polymer [136] is a NUMA-aware graph analytics system on multi-core machines that
is open-source [137] under the Apache License 2.0 and implemented in C++.
It innovated by differentially allocating and placing topology data, application-defined
data and mutable run-time graph system states according to access patterns to mini-
mize remote accesses. Polymer also deals with random accesses by converting the ran-
dom ones into sequential remote accesses using lightweight vertex replication across the

Page 21 of 41Coimbra et al. J Big Data (2021) 8:55 	

NUMA nodes. It was built with a hierarchical barrier for increased parallelism and local-
ity. The design also includes edge-oriented balanced partitioning for skewed graphs and
adaptive data structures in function of the fraction of active vertices. It was compared to
Ligra, X-Stream and Galois on an 80-core Intel machine (no hyper-threading) and
on a 64-core AMD machine. For different algorithms across several data sets, Polymer
consistently almost always achieved the lowest execution time.

GraphMat [138] is a framework written in C++ aimed at bridging the user-friendly
graph analytics and native hand-optimized code. It presents itself as a vertex-centric
framework without sacrificing performance, as it takes vertex programs and maps them
to exclusively use sparse matrix high-performance back-end operations. GraphMat
takes graph algorithms expressed as vertex programs and performs generalized sparse
matrix vector multiplication on them. It achieved greater performance than other frame-
works such as 5-7X faster than GraphLab, Galois and ComBLAS. It also achieved
multi-core scalability, being over 10X faster than single-threaded implementation on a
24-core machine. It is open-source and available [139] under specific conditions by Intel.

Mosaic [140] is a system for single heterogeneous machines with fast storage media
(e.g., NVMe and SSDs) and massively-parallel co-processors (e.g., Xeon Phi) developed
to enable the processing of trillion-edge graphs. The system is designed explicitly sepa-
rating graph processing engine components into scale-up and scale-out goals. It is writ-
ten in C++ uses a compact representation of the graph using Hilbert-ordered tiles for
locality, load balancing and compression and uses a hybrid computation model that uses
both vertex-centric operations (on host processors) and edge-centric operations (on co-
processors). Mosaic is open-source [141] under the MIT License.

High‑performance computing
These systems are hallmarks of high-performance computing solutions applied to graph
processing. Their merits encompass algebraic decomposition of the major graph opera-
tions, implementing them and translating them across different homogeneous layers of
parallelism (across cores, across CPUs). Here we mention what are, to the best of our
knowledge, the most relevant works:

Parallel Boost Graph Library (PBGL) [142] . It is an extension (C++) of Boost’s
graph library. It is a distributed graph computation library, also offering abstractions
over the communication medium (e.g. MPI). The graph is represented as an adjacency
list that is distributed across multiple processors. In PBGL, vertices are divided among
the processors, and each vertex’s outgoing edges are stored on the processor storing that
vertex. PBGL was evaluated on a system composed of 128 compute nodes connected via
Infiniband. It is available [143] under a custom Boost Software License 1.0.

CombBLAS [144]. A parallel graph distributed-memory library in C++ offering lin-
ear algebra primitives based on sparse arrays for graph analytics. This system considers
the adjacency matrix of the graph as a sparse matrix data structure. CombBLAS is edge-
based in the sense that each element of the matrix represents an edge and the compu-
tation is defined over it. It decouples the parallel logic from the sequential parts of the
computation and makes use of MPI. However, its MPI implementation does not take
advantage of flexible shared-memory operations. Its authors targeted hierarchical paral-
lelism of supercomputers for future work. It is available [145] under a custom license.

Page 22 of 41Coimbra et al. J Big Data (2021) 8:55

HavoqGT [146] is a C++ system with techniques for processing scale-free graphs
using distributed memory. To handle the scale-free properties of the graph, it uses edge
list partitioning to deal with high-degree vertices (hubs) and dummy vertices to repre-
sent them to reduce communication hot spots. HavoqGT allows algorithm designers to
define vertex-centric procedures in a distributed asynchronous visitor queue. This queue
is part of an asynchronous visitor pattern designed to tackle load imbalance and mem-
ory latencies. HavoqGT targets supercomputers and clusters with local NVRAM. It is
available [147] under the GNU Lesser General Public License 2.1.

Distributed graph processing systems
While the previous systems we detailed performed analytics and enabled the execution
of graph algorithms, they did so with a focus on specific hardware and distributed mem-
ory. We list here some of the most relevant state-of-the-art systems used for graph pro-
cessing in the scope of analytics (OLAP). Their use of different architectures (from using
local commodity clusters to cloud-based execution) and greater flexibility of deployment
scenarios differentiate them from those of the previous section. The following systems
are relevant names in the literature, with Giraph being the first open-source imple-
mentation of the Pregel approach to graph processing, and Spark and Flink being
open-source general distributed processing systems with graph processing APIs:

Apache Giraph [12] is an open-source Java implementation of Pregel [8], tailor-
made for graph algorithms, supporting the GAS model and licensed [148] under the
Apache License 2.0. It was created as an efficient and scalable fault-tolerant
implementation on clusters with thousands of commodity hardware, hiding implemen-
tation details underneath abstractions. Work has been done to extend Giraph from the
think-like-a-vertex (TLAV) model to think-like-a-graph (TLAG) [57]. It uses Hadoop’s
MapReduce implementation to process graphs. Giraph [148] allows for master com-
putation, sharded aggregators (relevant when computing a final result comprised of
intermediate data from nodes), has edge-oriented input, and also uses out-of-core com-
putation—limited partitions in memory. Partitions are stored in local disks, and for
cluster computing settings, the out-of-core partitions are spread out across all disks.
Giraph attempts to keep vertices and edges in memory and uses only the network for
the transfer of messages. Improving Giraph’s performance by optimizing its messaging
overhead has also been studied [149]. It is interesting to note that single-machine large-
memory systems such as Ringo highlight the message overhead as one of the major
reasons to avoid a distributed processing scheme.

Naiad is an open-source [150] (Apache License 2.0) dataflow processing sys-
tem [151] offering different levels of complexity and abstractions to programmers. It
allows programmers to implement graph algorithms such as weakly connected com-
ponents, approximate shortest paths and others while achieving better performance
than other systems. Naiad is implemented in C# and allows programmers to use
common high-level APIs to express algorithm logic and also offers a low-level API
for performance. Its concepts are important and other systems could benefit from
offering tiered programming abstraction levels as in Naiad. Its low-level primitives
allow for the combination of dataflow primitives (similar to those VeilGraph uses
from Flink) with finer-grained control on iterative computations. An extension to

Page 23 of 41Coimbra et al. J Big Data (2021) 8:55 	

Flink’s architecture to offer this detailed control would enrich the abilities that our
framework is able to offer to users.

Apache Flink [14], formerly known as Stratosphere [152], it is a framework
which supports built-in iterations [14] (and delta iterations) to efficiently aid in graph
processing and machine learning algorithms. It is licensed [153] under the Apache
License 2.0 and has a graph processing API called Gelly, which comes pack-
aged with algorithms such as PageRank, single-source shortest paths and community
detection, among others. Flink supports Java, Python and Scala. It explic-
itly supports three vertex-based programming models: think-like-a-vertex (TLAV)
described as the most generic model, supporting arbitrary computation and messag-
ing for each vertex; Scatter-Gather, which separates the logic of message production
from the logic of updating vertex values, which may typically make these programs
have lower memory requirements (concurrent access to the inbox and outbox of a
vertex is not required) while at the same time potentially leading to non-intuitive
computation patterns; Gather-Sum-Apply-Scatter (GAS), which is similar to Scatter-
Gather but the Gather phase parallelizes the computation over the edges, the messag-
ing phase distributes the computation over the vertices and vertices work exclusively
on neighbourhood, where in the previous two models a vertex can send a message to
any vertex provided it knows its identification. It supports all Hadoop file systems as
well as Amazon S3 and Google Cloud storage, among others. Delta iterations are
also possible with Flink, which is quite relevant as they take advantage of computa-
tional dependencies to improve performance. It also has flexible windowing mecha-
nisms to operate on incoming data (the windowing mechanism can also be based on
user-specific logic). Researchers have also looked into extending its DataStream
constructs and its streaming engine to deal with applications where the incoming
flow of data is graph-based [154].

Apache Spark [155] and its GraphX [13] graph processing library, licensed [156]
under the Apache License 2.0. It is a graph processing framework built on top
of Spark (a framework supporting Java, Python and Scala), enabling low-cost
fault-tolerance. The authors target graph processing by expressing graph-specific
optimizations as distributed join optimizations and graph views’ maintenance. In
GraphX, the property graph is reduced to a pair of collections. This way, the authors
are able to compose graphs with other collections in a distributed dataflow frame-
work. Operations such as adding additional vertex properties are then naturally
expressed as joins against the collection of vertex properties. Graph computations
and comparisons are thus an exercise in analysing and joining collections.

GraphTau [157] is a time-evolving graph processing framework on top of Spark
(Java, Scala). It represents computations on time evolving graphs as a stream of
consistent and resilient graph snapshots and a small set of operators that manipu-
late such streams. GraphTau builds fault-tolerant graph snapshots as each small
batch of new data arrives. It is also able to periodically load data from graph databases
and reuses many operators from GraphX and Spark Streaming. For algorithms
(based on label propagation) that are not resilient to graph changes, GraphTau intro-
duced an online rectification model, where errors caused by underlying graph modifi-
cations are corrected in online fashion with minimal state. Its API frees programmers

Page 24 of 41Coimbra et al. J Big Data (2021) 8:55

from having to implement graph snapshot generation, windowing operators and dif-
ferential computation mechanisms. We did not find its source code available.

Tink [158] is a library for distributed temporal graph analytics. It is built on Flink
(Java, Scala) and focuses on interval graphs, where each edge has an associated start-
ing time and ending time. The author created different graphs with information pro-
vided by Facebook and Wikipedia in order to evaluate the framework. Tink defines a
temporal property graph model. It is available online [159], although we did not find
information pertaining licensing.

To the best of our knowledge, currently both Flink and Spark are the most widely-
known distributed processing frameworks (we note GraphTau, although its code is
not available, is built over Spark) based on dataflow programming. While the use of
dataflows grants flexibility to program implementation and execution by decoupling the
program logic from how it is translated to the workers of a cluster, the graph libraries of
these systems do not allow in an efficient way for a graph to be updated using stream-
processing semantics while also maintaining the graph structure during computation. It
is possible to update graphs using these systems, but they make use of batch processing
APIs for which the dataflow graphs must not become excessively big (or else dataflow
plan optimizers may be locked in the phase of exploring the optimization space of the
execution plan) and graph must be periodically written to secondary storage (as a solu-
tion to avoid having progressively bigger execution plans).
Flink’s Gelly library has been used in GRADOOP, which is an open-source [160]

(Apache License 2.0) distributed graph analytics research framework [161] under
active development and providing higher-level operations. GRADOOP extends Gelly
with additional specialized operators such as a graph pattern matching operator (which
abstracts a cost-based query engine) and a graph grouping operator (implemented as
a composition of map, filter, group and join transformations on Flink’s DataSet).
GRADOOP also adopts the Cypher query language (typically found in graph databases
like Neo4j) to express logic that is translated to the relational algebra that underlies
Flink’s DataSet [162].

In a similar way, Spark has its graph processing library GraphX which was built
over the system’s batch processing API, like the case of Flink’s Gelly and also
suffering from the same previously mentioned limitations. A higher-level API was
designed to extend the functionalities of GraphX while harnessing Spark’s Data-
Frame API. For this, the GraphFrames open-source [163] (Apache License

Fig. 5  Contrast of the Flink and Spark distributed dataflow ecosystems for graph processing

Page 25 of 41Coimbra et al. J Big Data (2021) 8:55 	

2.0) library was created [164]. A look at its implementation reveals that it has less
high-level operations than Gelly. Effectively, without simulating some of Gelly’s
API, equivalent programs in GraphX lend themselves to more conceptual verbosity
due to the lack of syntactic sugar.

We display in Fig. 5 parallels between Flink, Spark and the graph processing
ecosystems built on top of them. Gelly’s equivalent in Spark is GraphX, imple-
mented in Scala. Vertices and edges are manipulated by using Spark’s Resilient
Distributed Datasets (RDDs), which can be viewed as a conceptual precur-
sor to Flink’s DataSet. Spark also offers the DataFrame API to enable tabular
manipulation of data. GraphFrames is another graph processing library for Spark.
While it has interoperability and a certain overlap with the functionality offered in
GraphX, it integrates the tabular perspective supported by Spark’s DataFrame API
and also supports performing traversal-like queries of the graph via SparkSQL. In
this way, GraphFrames provides graph analytics capabilities in Spark much the
same way GRADOOP does in Flink.

The next two examples, X-Stream and Chaos are grouped together as they
brought relevance to the edge-centric (TLAE) model and employed it to explore novel
ways to balance network latencies and use of SSDs to increase performance:

X-Stream [56]. A system that provided an alternative view to the traditional ver-
tex-centric approach. It is based on considering computation from the perspective
of edges instead of vertices and experiments optimized the use of storage I/O both
locally and on the cloud. X-Stream is an open-source system written in C++ which
introduced the concept of edge-centric graph processing via streaming partitions.
X-Stream exposes an edge-centric scatter-gather programming model that was
motivated by the lack of access locality when traversing edges, which makes it dif-
ficult to obtain good performance. State is maintained in vertices. This tool uses the
streaming partition, which works well with RAM and secondary (SSD and Magnetic
Disk) storage types. It does not provide any way by which to iterate over the edges or
updates of a vertex. A sequential access to vertices leads to random access of edges
which decreases performance. X-Stream is innovative in the sense that it enforces
sequential processing of edges (edge-centric) in order to improve performance. It is
available [165] under the Apache License 2.0.

Chaos [62]. A system written in C++ which had its foundations on XStream.
On top of the secondary storage studies performed in the past, graph processing in
Chaos achieves scalability with multiple machines in a cluster computing system. It is
based on different functionalities: load balancing, randomized work stealing, sequen-
tial access to storage and an adaptation of X-Stream’s streaming partitions to enable
parallel execution. Chaos is composed of a storage sub-system and a computation
sub-system. The former exists concretely as a storage engine in each machine. Its con-
cern is that of providing edges, vertices and updates to the computation sub-system.
Previous work on X-Stream highlighted that the primary resource bottleneck is the
storage device bandwidth. In Chaos, the storage and computation engines’ commu-
nication is designed in a way that storage devices are busy all the time—thus optimiz-
ing for the bandwidth bottleneck. It was released [166] under the Apache License
2.0.

Page 26 of 41Coimbra et al. J Big Data (2021) 8:55

The following graph processing systems were grouped together because each of the
improvements they proposed are important concerns to be aware of in designing graph
processing systems.

PowerLyra [61] is a graph computation engine written in C++ which adopts different
partitioning and computing strategies depending on vertex types. The authors note that
most systems use a one-size-fits-all approach. They note that Pregel and GraphLab
focus in hiding latency by evenly distributing vertices to machines, making resources
locally accessible. This may result in imbalanced computation and communication for
vertices with higher degrees (frequent in scale-free graphs). Another provided design
example is that of PowerGraph and GraphX which focus on evenly parallelizing the
computation by partitioning edges among machines, incurring communication costs
on vertices, even those with low degrees. PowerLyra was released under the Apache
License 2.0 [167].

Kineograph [168] is a system which combines snapshots allowing full processing in the
background and explicit alternative/custom functions that, besides assessing updates’
impact, also apply them incrementally, propagating their outcome across the graph. It
is a distributed system to capture the relations in incoming data feeds, built to maintain
timely updates against a continuous flow of new data. Its architecture uses ingest nodes
to register graph update operations as identifiable transactions, which are then distrib-
uted to graph nodes. Nodes of the latter type form a distributed in-memory key/value
store. Kineograph performs computation on static snapshots, simplifying algorithm
design. We did not find its source code online.

Tornado [169] is a system for real-time iterative analysis over evolving data. It was
implemented over Apache Storm and provides an asynchronous bounded itera-
tion model, offering fine-grained updates while ensuring correctness. It is based on the
observations that: 1) loops starting from good enough guesses usually converge quickly;
2) for many iterative methods, the running time is closely related to the approximation
error. From this, an execution model was built where a main loop continuously gath-
ers incoming data and instantly approximates the results. Whenever a result request is
received, the model creates a branch loop from the main loop. This branch loop uses the
most recent approximations as a guess for the algorithm. We did not find its source code
online.

KickStarter [170] is a system that debuted a runtime technique for trimming approxi-
mation values for subsets of vertices impacted by edge deletions. The removal of edges
may invalidate the convergence of approximate values pertaining monotonic algorithms.
KickStarter deals with this by identifying values impacted by edge deletions and
adapting the network impacts before the following computation, achieving good results
on real-world use-cases. Despite this, by focusing on monotonic graph algorithms, its
scope is narrowed to selection-based algorithms. For this class, updating a vertex value
implies choosing a neighbour under some criteria. KickStarter is now known as
GraphBolt, a recent work [171, 172] licensed under the MIT License [171] which
offers a generalized incremental programming model enabling development of incre-
mental versions of complex aggregations. Both were written in C++.

Pixie [173] is a graph-based scalable real-time recommendation system used at Pin-
terest. Using a set of user-specific pins (in Pinterest, users have boards in which they

Page 27 of 41Coimbra et al. J Big Data (2021) 8:55 	

store pins, where each pin is a combination of image and text), Pixie chooses in
real-time the pins that are most related to the query, out of billions of candidates.
With this system, Pinterest was able to execute a custom (Pixie Random Walk) algo-
rithm on an object graph of 3 billion vertices and 17 billion edges. On a single server,
they were able to serve around 1200 recommendation requests per seconds with 60
millisecond latency. The authors note that the deployment of Pixie benefited from
large RAM machines, using a cluster of Amazon AWS r3.8xlarge machines with
244GB RAM. They fitted the pruned Pinterest graph (3 billion vertices, 17 billion
edges) in around 120GB of RAM, in a setup that yielded the following advantages:
random walk not forced to cross machines, which increases performance; multiple
walks can be executed on the graph in parallel; the system can be parallelized and
scaled by adding more machines to the cluster. This system is a relevant case study (of
applying graph theory to recommendation systems at scale) as a scalable system for
processing on large graphs a biased random walk algorithm (with user-specific pref-
erences) while using graph pruning techniques to disregard large boards that are too
diverse and diffuse the random walk (the non-pruned graph has 7 billion vertices and
100 billion edges). We did not find the source code available online.

FlowGraph [174] is a system that proposes a syntax for a language to detect tempo-
ral patterns in large-scale graphs and introduces a novel data structure to efficiently
store results of graph computations. This system is a unification of graph data with
stream processing considering the changes of the graph as a stream to be processed
and offering an API to satisfy temporal patterns. We did not find its source code
available.

GPS [110] is an open-source (BSD License) scalable graph processing system
written in Java and allowing fault-tolerant and easy-to-program algorithm execu-
tion on very large graphs. It adopts Pregel’s vertex-centric API and extends it with:
features to make global computations easier to express and more efficient; dynamic
repartitioning scheme to reassign vertices to different workers during computation
based on messaging patterns; distribution of high-degree vertex adjacency lists across
all computer nodes to improve performance (something that PowerGraph and
PowerLyra later adopted). It was designed to run on a cluster of machines such as
Amazon EC2, over which the authors tested their work. GPS’s initial version was run
on up to 100 Amazon EC2 large instances and on graphs of up to 250 million vertices
and 10 billion edges. It is open-source and available under the BSD License [175].

GoFFish [176] is a sub-graph centric programming abstraction and framework
co-designed with a distributed persistent graph storage for large scale graph analyt-
ics on commodity clusters, aiming to combine the scalability of the vertex-centric
(TLAV) approach with flexibility of shared-memory sub-graph computation (TLAG).
It is written in Java. GoFFish states that two sub-graphs many not share the same
vertex, but they can have remote edges that connect their vertices, provided that
the sub-graphs are on different partitions. If two sub-graphs in the same partition
share an edge, by definition they are merged into a single-sub-graph. It was evalu-
ated with a cluster of 12 nodes each with 8-core Intel Xeon CPUs, 16 GB RAM and
1 TB SATA HDD. The authors compare the execution of GoFFish (one worker per
node) with Giraph (default two workers per node), achieving faster execution times

Page 28 of 41Coimbra et al. J Big Data (2021) 8:55

for algorithms such as PageRank, connected components and single-source shortest-
paths. Its source code is available though we did not find any information pertaining
licensing. While its source code is available [177], we did not find information regard-
ing licensing.

FBSGraph [178] presents a forward and backward sweeping execution method to
accelerate state propagation for asynchronous graph processing. In asynchronous graph
processing, each vertex maintains a state which can be asynchronously updated in an
iterative fashion. The method presented in FBSGraph relies on the observation that
state can be propagated faster by processing vertices sequentially along the graph path
in each round. They achieve greater execution speed when analysing several graph algo-
rithms across a set of datasets, comparing against systems such as PowerGraph and
GraphLab. We did not find its source available.

GrapH [179] is a graph processing system written in Java that uses vertex-cut graph
partitioning that takes into consideration the diversity of vertex traffic and the het-
erogeneous costs of the network. It relies on a strategy of adaptive edge migration to
reduce the frequency of communication across expensive network links. For this work,
the authors focused on vertex-cut as it has better partitioning properties for real-world
graphs that have power-law degree distributions. GrapH has two partitioning tech-
niques, H-load which is used for the initial partitioning of the graph so that each cluster
worker can load it into local memory, and H-adapt, a distributed edge migration algo-
rithm to address the dynamic heterogeneity-aware partitioning problem. In evaluation,
GrapH outperformed PowerGraph’s vertex-cut partitioning algorithm with respect to
communication costs. While its source code is available [180], we found no information
on licensing.

Julienne [181] is built over Ligra (C++) and provides an interface to maintain a col-
lection of buckets under vertex insertions and bucket deletions. They evaluated under
bucketing algorithms such as weighted breadth-first search, k-core and approximate set
cover. The authors describe as bucketing-based algorithms those that maintain vertices
in a set of unordered buckets—and in each round, the algorithm extracts the vertices
contained in the lowest (or highest) bucket to perform computation on them. Then, it
can update the buckets containing the extracted vertices or their neighbours. For exam-
ple, weighted breadth-first search processes vertices level by level, where level i contains
all vertices at distance i from the source vertex. The system was tested in a multi-core
machine with 72 cores (4 CPUs at 2.4GHz) and 1TB of main memory, achieving perfor-
mance improvements on several data sets when compared to systems such as Galois,
base Ligra and Galois. We did not find its source code available.

GraphD [182] is an out-of-core system inspired by Pregel and targeting effi-
cient big graph processing using a small cluster of commodity machines connected
by Gigabit Ethernet, contrasting with other out-of-core works that focus on spe-
cialized hardware. The authors focus on a setting that sees vertex-centric programs
being data-intensive, as the CPU cost of computing a message is small when com-
pared to the network transmission cost. GraphD masks disk I/O overhead with
message transmission though parallelism of computation and communication. It
eliminates the need for (expensive) external-memory join or group-by operations,
which are required in other systems such as Chaos. It was evaluated on PageRank,

Page 29 of 41Coimbra et al. J Big Data (2021) 8:55 	

single-source shortest-paths and connected components. GraphD was evaluated
against distributed out-of-core systems Pregelix, HaLoop and Chaos, against sin-
gle-machine systems GraphChi and X-Stream and representative in-memory sys-
tems Pregel and Giraph, achieving better performance in some scenarios. We did
not find its source available.

TurboGraph++ [183] is a graph analytics system that exploits external memory for
scale-up without compromising efficiency. It introduced an abstraction called nested
windowed streaming to achieve scalability and increase efficiency in processing neigh-
bourhood-centric analytics (in which the total size of neighbourhoods around vertices
can exceed the available memory budget). This streaming model regards a sequence of
vertex values and an adjacency list stream. The goal is to efficiently support the k-walk
neighbourhood query (a class of graph queries defined by the authors, where walks are
enumerated and then computation is done for each one) with fixed size memory. In
the model, during user computation, they define an update stream as the sequence of
updates generated to the ending vertex of each walk, with each update represented as
a pair of target vertex ID and update value. TurboGraph++ has the goal of balanc-
ing the workloads across machines, which requires balancing the number of edges and
the number of high-degree and low-degree vertices among machines. It also focuses on
balancing the number of vertices on each machine so that each one requires the same
memory budget. We did not find its source code available online.

GraphIn [184] is a dynamic graph analytics framework proposed to handle the scale
and evolution of real-world graphs. It aimed to improve over approaches to process-
ing dynamic graphs which repeatedly run static graph analytics on stored snapshots.
GraphIn proposes an adaptation of gather-apply-scatter (GAS) called I-GAS which
enables the implementation of incremental graph processing algorithms across mul-
tiple CPU cores. It also introduces an optimization heuristic to choose between static
or dynamic execution based on built-in and user-defined graph properties. Native and
benchmarking code were implemented in C++ and for experimental evaluation it
was compared to GraphMat and STINGER. The heuristic-base computation made
GraphIn faster than systems using fixed strategies. We did not find its source code
available.

The following works focus on specific techniques such as using specific hardware
such as SSDs or GPUs. We first list frameworks and systems that were proposed in
the last years to use the single-instruction multiple-data (SIMD) capabilities of GPUs
for graph processing:

MapGraph [185] is a high-performance parallel graph programming framework,
able to achieve up to 3 billion traversed edges per second using a GPU. It represents
the graph with a compressed sparse row (CSR) data structure and chooses different
scheduling strategies depending on the size of the frontier (the set of vertices that are
active in a given iteration). It encapsulates the complexity of the GPU architecture
while enabling dynamic runtime decisions among several optimization strategies.
Users need only to write sequential C++ code to use the framework. The early Map-
Graph work was first available as an open-source project [186] licensed under the
Apache License 2.0, but it has been integrated in the former line of products of
Blazegraph, also available online [187].

Page 30 of 41Coimbra et al. J Big Data (2021) 8:55

CuSha [188] is a CUDA-based graph processing framework written in C++ which
was motivated by the negative impact that irregular memory accesses have on the com-
pressed sparse row graph (CSR) representation. CuSha overcomes this by: 1) organ-
izing the graph into autonomous sets of ordered edges called shards (a representation
they call G-Shards) unto which GPU hardware resources are mapped for fully coalesced
memory accesses; 2) accounting for input graph properties such as sparsity (the sparser
the graph, the smaller the computation windows) to avoid GPU under-utilization (Con-
catenated Windows, or CW). This framework allows users to define vertex-centric algo-
rithms to process large graphs on GPU. It is open-source [189] and available under the
MIT License.

Gunrock [190, 191] is an open-source [192] (Apache License 2.0) CUDA library
for graph processing targeting the GPU and written in C. It implements a data-centric
abstraction focused on operations on a vertex or edge frontier. For different graph algo-
rithms, it achieved at least an order of magnitude speedup over PowerGraph and bet-
ter performance than any other high-level GPU graph library at the time. Its operations
are bulk-synchronous and manipulate a frontier, which is a subset of the edges or verti-
ces within the graph that is relevant at a given moment in the computation. Gunrock
couples high-performance GPU computing primitives and optimization strategies with
a high-level programming model to quickly develop new graph primitives. It was eval-
uated using breadth-first search, depth-first search, single-source shortest paths, con-
nected components and PageRank.

Lux [193] is a distributed multi-GPU system written in C++ for fast graph process-
ing by exploiting aggregate memory bandwidth of multiple GPUs and the locality of
the memory hierarchy of multi-GPU clusters. It proposes a dynamic graph repartition-
ing strategy to enable well-balanced distribution of workload with minimal overhead
(improving performance by up to 50%), as well as a performance model providing insight
on how to choose the optimal number of nodes and GPUs to optimize performance.
Lux is aimed at graph programs that can be written with iterative computations. Vertex
properties are read-only in each iteration, with updates becoming visible at the end of an
iteration. It offers two execution models: pull which optimizes run-time performance of
GPUs (enables optimizations like caching and locally aggregating updates in GPU shared
memory); and push, which optimizes algorithmic efficiency (maintains a frontier queue
and only performs computation over the out-edges of vertices in the frontier). Its source
code is available [194] under Apache License 2.0.

Frog [195] is a light-weight asynchronous processing framework written in C. The
authors note that common colouring algorithms may suffer from low parallelism due
to a large number of colours being needed to process large graphs with billions of ver-
tices. Frog separates vertex processing based on colour distribution. They propose an
efficient hybrid graph colouring algorithm, relying on a relaxed pre-partition method to
solve vertex classification with a lower number of colours, without forcing all adjacent
vertices to be assigned different colours. The execution engine of Frog scans the graph
by colour, and all vertices under the same colour are updated in parallel in the GPU.
For large graphs, when processing each partition, the data transfers are overlapped with
GPU kernel function executions, minimizing PCIe data transfer overhead. It is open-
source [196] and licensed under the GNU General Public License 2.0.

Page 31 of 41Coimbra et al. J Big Data (2021) 8:55 	

Aspen [197] is a graph-streaming extension of the Ligra interface, supporting graph
updates. To support this, the authors developed and presented the C-tree data structure
which achieves good cache locality, lowers space use and has operations which are effi-
cient from a theoretical perspective. It applies a chunking scheme over the tree, storing
multiple elements in a tree-node. The scheme takes the ordered set of elements that are
represented. More relevant elements are stored in tree nodes, while the remaining ones
are associated in tails of the tree nodes. It employs compression and supports parallel-
ism. The authors evaluate it with the largest publicly-available graph, which has more
than two hundred billion edges on a multi-core server with 1 TB memory. Source code is
available online [198] albeit no license information was provided.

Gluon [199] was introduced as a new approach to create distributed-memory graph
analytics systems able to use heterogeneity in partitioning policies, processor types
(GPU and CPU) and programming models. To use Gluon, programmers implement
applications in shared-memory programming systems of their choice and then inter-
face the applications with Gluon to enable execution on heterogeneous clusters. Gluon
optimizes communication by taking advantage of temporal and structural invariants of
graph partitioning policies. It runs on shared-memory NUMA platforms and NVIDIA
GPUs. Its programming model offers a small number of programming patterns imple-
mented in C++, its library offers concurrent data structures, schedulers and memory
allocators and the runtime executes programs in parallel, using parallelization strategies
as optimistic and round-based execution. Gluon is available [200] under the 3-Clause
BSD License.

Hornet [201] is a data structure for efficient computation of dynamic sparse graphs and
matrices using GPUs. It is platform-independent and implements its own memory allo-
cation operation instead of standard function calls. The implementation uses an internal
data manager which makes use of block arrays to store adjacency lists, a bit tree for find-
ing and reclaiming empty memory blocks and B+ trees to manage them. It was evalu-
ated using an NVIDIA Tesla GPU and experiments targeted the update rates it supports,
algorithms such as breadth-first search (BFS) and sparse matrix-vector multiplication.
Hornet is available [202] under the 3-Clause BSD License.

faimGraph [203] introduced a fully-dynamic graph data structure performing auton-
omous memory management on the GPU. It enables complete reuse of memory and
reduces memory requirements and fragmentation. The implementation has a vertex-
centric update scheme that allows for edge updating in a lock-free way. It reuses free
vertex indices to achieve efficient vertex insertion and deletion, and does not require
restarting as a result of a large number of edge updates. faimGraph was benchmarked
against Hornet on an NVIDIA GeForce GTX Titan Xp GPU using algorithms such as
PageRank and triangle counting. Source code is available online [204] without a speci-
fied license.

GraphCage [205] is a cache-centric optimization framework to enable highly efficient
graph processing on GPUs. It was motivated by the random memory accesses which
are generated by sparse graph data structures, which increase memory access latency.
The authors note that conventional cache-blocking suffers from repeated accesses when
processing large graphs on GPUs, and propose a throughput-oriented cache blocking
scheme (TOCAB). GraphCage applies the scheme to both push and pull directions

Page 32 of 41Coimbra et al. J Big Data (2021) 8:55

and coordinates with load balancing strategies by considering sparsity of sub-graphs.
This technique is applied to traversal-based algorithms by considering the benefit and
overhead in different iterations with working sets of different sizes. In its evaluation,
GraphCage achieved in average lower execution times for one PageRank iteration com-
pared to both Gunrock and CuSha. We did not find its source code available.

For more information on GPU use cases for graph processing approaches, we point
the readers to [206].

FlashGraph [207] is a graph processing engine implemented in C++ over a user-space
SSD file system designed for high IOS and very high levels of parallelism. Vertex state is
stored in memory while edge lists are on SSDs. Latency is hidden by overlapping com-
putation with I/O, a concept similar to X-Stream and Chaos, and edges lists are only
accessed if requested by applications from SSDs. FlashGraph has a vertex-centric
(TLAV) interface, its designed to reduce CPU overhead and increase throughput by
conservatively merging I/O requests, and the authors demonstrate that FlashGraph
in semi-external memory executes many algorithms with a performance of up to 80%
of the in-memory implementation and It also outperformed PowerGraph. It is open-
source [208] under the Apache License 2.0.

GraphSSD [209] is a semantic-aware SSD framework and full system solution to store,
access and execute graph analytics. Instead of considering storage as a set of blocks, it
accounts for graph structure while choosing graph layout, access and update mecha-
nisms. GraphSSD innovates by considering a vertex-to-page mapping scheme and uses
advanced knowledge of flash properties to reduce page accesses. It offers a simple API
to ease development of applications accessing graphs as native data and its evaluation
showcased average performance gains for basic graph data fetch functions on breadth-
first search, connected components, random-walk, maximal independent set and Pag-
eRank. We did not find its source available.

In Table 1 we summarize distinguishing features and licenses for the graph process-
ing systems detailed in this section. The last reference in front of every system name is
its open-source code repository, when available. The second group from the top (PBGL,
CombBLAS and HavoqGT) contains systems which use multiple machines for computa-
tion but not in the typical cluster scenario. Instead, they are characterized by using spe-
cific machines for high-performance computing.

Conclusion
This survey explores different aspects of the graph processing landscape and highlights
vectors of research. We cover dimensions that enable the classification of graph pro-
cessing systems according to the mutability of data (dynamism [112] and its modali-
ties), the nature of the tasks (workloads where the focus may be efficient storage [129]
or swift computation [210] over transient data) and how the data is associated to differ-
ent computing agents (e.g., distributed via partitioning [50] to threads in a CPU, CPUs
in a machine, machines in a cluster). Each of these dimensions constitutes a different
branch of the study of graph processing, and herein we group their recent literature
surveys and draw on their relationships. On drawing a line between graph processing
systems and those that also focus on the storage, the graph databases, we found most
commercial graph solutions to fall on the category of graph database. Graph databases,

Page 33 of 41Coimbra et al. J Big Data (2021) 8:55 	

Table 1  Summary of graph system distinctive features

Circle · on the Multi-core, GPU and Cluster columns indicate that option is supported. Languages lists the programming
languages the systems were written in. License lists the licenses of the open-source project or of the free edition of a
commercial product: AL 2.0 is Apache License 2.0, CC 1.0 is Commons Clause 1.0, (GPL) v3 is GNU
General Public License (GPL) v3. Notes covers additional information, with Copyright meaning that it may be

System Multi-core GPU Cluster Languages License Notes

GraphLab [130, 131] · · C++ AL 2.0 N/A

GRACE [132] · · C++ Unavailable N/A

Ligra [133, 134] · C++ MIT N/A

Ringo [122, 135] · C++, Python BSD N/A

Polymer [136, 137] · C++ AL 2.0 N/A

GraphMat [138, 139] · C++ Custom N/A

Mosaic [140, 141] · C++ MIT Fast storage

PBGL [142, 143] · C++ Custom Hardware

CombBLAS [144, 145] · C++ Custom Hardware

HavoqGT [146, 147] · C++ GNU LGPL 2.1 Hardware

Apache Giraph [12,
148]

· · Java AL 2.0 N/A

Naiad [150, 151] · C# AL 2.0 N/A

Apache Flink [14,
153]

· · Java, Python,
Scala

AL 2.0 N/A

Apache Spark [155,
156]

· · Java, Python,
Scala

AL 2.0 N/A

GraphTau [157] · · Java, Scala Unavailable N/A

Tink [158, 159] · · Java, Scala AL 2.0 N/A

X-Stream [56, 165] · C++ AL 2.0 N/A

Chaos [62, 166] · · C++ AL 2.0 N/A

PowerLyra [61, 167] · · C++ AL 2.0 N/A

Kineograph [168,
171]

· · Unknown Unavailable N/A

Tornado [169] · · Unknown Unavailable N/A

KickStarter [170] · · C++ MIT N/A

Pixie [173] · · Unknown Unavailable N/A

FlowGraph [174] · · Unknown Unavailable N/A

GPS [110, 175] · · Java BSD N/A

GoFFish [176, 177] · · Java Unknown Copyright

FBSGraph [178] · · Unknown Unavailable N/A

GrapH [179, 180] · · Java Unknown Copyright

Julienne [181] · C++ Unavailable N/A

GraphD [182] · · Unknown Unavailable N/A

TurboGraph++
[183]

· · Unknown Unavailable N/A

GraphIn [184] · C++ Unavailable N/A

MapGraph [185, 186] · C++ AL 2.0 Discontinued

CuSha [188, 189] · C++ MIT N/A

Gunrock [190–192] · C AL 2.0 N/A

Lux [193, 194] · · · C++ AL 2.0 N/A

Frog [195, 196] · C GPL 2.0 N/A

Gluon [199, 200] · · C++ 3C BSD N/A

GraphCage [205] · Unknown Unavailable N/A

FlashGraph [207,
208]

C++ AL 2.0 SSDs

GraphSSD [209] Unknown Unavailable SSDs

Page 34 of 41Coimbra et al. J Big Data (2021) 8:55

along the last decade, have continued to refine their efficiency in executing traversals
and global graph algorithms over the graph representation stored in the database. We
consider that a novel approach to extracting value from graph-based data will include
the use of graph-aware data compression techniques on scalable distributed systems,
potentially breaking the abstraction that these systems establish between the high-level
graph data representations and the lower-level data distribution and transmission. We
observe that the architecture of systems targeting graphs depend on how generic is the
graph processing desired to be. Generic dataflow processing systems offer abstractions
over their basic computational primitives in order to represent and process graphs, but
in exchange abdicate from fine-tuning and graph-aware optimizations.

As part of our exhaustive analysis of existing contributions of different domains in the
state-of-the-art of graph processing and storage, we provide direct links to source code
repositories such as GitHub whenever they were available. Should the reader wish to
delve into the implementation of a given contribution, a link to the contribution’s source
code repository is to be found as part of the bibliography. We provide these so that other
researchers and developers may look into them without need to engage in error-prone
searches looking for up-to-date documentation and source-code.

This systematic analysis fosters some additional comments regarding data process-
ing. Data is abundant, big and evolving, and paradigms such as edge computing and the
evolution of the Internet-of-Things come together to reshape our relationship with data.
With an increase in smart devices and computational capabilities becoming more ubiq-
uitous for example in daily objects such as vehicles and smart homes, new graphs of data
mapping interaction and purpose become available. This implies a continuous trend in
the increasing size of data. At the same time, the dimension of dynamism (spread across
the types we enumerate in this document) gains renewed importance as we move to a
faster and ever-connected world. With the advent of 5G technologies and the alternative
possibilities of space internet (among the private initiatives we count SpaceX’s Starlink,
Jeff Bezos’ Blue Origin and the late Steve Jobs’ vision for an always-connected smart-
phone) becoming a closer reality, the temporal aspect will become even more granular.

One would not be wrong to speculate that we will have more devices which will gen-
erate data more frequently. In such a world, the graph processing dimensions we enu-
merate in this document will play a relevant role in building systems to handle these
changing scenarios.
Acknowledgements
Not applicable.

Authors’ contributions
MC revised the literature on different solutions for graph processing. AF analysed the systems’ relevance as solutions to
the problems of network theory and highlighted the most important. LV revised and shepherded the division of graph
processing solutions into different classes. All authors read and approved the final manuscript.

Funding
This work was partly supported by national funds through FCT—Fundação para a Ciência e Tecnologia, under projects
PTDC/EEI-COM/30644/2017, PTDC/CPO-CPO/28495/2017, PTDC/CCI-BIO/29676/2017 and UIDB/50021/2020.

Availability of data and materials
Not applicable.

illegal to reuse the source code

Table 1  (continued)

Page 35 of 41Coimbra et al. J Big Data (2021) 8:55 	

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 INESC-ID, R. Alves Redol 9, 1000‑029 Lisbon, Portugal. 2 Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco
Pais 1, 1049‑001 Lisbon, Portugal.

Received: 23 December 2020 Accepted: 22 March 2021

References
	 1.	 Boldi P, Vigna S. The WebGraph Framework I: Compression techniques. In: Feldman SI, Uretsky M, Najork M, Wills

CE, editors. Proceedings of the 13th international conference on World Wide Web, WWW 2004, New York, NY, USA,
May 17–20, 2004. New York, NY, USA: ACM; 2004. p. 595–602. https://​doi.​org/​10.​1145/​988672.​988752.

	 2.	 Boldi P, Vigna S. The WebGraph framework II: codes for the World-Wide Web. In: 2004 data compression confer-
ence (DCC 2004), 23–25 March 2004, Snowbird, UT, USA. IEEE Computer Society; 2004. p. 528. https://​doi.​org/​10.​
1109/​DCC.​2004.​12815​04.

	 3.	 Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst.
1998;30(1–7):107–17.

	 4.	 de Bruijn NG. A combinatorial problem. Koninklijke Nederlandsche Akademie Van Wetenschappen.
1946;49(6):758–64.

	 5.	 Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short
read sequencing. Genome Res. 2010;20(2):265–72. http://​genome.​cshlp.​org/​conte​nt/​20/2/​265.​abstr​act.

	 6.	 Zerbino D, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res.
2008;18:821.

	 7.	 Balaban AT. Applications of graph theory in chemistry. J Chem Inform Comput Sci. 1985;25(3):334–43.
	 8.	 Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N, et al. Pregel: a system for large-scale graph process-

ing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data. SIGMOD ’10.
New York, NY, USA: ACM; 2010. p. 135–46. https://​doi.​org/​10.​1145/​18071​67.​18071​84.

	 9.	 Panda B, Herbach JS, Basu S, Bayardo RJ. Planet: massively parallel learning of tree ensembles with MapReduce.
Proc VLDB Endow. 2009;2(2):1426–37.

	 10.	 Smola A, Narayanamurthy S. An architecture for parallel topic models. Proc VLDB Endow. 2010;3(1–2):703–10.
	 11.	 Microsoft. Graph Engine (GE): serving big graphs in real-time; 2017. Accessed 24 Apr 2020.
	 12.	 Ching A. Scaling apache giraph to a trillion edges. Facebook engineering blog. 2013; p. 25.
	 13.	 Xin RS, Gonzalez JE, Franklin MJ, Stoica I. GraphX: a resilient distributed graph system on spark. In: First interna-

tional workshop on graph data management experiences and systems. GRADES ’13. New York, NY, USA: ACM;
2013. p. 2:1–2:6. https://​doi.​org/​10.​1145/​24844​25.​24844​27.

	 14.	 Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K. Apache Flink: stream and batch processing in a
single engine. Bull IEEE Comput Soc Tech Committee Data Eng. 2015;36(4):28–38.

	 15.	 Gordon Donnelly. 75 Super-Useful Facebook Statistics for 2018; 2020. Accessed 05 May 2020.
	 16.	 Facebook. Newsrooms; 2020. Accessed 05 May 2020.
	 17.	 Twitter, Inc . Quarterly results; 2020. Accessed 05 May 2020.
	 18.	 LinkedIn Corporation. Quarterly results; 2020. Accessed 05 May 2020.
	 19.	 com I. Total number of Websites; 2020. https://​www.​inter​netli​vesta​ts.​com/​total-​number-​of-​websi​tes/#​sourc​es.

Accessed 24 Apr 2020.
	 20.	 Baritchi A, Cook DJ, Holder LB. Discovering structural patterns in telecommunications data. In: FLAIRS conference;

2000. p. 82–5.
	 21.	 Balasundaram B, Butenko S. Graph domination, coloring and cliques in telecommunications. In: Handbook of

optimization in telecommunications. Springer; 2006. p. 865–90.
	 22.	 Al-Molhem NR, Rahal Y, Dakkak M. Social network analysis in Telecom data. J Big Data. 2019;6(1):99.
	 23.	 Pfluke C. A history of the five eyes alliance: possibility for reform and additions: a history of the five eyes alliance:

possibility for reform and additions. Comp Strat. 2019;38(4):302–15.
	 24.	 Grujić J. Movies recommendation networks as bipartite graphs. In: International conference on computational

science. Springer; 2008. p. 576–83.
	 25.	 Gu Q, Zhou J, Ding C. Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and

item graphs. In: Proceedings of the 2010 SIAM international conference on data mining. SIAM; 2010. p. 199–210.
	 26.	 Silva NB, Tsang R, Cavalcanti GD, Tsang J. A graph-based friend recommendation system using genetic algorithm.

In: IEEE congress on evolutionary computation. IEEE; 2010. p. 1–7.
	 27.	 Zhao H, Yao Q, Li J, Song Y, Lee DL. Meta-graph based recommendation fusion over heterogeneous information

networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining; 2017. p. 635–44.

https://doi.org/10.1145/988672.988752
https://doi.org/10.1109/DCC.2004.1281504
https://doi.org/10.1109/DCC.2004.1281504
http://genome.cshlp.org/content/20/2/265.abstract
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2484425.2484427
https://www.internetlivestats.com/total-number-of-websites/#sources

Page 36 of 41Coimbra et al. J Big Data (2021) 8:55

	 28.	 Yang K, Toni L. Graph-based recommendation system. In: 2018 IEEE global conference on signal and information
processing (GlobalSIP). IEEE; 2018. p. 798–802.

	 29.	 Beyene Y, Faloutsos M, Chau DH, Faloutsos C. The eBay graph: how do online auction users interact? In: IEEE INFO-
COM Workshops 2008. IEEE; 2008. p. 1–6.

	 30.	 Euler L. The seven bridges of Konigsberg. Benton: Wm; 1956.
	 31.	 Unsalan C, Sirmacek B. Road network detection using probabilistic and graph theoretical methods. IEEE Trans

Geosci Remote Sens. 2012;50(11):4441–53.
	 32.	 Rathore MM, Ahmad A, Paul A, Thikshaja UK, Exploiting real-time big data to empower smart transportation using

big graphs. In: IEEE region 10 symposium (TENSYMP). IEEE. 2016;2016:135–9.
	 33.	 George G, Thampi SM. A graph-based security framework for securing industrial IoT networks from vulnerability

exploitations. IEEE Access. 2018;6:43586–601.
	 34.	 Colizza V, Barrat A, Barthélemy M, Vespignani A. Predictability and epidemic pathways in global outbreaks of infec-

tious diseases: the SARS case study. BMC Med. 2007;5(1):34.
	 35.	 Bajardi P, Poletto C, Ramasco JJ, Tizzoni M, Colizza V, Vespignani A. Human mobility networks, travel restrictions,

and the global spread of 2009 H1N1 pandemic. PLoS ONE. 2011;6(1):e16591.
	 36.	 Brockmann D, Helbing D. The hidden geometry of complex, network-driven contagion phenomena. Science.

2013;342(6164):1337–42.
	 37.	 Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions on the spread

of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368:395–400.
	 38.	 Liljeros F, Edling CR, Amaral LAN. Sexual networks: implications for the transmission of sexually transmitted infec-

tions. Microb Infect. 2003;5(2):189–96.
	 39.	 Bearman PS, Moody J, Stovel K. Chains of affection: the structure of adolescent romantic and sexual networks. Am

J Sociol. 2004;110(1):44–91.
	 40.	 Surveillances V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)-

China, 2020. China CDC Wkly. 2020;2(8):113–22.
	 41.	 Sedgewick R, Wayne K. Algorithms. Boston: Addison-wesley professional; 2011.
	 42.	 Laboratory for Web Algorithmics. Datasets; 2020. Accessed 05 May 2020.
	 43.	 Meusel R, Vigna S, Lehmberg O, Bizer C. The graph structure in the web-analyzed on different aggregation levels. J

Web Sci. 2015;. https://​doi.​org/​10.​1561/​106.​00000​003.
	 44.	 Malicevic J, Roy A, Zwaenepoel W. Scale-up graph processing in the cloud: challenges and solutions. In: Proceed-

ings of the fourth international workshop on cloud data and platforms. CloudDP ’14. New York, NY, USA: ACM;
2014. p. 5:1–5:6. https://​doi.​org/​10.​1145/​25927​84.​25927​89.

	 45.	 Han M, Daudjee K, Ammar K, Özsu MT, Wang X, Jin T. An experimental comparison of Pregel-like graph processing
systems. Proc VLDB Endow. 2014;7(12):1047–58. https://​doi.​org/​10.​14778/​27329​77.​27329​80.

	 46.	 Kalavri V, Ewen S, Tzoumas K, Vlassov V, Markl V, Haridi S. Asymmetry in large-scale graph analysis, explained. In:
Proceedings of workshop on GRAph data management experiences and systems. GRADES’14. New York, NY, USA:
ACM; 2014. p. 4:1–4:7. https://​doi.​org/​10.​1145/​26219​34.​26219​40.

	 47.	 Kalavri V, Vlassov V, Haridi S. High-level programming abstractions for distributed graph processing. IEEE Trans
Knowl Data Eng. 2017;30(2):305–24.

	 48.	 Heidari S, Simmhan Y, Calheiros RN, Buyya R. Scalable graph processing frameworks: a taxonomy and open chal-
lenges. ACM Comput Surv. 2018;51(3):60.

	 49.	 Sahu S, Mhedhbi A, Salihoglu S, Lin J, Özsu MT. The ubiquity of large graphs and surprising challenges of graph
processing. Proc VLDB Endow. 2017;11(4):420–31. https://​doi.​org/​10.​1145/​31867​28.​31641​39.

	 50.	 Soudani NM, Fatemi A, Nematbakhsh M. An investigation of big graph partitioning methods for distribution of
graphs in vertex-centric systems. Distrib Parallel Databases. 2019;38:1–29.

	 51.	 Lu H, Halappanavar M, Kalyanaraman A. Parallel heuristics for scalable community detection. Parallel Comput.
2015;47:19–37.

	 52.	 Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: bringing order to the web. Stanford InfoLab;
1999. 1999–66. http://​ilpubs.​stanf​ord.​edu:​8090/​422/.

	 53.	 Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I. GraphX: graph processing in a distributed dataflow
framework. In: Proceedings of the 11th USENIX conference on operating systems design and implementation.
OSDI’14. Berkeley, CA, USA: USENIX Association; 2014. p. 599–613. http://​dl.​acm.​org/​citat​ion.​cfm?​id=​26850​48.​
26850​96.

	 54.	 Lumsdaine A, Gregor D, Hendrickson B, Berry J. Challenges in parallel graph processing. Parallel Process Lett.
2007;17(01):5–20.

	 55.	 Sakr S, Orakzai FM, Abdelaziz I, Khayyat Z. Large-scale graph processing using Apache Giraph. Springer; 2016.
https://​doi.​org/​10.​1007/​978-3-​319-​47431-1.

	 56.	 Roy A, Mihailovic I, Zwaenepoel W. X-Stream: edge-centric graph processing using streaming partitions. In:
Proceedings of the twenty-fourth ACM symposium on operating systems principles. SOSP ’13. New York, NY, USA:
ACM; 2013. p. 472–88. https://​doi.​org/​10.​1145/​25173​49.​25227​40.

	 57.	 Tian Y, Balmin A, Corsten SA, Tatikonda S, McPherson J. From, “Think Like a Vertex” to “Think Like a Graph”. Proc
VLDB Endow. 2013;7(3):193–204 https://​doi.​org/​10.​14778/​27322​32.​27322​38.

	 58.	 Wilkinson B, Allen M. Parallel programming. Chennai: Pearson India; 2004.
	 59.	 Fortunato S, Flammini A, Menczer F. Scale-free network growth by ranking. Phys Rev Lett. 2006;96(21):218701.
	 60.	 Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C. PowerGraph: distributed graph-parallel computation on natural

graphs. In: Proceedings of the 10th USENIX conference on operating systems design and implementation.
OSDI’12. Berkeley, CA, USA: USENIX Association; 2012. p. 17–30. http://​dl.​acm.​org/​citat​ion.​cfm?​id=​23878​80.​23878​
83.

	 61.	 Chen R, Shi J, Chen Y, Chen H. PowerLyra: Differentiated graph computation and partitioning on skewed graphs.
In: Proceedings of the Tenth European Conference on Computer Systems. ACM; 2015. p. 1.

https://doi.org/10.1561/106.00000003
https://doi.org/10.1145/2592784.2592789
https://doi.org/10.14778/2732977.2732980
https://doi.org/10.1145/2621934.2621940
https://doi.org/10.1145/3186728.3164139
http://ilpubs.stanford.edu:8090/422/
http://dl.acm.org/citation.cfm?id=2685048.2685096
http://dl.acm.org/citation.cfm?id=2685048.2685096
https://doi.org/10.1007/978-3-319-47431-1
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.14778/2732232.2732238
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2387880.2387883

Page 37 of 41Coimbra et al. J Big Data (2021) 8:55 	

	 62.	 Roy A, Bindschaedler L, Malicevic J, Zwaenepoel W. Chaos: scale-out graph processing from secondary storage. In:
Proceedings of the 25th symposium on operating systems principles. SOSP ’15. New York, NY, USA: ACM; 2015. p.
410–24. https://​doi.​org/​10.​1145/​28154​00.​28154​08.

	 63.	 Inc N. Neo4j APOC library—source code; 2020. GitHub. https://​github.​com/​neo4j-​contr​ib/​neo4j-​apoc-​proce​dures.
Accessed 24 Apr 2020.

	 64.	 Dominguez-Sal D, Martinez-Bazan N, Muntes-Mulero V, Baleta P, Larriba-Pey JL. A discussion on the design of
graph database benchmarks. In: Technology conference on performance evaluation and benchmarking. Springer;
2010. p. 25–40.

	 65.	 Teixeira AS, Monteiro PT, Carriço JA, Ramirez M, Francisco AP. Spanning edge betweenness. In: Workshop on min-
ing and learning with graphs. 24; 2013. 27–31.

	 66.	 Newman M. Networks: an introduction. New York: Oxford University Press, Inc; 2010.
	 67.	 Miller JJ. Graph database applications and concepts with Neo4j. In: Proceedings of the southern association for

information systems conference, Atlanta, GA, USA. 2013;2324(36). https://​pdfs.​seman​ticsc​holar.​org/​322a/​6e1f4​
64330​751de​a2eb6​beeca​c2446​6322ad.​pdf.

	 68.	 Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms, third edition. 3rd ed. Cambridge: The MIT
Press; 2009.

	 69.	 Buluç A, Fineman JT, Frigo M, Gilbert JR, Leiserson CE. Parallel sparse matrix-vector and matrix-transpose-vector
multiplication using compressed sparse blocks. In: Proceedings of the twenty-first annual symposium on Parallel-
ism in algorithms and architectures; 2009. p. 233–44.

	 70.	 Boldi P, Rosa M, Santini M, Vigna S. Layered label propagation: a multiresolution coordinate-free ordering for
compressing social networks. In: Srinivasan S, Ramamritham K, Kumar A, Ravindra MP, Bertino E, Kumar R, editors.
Proceedings of the 20th international conference on World Wide Web. WWW ’11. New York, NY, USA: ACM; 2011. p.
587–96. https://​doi.​org/​10.​1145/​19634​05.​19634​88.

	 71.	 Boldi P, Codenotti B, Santini M, Vigna S. UbiCrawler: a scalable fully distributed web crawler. Softw Pract Exp.
2004;34(8):711–26.

	 72.	 Boldi P, Marino A, Santini M, Vigna S. BUbiNG: massive crawling for the masses. In: Proceedings of the companion
publication of the 23rd international conference on World Wide Web. International World Wide Web Conferences
Steering Committee; 2014. p. 227–8.

	 73.	 Brisaboa NR, Ladra S, Navarro G. Compact representation of web graphs with extended functionality. Inform Syst.
2014;39:152–74.

	 74.	 Samet H. Foundations of multidimensional and metric data structures. Burlington: Morgan Kaufmann; 2006.
	 75.	 Besta M, Stanojevic D, Zivic T, Singh J, Hoerold M, Hoefler T. Log (graph) a near-optimal high-performance graph

representation. In: Proceedings of the 27th international conference on parallel architectures and compilation
techniques; 2018. p. 1–13.

	 76.	 Feder T, Motwani R. Clique partitions, graph compression and speeding-up algorithms. J Comput Syst Sci.
1995;51(2):261–72.

	 77.	 Apostolico A, Drovandi G. Graph compression by BFS. Algorithms. 2009;2(3):1031–44.
	 78.	 Buehrer G, Chellapilla K. A scalable pattern mining approach to web graph compression with communities. In:

Proceedings of the 2008 international conference on web search and data mining; 2008. p. 95–106.
	 79.	 Kang U, Faloutsos C. Beyond’caveman communities’: Hubs and spokes for graph compression and mining. In:

2011 IEEE 11th international conference on data mining. IEEE; 2011. p. 300–9.
	 80.	 Fan W, Li J, Wang X, Wu Y. Query preserving graph compression. In: Proceedings of the 2012 ACM SIGMOD interna-

tional conference on management of data; 2012. p. 157–68.
	 81.	 Lim Y, Kang U, Faloutsos C. Slashburn: graph compression and mining beyond caveman communities. IEEE Trans

Knowl Data Eng. 2014;26(12):3077–89.
	 82.	 Hernández C, Navarro G. Compressed representations for web and social graphs. Knowl Inf Syst. 2014;40(2):279–

313. https://​doi.​org/​10.​1007/​s10115-​013-​0648-4.
	 83.	 Brisaboa NR, de Bernardo G, Gutiérrez G, Ladra S, Penabad MR, Troncoso BA. Efficient set operations over k2-trees.

In: Data compression conference (DCC); 2015. p. 373–82.
	 84.	 Gagie T, González-Nova JI, Ladra S, Navarro G, Seco D. Faster compressed quadtrees. In: Data compression confer-

ence (DCC), 2015. IEEE; 2015. p. 93–102.
	 85.	 Coimbra ME, Esteves S, Francisco AP, Veiga L. VeilGraph: streaming graph approximations. 2019; p arXiv:​1810.
	 86.	 Brisaboa NR, Cerdeira-Pena A, de Bernardo G, Navarro G. Compressed representation of dynamic binary relations

with applications. Inform Syst. 2017;69:106–23.
	 87.	 Navarro G. Compact data structures: a practical approach. Cambridge: Cambridge University Press; 2016.
	 88.	 Coimbra ME, Francisco AP, Russo LMS, de Bernardo G, Ladra S, Navarro G. On dynamic succinct graph representa-

tions. In: Data compression conference (DCC). IEEE; 2020. p. 10. https://​sigpo​rt.​org/​docum​ents/​dynam​ic-​succi​nct-​
graph-​repre​senta​tions.

	 89.	 Munro JI, Nekrich Y, Vitter JS. Dynamic data structures for document collections and graphs. In: ACM symposium
on principles of database systems (PODS); 2015. p. 277–89.

	 90.	 Low Y, Gonzalez JE, Kyrola A, Bickson D, Guestrin C, Hellerstein JM. GraphLab: a new framework for parallel
machine learning. CoRR. 2014;abs/1408.2041. arXiv:​1408.​2041.

	 91.	 Stutz P, Bernstein A, Cohen W. Signal/collect: graph algorithms for the (semantic) web. In: International semantic
web conference. Springer; 2010. p. 764–80.

	 92.	 Kakwani D, Simmhan Y. Distributed algorithms for subgraph-centric graph platforms. arXiv preprint arXiv:​19050​
8051; 2019.

	 93.	 Xiao W, Xue J, Miao Y, Li Z, Chen C, Wu M, et al. Tux2 : distributed graph computation for machine learning. In: 14th
{USENIX} symposium on networked systems design and implementation ( {NSDI} 17); 2017. p. 669–82.

	 94.	 Guidotti R, Coscia M. On the equivalence between community discovery and clustering. In: International confer-
ence on smart objects and technologies for social good. Springer; 2017. p. 342–52.

	 95.	 Andreev K, Racke H. Balanced graph partitioning. Theory Comput Syst. 2006;39(6):929–39.

https://doi.org/10.1145/2815400.2815408
https://github.com/neo4j-contrib/neo4j-apoc-procedures
https://pdfs.semanticscholar.org/322a/6e1f464330751dea2eb6beecac24466322ad.pdf
https://pdfs.semanticscholar.org/322a/6e1f464330751dea2eb6beecac24466322ad.pdf
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1007/s10115-013-0648-4
http://arxiv.org/abs/1810
https://sigport.org/documents/dynamic-succinct-graph-representations
https://sigport.org/documents/dynamic-succinct-graph-representations
http://arxiv.org/abs/1408.2041
http://arxiv.org/abs/190508051
http://arxiv.org/abs/190508051

Page 38 of 41Coimbra et al. J Big Data (2021) 8:55

	 96.	 Buluç A, Meyerhenke H, Safro I, Sanders P, Schulz C. Recent advances in graph partitioning. In: Algorithm engineer-
ing. Springer; 2016. p. 117–58.

	 97.	 Mofrad MH, Melhem R, Hammoud M. Revolver: vertex-centric graph partitioning using reinforcement learning. In:
2018 IEEE 11th international conference on cloud computing (CLOUD). IEEE; 2018. p. 818–21.

	 98.	 Bao NT, Suzumura T. Towards highly scalable pregel-based graph processing platform with x10. In: Proceedings of
the 22nd international conference on World Wide Web; 2013. p. 501–8.

	 99.	 Martella C, Logothetis D, Loukas A, Siganos G. Spinner: scalable graph partitioning in the cloud. In: 2017 IEEE 33rd
international conference on data engineering (ICDE). IEEE; 2017. p. 1083–94.

	100.	 Stanton I, Kliot G. Streaming graph partitioning for large distributed graphs. In: Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining; 2012. p. 1222–30.

	101.	 Zhu X, Chen W, Zheng W, Ma X. Gemini: a computation-centric distributed graph processing system. In: 12th {
USENIX} symposium on operating systems design and implementation ( {OSDI} 16); 2016. p. 301–16.

	102.	 Tsourakakis C, Gkantsidis C, Radunovic B, Vojnovic M. Fennel: streaming graph partitioning for massive scale
graphs. In: Proceedings of the 7th ACM international conference on Web search and data mining; 2014. p. 333–42.

	103.	 Jain N, Liao G, Willke TL. Graphbuilder: scalable graph etl framework. In: First international workshop on graph data
management experiences and systems; 2013. p. 1–6.

	104.	 Petroni F, Querzoni L, Daudjee K, Kamali S, Iacoboni G. Hdrf: stream-based partitioning for power-law graphs. In:
Proceedings of the 24th ACM international on conference on information and knowledge management; 2015. p.
243–52.

	105.	 Gregory S. Finding overlapping communities in networks by label propagation. N J Phys. 2010;12(10):103018.
	106.	 Liu X, Murata T. Advanced modularity-specialized label propagation algorithm for detecting communities in

networks. Physica A Stat Mech Appl. 2010;389(7):1493–500.
	107.	 Zhu X, Ghahramani Z. Learning from labeled and unlabeled data with label propagation; 2002. Accessed 24 Apr

2020.
	108.	 Slota GM, Madduri K, Rajamanickam S. PuLP: scalable multi-objective multi-constraint partitioning for small-world

networks. In: 2014 IEEE international conference on big data (big data). IEEE; 2014. p. 481–90.
	109.	 Vaquero L, Cuadrado F, Logothetis D, Martella C. xDGP: a dynamic graph processing system with adaptive parti-

tioning. arXiv preprint arXiv:​13091​049; 2013.
	110.	 Salihoglu S, Widom J. GPS: a graph processing system. In: Proceedings of the 25th international conference on

scientific and statistical database management; 2013. p. 1–12.
	111.	 Ahmed NK, Duffield N, Willke TL, Rossi RA. On sampling from massive graph streams. Proc VLDB Endow.

2017;10(11):1430–41. https://​doi.​org/​10.​14778/​31376​28.​31376​51.
	112.	 Besta M, Fischer M, Kalavri V, Kapralov M, Hoefler T. Practice of streaming and dynamic graphs: concepts, models,

systems, and parallelism. CoRR. 2019; arXiv:​abs/​1912.​12740.
	113.	 Kostakos V. Temporal graphs. Physica A Stat Mech Appl. 2009;388(6):1007–23.
	114.	 Miao Y, Han W, Li K, Wu M, Yang F, Zhou L, et al. Immortalgraph: a system for storage and analysis of temporal

graphs. ACM Trans Storage. 2015;11(3):1–34.
	115.	 Michail O. An introduction to temporal graphs: an algorithmic perspective. Internet Math. 2016;12(4):239–80.
	116.	 Feigenbaum J, Kannan S, McGregor A, Suri S, Zhang J. On graph problems in a semi-streaming model. Depart-

mental Papers (CIS); 2005, p. 236.
	117.	 Erb B, Meißner D, Kargl F, Steer BA, Cuadrado F, Margan D, et al. GraphTides: a framework for evaluating stream-

based graph processing platforms. In: Proceedings of the 1st ACM SIGMOD joint international workshop on graph
data management experiences & systems (GRADES) and network data analytics (NDA); 2018. p. 1–10.

	118.	 Ediger D, McColl R, Riedy J, Bader DA. Stinger: High performance data structure for streaming graphs. In: 2012 IEEE
conference on high performance extreme computing. IEEE; 2012. p. 1–5.

	119.	 Ahn KJ, Guha S, McGregor A. Graph sketches: sparsification, spanners, and subgraphs. In: Proceedings of the 31st
ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems. PODS ’12. New York, NY, USA: ACM;
2012. p. 5–14. https://​doi.​org/​10.​1145/​22135​56.​22135​60.

	120.	 Aggarwal G, Datar M, Rajagopalan S, Ruhl M. On the streaming model augmented with a sorting primitive. In:
45th annual IEEE symposium on foundations of computer science. IEEE; 2004. p. 540–9.

	121.	 Demetrescu C, Finocchi I, Ribichini A. Trading off space for passes in graph streaming problems. ACM Trans Algo-
rith. 2009;6(1):1–17.

	122.	 Perez Y, Sosič R, Banerjee A, Puttagunta R, Raison M, Shah P, et al. Ringo: interactive graph analytics on big-memory
machines. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. SIGMOD
’15. New York, NY, USA: ACM; 2015. p. 1105–10. https://​doi.​org/​10.​1145/​27233​72.​27353​69.

	123.	 Webber J. A programmatic introduction to Neo4J. In: Proceedings of the 3rd annual conference on systems, pro-
gramming, and applications: software for humanity. SPLASH ’12. New York, NY, USA: ACM; 2012. p. 217–8. https://​
doi.​org/​10.​1145/​23847​16.​23847​77.

	124.	 JanusGraph Authors. JanusGraph: distributed graph database; 2017. Accessed 24 Apr 2020. https://​janus​graph.​
org/.

	125.	 Holzschuher F, Peinl R. Performance of graph query languages: comparison of cypher, gremlin and native access
in Neo4J. In: Proceedings of the joint EDBT/ICDT 2013 workshops. EDBT ’13. New York, NY, USA: ACM; 2013. p.
195–204. https://​doi.​org/​10.​1145/​24573​17.​24573​51.

	126.	 George L. HBase—the definitive guide: random access to your planet-size data. O’Reilly; 2011. http://​www.​oreil​ly.​
de/​catal​og/​97814​49396​107/​index.​html.

	127.	 Lakshman A, Malik P. Cassandra: a decentralized structured storage system. SIGOPS Oper Syst Rev. 2010;44(2):35–
40. https://​doi.​org/​10.​1145/​17739​12.​17739​22.

	128.	 Benisis A. Business process management: a data cube to analyze business process simulation data for decision
making. Saarbrucken: VDM Publishing; 2010.

	129.	 Corporation O. Application and system performance characteristics; 1999. GitHub. https://​docs.​oracle.​com/​cd/​
A87860_​01/​doc/​server.​817/​a76992/​ch3_​eval.​htm#​2680. Accessed 24 Apr 2020.

http://arxiv.org/abs/13091049
https://doi.org/10.14778/3137628.3137651
http://arxiv.org/abs/abs/1912.12740
https://doi.org/10.1145/2213556.2213560
https://doi.org/10.1145/2723372.2735369
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.1145/2384716.2384777
https://janusgraph.org/
https://janusgraph.org/
https://doi.org/10.1145/2457317.2457351
http://www.oreilly.de/catalog/9781449396107/index.html
http://www.oreilly.de/catalog/9781449396107/index.html
https://doi.org/10.1145/1773912.1773922
https://docs.oracle.com/cd/A87860_01/doc/server.817/a76992/ch3_eval.htm#2680
https://docs.oracle.com/cd/A87860_01/doc/server.817/a76992/ch3_eval.htm#2680

Page 39 of 41Coimbra et al. J Big Data (2021) 8:55 	

	130.	 Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein J. GraphLab: a new framework for parallel machine
learning. In: Proceedings of the twenty-sixth conference on uncertainty in artificial intelligence. UAI’10. Arlington,
Virginia, USA: AUAI Press; 2010. p. 340–9.

	131.	 Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein J. GraphLab—source code; 2014. GitHub. https://​
github.​com/​sky4s​tar/​graph​lab. Accessed 24 Apr 2020.

	132.	 Wang G, Xie W, Demers AJ, Gehrke J. Asynchronous large-scale graph processing made easy. In: CIDR. vol. 13;
2013. p. 3–6.

	133.	 Shun J, Blelloch GE. Ligra: a lightweight graph processing framework for shared memory. In: Proceedings of the
18th ACM SIGPLAN symposium on Principles and practice of parallel programming; 2013. p. 135–46.

	134.	 Shun J, Blelloch GE. GraphH—Source Code; 2020. GitHub. https://​github.​com/​jshun/​ligra. Accessed 24 Apr 2020.
	135.	 Perez Y, Sosič R, Banerjee A, Puttagunta R, Raison M, Shah P, et al. Ringo—source code; 2016. GitHub. https://​

github.​com/​snap-​stanf​ord/​ringo. Accessed 24 Apr 2020.
	136.	 Zhang K, Chen R, Chen H. NUMA-aware graph-structured analytics. In: Proceedings of the 20th ACM SIGPLAN

symposium on principles and practice of parallel programming; 2015. p. 183–93.
	137.	 Zhang K, Chen R, Chen H. Polymer—source code; 2018. GitHub. https://​github.​com/​reals​tolz/​polym​er. Accessed

24 Apr 2020.
	138.	 Sundaram N, Satish NR, Patwary MMA, Dulloor SR, Vadlamudi SG, Das D, et al. GraphMat: high performance graph

analytics made productive. arXiv preprint arXiv:​15030​7241. 2015.
	139.	 Sundaram N, Satish NR, Patwary MMA, Dulloor SR, Vadlamudi SG, Das D, et al. GraphMat—source code; 2017.

GitHub. https://​github.​com/​naray​anan2​004/​Graph​Mat. Accessed 24 Apr 2020.
	140.	 Maass S, Min C, Kashyap S, Kang W, Kumar M, Kim T. Mosaic: processing a trillion-edge graph on a single machine.

In: Proceedings of the twelfth European conference on computer systems. EuroSys ’17. New York, NY, USA: ACM;
2017. p. 527–43. https://​doi.​org/​10.​1145/​30641​76.​30641​91.

	141.	 Maass S, Min C, Kashyap S, Kang W, Kumar M, Kim T. Mosaic—source code; 2017. GitHub. https://​github.​com/​
sslab-​gatech/​mosaic. Accessed 24 Apr 2020.

	142.	 Gregor D, Lumsdaine A. The parallel BGL: a generic library for distributed graph computations. Parallel Object-
Orient Sci Comput. 2005;2:1–18.

	143.	 Gregor D, Lumsdaine A. Parallel boost graph library—source code; 2018. GitHub. https://​github.​com/​boost​org/​
graph_​paral​lel. Accessed 24 Apr 2020.

	144.	 Buluç A, Gilbert JR. The combinatorial BLAS: design, implementation, and applications. Int J High Perform Comput
Appl. 2011;25(4):496–509.

	145.	 Buluç A, Gilbert JR. Combinatorial BLAS—source code; 2011. Berkeley. https://​people.​eecs.​berke​ley.​edu/​~aydin/​
CombB​LAS/​html/​index.​html. Accessed 24 Apr 2020.

	146.	 Pearce R, Gokhale M, Amato NM, Scaling techniques for massive scale-free graphs in distributed (external)
memory. In: IEEE 27th international symposium on parallel and distributed processing. IEEE. 2013, vol. 2013, p.
825–36.

	147.	 Pearce R, Gokhale M, Amato NM. HavocGT—source code; 2019. GitHub. https://​github.​com/​LLNL/​Havoq​GT.
Accessed 24 Apr 2020.

	148.	 Foundation TAS. Apache Giraph—source code; 2019. GitHub. https://​github.​com/​apache/​giraph. Accessed 24 Apr
2020.

	149.	 Liu Y, Zhou C, Gao J, Fan Z. GiraphAsync: supporting online and offline graph processing via adaptive asynchro-
nous message processing. In: Proceedings of the 25th ACM international on conference on information and
knowledge management. CIKM ’16. New York, NY, USA: ACM; 2016. p. 479–88. https://​doi.​org/​10.​1145/​29833​23.​
29837​26.

	150.	 Research M. Naiad—source code; 2018. GitHub. https://​github.​com/​Micro​softR​esear​ch/​Naiad. Accessed 24 Apr
2020.

	151.	 Murray DG, McSherry F, Isaacs R, Isard M, Barham P, Abadi M. Naiad: a timely dataflow system. In: Proceedings of
the twenty-fourth ACM symposium on operating systems principles. SOSP ’13. New York, NY, USA: ACM; 2013. p.
439–55. https://​doi.​org/​10.​1145/​25173​49.​25227​38.

	152.	 Alexandrov A, Bergmann R, Ewen S, Freytag JC, Hueske F, Heise A, et al. The Stratosphere platform for big data
analytics. VLDB J. 2014;23(6):939–64. https://​doi.​org/​10.​1007/​s00778-​014-​0357-y.

	153.	 Foundation TAS. Apache Flink—source code; 2020. GitHub. https://​github.​com/​apache/​flink. Accessed 24 Apr
2020.

	154.	 Kalavri V, Carbone P, Bali D, Abbas Z. Gelly streaming—source code; 2019. GitHub. https://​github.​com/​vasia/​gelly-​
strea​ming. Accessed 24 Apr 2020.

	155.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. In: Proceed-
ings of the 2Nd USENIX conference on hot topics in cloud computing. HotCloud’10. Berkeley, CA, USA: USENIX
Association; 2010. p. 10. http://​dl.​acm.​org/​citat​ion.​cfm?​id=​18631​03.​18631​13.

	156.	 Foundation TAS. Apache spark—source code; 2020. GitHub. https://​github.​com/​apache/​spark. Accessed 24 Apr
2020.

	157.	 Iyer AP, Li LE, Das T, Stoica I. Time-evolving graph processing at scale. In: Proceedings of the fourth international
workshop on graph data management experiences and systems; 2016. p. 1–6.

	158.	 Lightenberg W, Pei Y, Fletcher G, Pechenizkiy M. Tink: a temporal graph analytics library for apache flink. In: Com-
panion proceedings of the the web conference 2018; 2018. p. 71–2.

	159.	 Lightenberg W, Pei Y, Fletcher G, Pechenizkiy M. Tink—source code; 2019. GitHub. https://​github.​com/​other​wise7​
77/​Tempo​ral_​Graph_​libra​ry. Accessed 24 Apr 2020.

	160.	 Lightenberg W, Pei Y, Fletcher G, Pechenizkiy M. GRADOOP—source code; 2020. GitHub. https://​github.​com/​dbs-​
leipz​ig/​grado​op. Accessed 24 Apr 2020.

	161.	 Junghanns M, Kießling M, Teichmann N, Gómez K, Petermann A, Rahm E. Declarative and distributed graph ana-
lytics with GRADOOP. PVLDB. 2018;11(12):2006–9. http://​www.​vldb.​org/​pvldb/​vol11/​p2006-​jungh​anns.​pdf.

https://github.com/sky4star/graphlab
https://github.com/sky4star/graphlab
https://github.com/jshun/ligra
https://github.com/snap-stanford/ringo
https://github.com/snap-stanford/ringo
https://github.com/realstolz/polymer
http://arxiv.org/abs/150307241
https://github.com/narayanan2004/GraphMat
https://doi.org/10.1145/3064176.3064191
https://github.com/sslab-gatech/mosaic
https://github.com/sslab-gatech/mosaic
https://github.com/boostorg/graph_parallel
https://github.com/boostorg/graph_parallel
https://people.eecs.berkeley.edu/%7eaydin/CombBLAS/html/index.html
https://people.eecs.berkeley.edu/%7eaydin/CombBLAS/html/index.html
https://github.com/LLNL/HavoqGT
https://github.com/apache/giraph
https://doi.org/10.1145/2983323.2983726
https://doi.org/10.1145/2983323.2983726
https://github.com/MicrosoftResearch/Naiad
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1007/s00778-014-0357-y
https://github.com/apache/flink
https://github.com/vasia/gelly-streaming
https://github.com/vasia/gelly-streaming
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://github.com/apache/spark
https://github.com/otherwise777/Temporal_Graph_library
https://github.com/otherwise777/Temporal_Graph_library
https://github.com/dbs-leipzig/gradoop
https://github.com/dbs-leipzig/gradoop
http://www.vldb.org/pvldb/vol11/p2006-junghanns.pdf

Page 40 of 41Coimbra et al. J Big Data (2021) 8:55

	162.	 Junghanns M, Kießling M, Averbuch A, Petermann A, Rahm E. Cypher-based graph pattern matching in Gradoop.
In: Boncz PA, Larriba-Pey J, editors. Proceedings of the fifth international workshop on graph data-management
experiences & systems, GRADES@SIGMOD/PODS 2017, Chicago, IL, USA, May 14–19, 2017. ACM; 2017. p. 3:1–3:8.
https://​doi.​org/​10.​1145/​30784​47.​30784​50.

	163.	 UC Berkeley, MIT, and Databricks. GraphFrames—source code; 2020. GitHub. https://​github.​com/​graph​frames/​
graph​frames. Accessed 24 Apr 2020.

	164.	 Dave A, Jindal A, Li LE, Xin R, Gonzalez J, Zaharia M. GraphFrames: an integrated API for mixing graph and rela-
tional queries. In: Proceedings of the fourth international workshop on graph data management experiences and
systems; 2016. p. 1–8.

	165.	 Roy A, Mihailovic I, Zwaenepoel W. X-Stream—source code; 2015. GitHub. https://​github.​com/​epfl-​labos/x-​stream.
Accessed 24 Apr 2020.

	166.	 Roy A, Bindschaedler L, Malicevic J, Zwaenepoel W. Chaos—source code; 2016. GitHub. https://​github.​com/​epfl-​
labos/​chaos. Accessed 24 Apr 2020.

	167.	 Chen R, Shi J, Chen Y, Chen H. PowerLyra—source code; 2018. GitHub. https://​github.​com/​Tjcug/​power​lyra.
Accessed 24 Apr 2020.

	168.	 Cheng R, Hong J, Kyrola A, Miao Y, Weng X, Wu M, et al. Kineograph: taking the pulse of a fast-changing and con-
nected world. In: Proceedings of the 7th ACM European conference on computer systems. EuroSys ’12. New York,
NY, USA: ACM; 2012. p. 85–98. https://​doi.​org/​10.​1145/​21688​36.​21688​46.

	169.	 Shi X, Cui B, Shao Y, Tong Y. Tornado: a system for real-time iterative analysis over evolving data. In: Proceedings
of the 2016 international conference on management of data. SIGMOD ’16. New York, NY, USA: ACM; 2016. p.
417–30. https://​doi.​org/​10.​1145/​28829​03.​28829​50.

	170.	 Vora K, Gupta R, Xu G. KickStarter: fast and accurate computations on streaming graphs via trimmed approxima-
tions. In: Proceedings of the twenty-second international conference on architectural support for programming
languages and operating systems. ASPLOS ’17. New York, NY, USA: ACM; 2017. p. 237–51. https://​doi.​org/​10.​1145/​
30376​97.​30377​48.

	171.	 Mariappan M, Vora K. GraphBolt—source code; 2020. GitHub. https://​github.​com/​pdclab/​graph​bolt. Accessed 24
Apr 2020.

	172.	 Mariappan M, Vora K. GraphBolt: dependency-driven synchronous processing of streaming graphs. In: Proceed-
ings of the fourteenth EuroSys conference 2019. EuroSys ’19. New York, NY, USA: ACM; 2019. p. 25:1–25:16. https://​
doi.​org/​10.​1145/​33024​24.​33039​74.

	173.	 Eksombatchai C, Jindal P, Liu JZ, Liu Y, Sharma R, Sugnet C, et al. Pixie: a system for recommending 3+ billion items
to 200+ million users in real-time. In: Proceedings of the 2018 World Wide Web Conference. WWW ’18. Republic
and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee; 2018. p.
1775–84. https://​doi.​org/​10.​1145/​31788​76.​31861​83.

	174.	 Chaudhry HN. FlowGraph: distributed temporal pattern detection over dynamically evolving graphs. In: Proceed-
ings of the 13th ACM international conference on distributed and event-based systems; 2019. p. 272–5.

	175.	 Salihoglu S, Widom J. GPS—source code; 2013. Stanford. https://​subve​rsion.​assem​bla.​com/​svn/​phd-​proje​cts/​gps/​
trunk/. Accessed 24 Apr 2020.

	176.	 Simmhan Y, Kumbhare A, Wickramaarachchi C, Nagarkar S, Ravi S, Raghavendra C, et al. GoFFish: a sub-graph
centric framework for large-scale graph analytics. In: European conference on parallel processing. Springer; 2014.
p. 451–62.

	177.	 Simmhan Y, Kumbhare A, Wickramaarachchi C, Nagarkar S, Ravi S, Raghavendra C, et al. GoFFish—source code;
2017. GitHub. https://​github.​com/​dream-​lab/​goffi​sh_​v3. Accessed 24 Apr 2020.

	178.	 Zhang Y, Liao X, Jin H, Gu L, Zhou BB. FBSGraph: accelerating asynchronous graph processing via forward and
backward sweeping. IEEE Trans Knowl Data Eng. 2017;30(5):895–907.

	179.	 Mayer C, Tariq MA, Mayer R, Rothermel K. GrapH: traffic-aware graph processing. IEEE Trans Parallel Distrib Syst.
2018;29(6):1289–302.

	180.	 Mayer C, Tariq MA, Mayer R, Rothermel K. GraphH—source code; 2016. GitHub. https://​github.​com/​mayer​cn/​
GrapH2.0. Accessed 24 Apr 2020.

	181.	 Dhulipala L, Blelloch G, Shun J. Julienne: a framework for parallel graph algorithms using work-efficient bucketing.
In: Proceedings of the 29th ACM symposium on parallelism in algorithms and architectures; 2017. p. 293–304.

	182.	 Yan D, Huang Y, Liu M, Chen H, Cheng J, Wu H, et al. Graphd: distributed vertex-centric graph processing beyond
the memory limit. IEEE Trans Parallel Distrib Syst. 2017;29(1):99–114.

	183.	 Ko S, Han WS. TurboGraph++ A scalable and fast graph analytics system. In: Proceedings of the 2018 international
conference on management of data; 2018. p. 395–410.

	184.	 Sengupta D, Sundaram N, Zhu X, Willke TL, Young J, Wolf M, et al. GraphIn: an online high performance incremen-
tal graph processing framework. In: European conference on parallel processing. Springer; 2016. p. 319–33.

	185.	 Fu Z, Personick M, Thompson B. MapGraph: a high level API for fast development of high performance graph
analytics on GPUs. In: Proceedings of workshop on GRAph data management experiences and systems; 2014. p.
1–6.

	186.	 Fu Z, Personick M, Thompson B. MapGraph—source code; 2016. GitHub. https://​sourc​eforge.​net/​proje​cts/​mpgra​
ph/. Accessed 24 Apr 2020.

	187.	 Systap. Blazegraph high performance graph database; 2020.. https://​blaze​graph.​com/. Accessed 24 Apr 2020.
	188.	 Khorasani F, Vora K, Gupta R, Bhuyan LN. CuSha: vertex-centric graph processing on GPUs. In: Proceedings of the

23rd international symposium on high-performance parallel and distributed computing; 2014. p. 239–52.
	189.	 Khorasani F, Vora K, Gupta R, Bhuyan LN. CuSha—source code; 2015. GitHub. https://​github.​com/​farkh​or/​CuSha/.

Accessed 24 Apr 2020.
	190.	 Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens JD. Gunrock: a high-performance graph processing library on the

GPU. In: Proceedings of the 21st ACM SIGPLAN symposium on principles and practice of parallel programming;
2016. p. 1–12.

https://doi.org/10.1145/3078447.3078450
https://github.com/graphframes/graphframes
https://github.com/graphframes/graphframes
https://github.com/epfl-labos/x-stream
https://github.com/epfl-labos/chaos
https://github.com/epfl-labos/chaos
https://github.com/Tjcug/powerlyra
https://doi.org/10.1145/2168836.2168846
https://doi.org/10.1145/2882903.2882950
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1145/3037697.3037748
https://github.com/pdclab/graphbolt
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/3178876.3186183
https://subversion.assembla.com/svn/phd-projects/gps/trunk/
https://subversion.assembla.com/svn/phd-projects/gps/trunk/
https://github.com/dream-lab/goffish_v3
https://github.com/mayercn/GrapH2.0
https://github.com/mayercn/GrapH2.0
https://sourceforge.net/projects/mpgraph/
https://sourceforge.net/projects/mpgraph/
https://blazegraph.com/
https://github.com/farkhor/CuSha/

Page 41 of 41Coimbra et al. J Big Data (2021) 8:55 	

	191.	 Wang Y, Pan Y, Davidson A, Wu Y, Yang C, Wang L, et al. Gunrock: GPU graph analytics. ACM Trans Parallel Comput.
2017;4(1):1–49.

	192.	 Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens JD. Gunrock—source code; 2020. GitHub. https://​github.​com/​
gunro​ck/​gunro​ck. Accessed 24 Apr 2020.

	193.	 Jia Z, Kwon Y, Shipman G, McCormick P, Erez M, Aiken A. A distributed multi-gpu system for fast graph processing.
Proc VLDB Endow. 2017;11(3):297–310.

	194.	 Jia Z, Kwon Y, Shipman G, McCormick P, Erez M, Aiken A. Lux—source code; 2018. GitHub. https://​github.​com/​
LuxGr​aph/​Lux. Accessed 24 Apr 2020.

	195.	 Shi X, Luo X, Liang J, Zhao P, Di S, He B, et al. Frog: asynchronous graph processing on GPU with hybrid coloring
model. IEEE Trans Knowl Data Eng. 2017;30(1):29–42.

	196.	 Shi X, Luo X, Liang J, Zhao P, Di S, He B, et al. Frog—source code; 2018. GitHub. https://​github.​com/​CGCL-​codes/​
Frog. Accessed 24 Apr 2020.

	197.	 Dhulipala L, Blelloch GE, Shun J. Low-latency graph streaming using compressed purely-functional trees. In:
Proceedings of the 40th ACM SIGPLAN conference on programming language design and implementation; 2019.
p. 918–34.

	198.	 Dhulipala L, Blelloch GE, Shun J. Aspen—source code; 2020. GitHub. https://​github.​com/​ldhul​ipala/​aspen.
Accessed 24 Apr 2020.

	199.	 Dathathri R, Gill G, Hoang L, Dang HV, Brooks A, Dryden N, et al. Gluon: a communication-optimizing substrate for
distributed heterogeneous graph analytics. In: Proceedings of the 39th ACM SIGPLAN conference on program-
ming language design and implementation; 2018. p. 752–68.

	200.	 Dathathri R, Gill G, Hoang L, Dang HV, Brooks A, Dryden N, et al. Gluon—source code; 2020. GitHub. https://​github.​
com/​Intel​ligen​tSoft​wareS​ystems/​Galois. Accessed 24 Apr 2020.

	201.	 Busato F, Green O, Bombieri N, Bader DA, Hornet: An efficient data structure for dynamic sparse graphs and matri-
ces on GPUs. In: IEEE high performance extreme computing conference (HPEC). IEEE. 2018;2018:1–7.

	202.	 Busato F, Green O, Bombieri N, Bader DA. Hornet—source code; 2020. GitHub. https://​github.​com/​hornet-​gt/​
hornet. Accessed 24 Apr 2020.

	203.	 Winter M, Mlakar D, Zayer R, Seidel HP, Steinberger M. faimGraph: high performance management of fully-
dynamic graphs under tight memory constraints on the GPU. In: SC18: international conference for high perfor-
mance computing, networking, storage and analysis. IEEE; 2018. p. 754–66.

	204.	 Dathathri R, Gill G, Hoang L, Dang HV, Brooks A, Dryden N, et al. faimGraph—source code; 2020. GitHub. https://​
github.​com/​GPUPe​ople/​faimG​raph. Accessed 24 Apr 2020.

	205.	 Chen X. GraphCage: cache aware graph processing on GPUs. arXiv preprint arXiv:​19040​2241. 2019.
	206.	 Shi X, Zheng Z, Zhou Y, Jin H, He L, Liu B, et al. Graph processing on GPUs: a survey. ACM Comput Surv.

2018;50(6):1–35.
	207.	 Zheng D, Mhembere D, Burns R, Vogelstein J, Priebe CE, Szalay AS. FlashGraph: Processing billion-node graphs on

an array of commodity SSDs. In: 13th {USENIX} conference on file and storage technologies ( {FAST} 15); 2015. p.
45–58.

	208.	 Zheng D, Mhembere D, Burns R, Vogelstein J, Priebe CE, Szalay AlS. FlashGraph—source code; 2014. GitHub.
https://​github.​com/​Smeri​ty/​Flash​Graph. Accessed 24 Apr 2020.

	209.	 Matam KK, Koo G, Zha H, Tseng HW, Annavaram M. GraphSSD: graph semantics aware SSD. In: Proceedings of the
46th international symposium on computer architecture; 2019. p. 116–28.

	210.	 Chen C, Yan X, Zhu F, Han J, Yu PS. Graph OLAP: towards online analytical processing on graphs. In: 2008 eighth
IEEE international conference on data mining; 2008. p. 103–12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/gunrock/gunrock
https://github.com/gunrock/gunrock
https://github.com/LuxGraph/Lux
https://github.com/LuxGraph/Lux
https://github.com/CGCL-codes/Frog
https://github.com/CGCL-codes/Frog
https://github.com/ldhulipala/aspen
https://github.com/IntelligentSoftwareSystems/Galois
https://github.com/IntelligentSoftwareSystems/Galois
https://github.com/hornet-gt/hornet
https://github.com/hornet-gt/hornet
https://github.com/GPUPeople/faimGraph
https://github.com/GPUPeople/faimGraph
http://arxiv.org/abs/190402241
https://github.com/Smerity/FlashGraph

	An analysis of the graph processing landscape
	Abstract
	Introduction
	Domains
	Social networks
	World Wide Web
	Telecommunications
	Recommendation systems
	Transports, smart cities and IoT
	Epidemiology

	Motivation
	Single-machine
	Multi-machine
	Document roadmap

	Graph algorithms: natures and types
	Algorithms

	Computational representations
	Graph processing: computational units and models
	Unit: Vertex-Centric (TLAV)
	Model: Superstep Paradigm
	Model: Scatter-Gather
	Model: Gather-Apply-Scatter
	Unit: Edge-Centric (TLEV)
	Unit: Sub-graph-Centric (TLAG)
	Model: MEGA

	Dimension: partitioning
	Edge-Cut (EC)
	Vertex-Cut (VC)
	Hybrid-Cut (HC)
	Stream-based partitioning
	Distributed partitioning
	Dynamic graph partitioning
	Partitioning: summary

	Dimension: Dynamism
	Temporal graphs
	Streaming graph algorithms
	Sketching and dynamic graph streams
	Multi-pass streaming graph algorithms
	Dynamic graph algorithms

	Dimension: workload
	Single-machine and shared-memory parallel approaches
	High-performance computing
	Distributed graph processing systems
	Conclusion
	Acknowledgements
	References

