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Introduction
Along with the growth of data such as image data, meteorological data, particularly doc-
uments, dimensions of these data also increase [1]. According to the studied extensively, 
the accuracy of current machine learning methods generally decreases with high dimen-
sional data that event referred to as the curse of dimensionality. An essential issue with 
machine learning techniques is the high-dimensionality problem of a dataset where the 
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feature subset size much greater than pattern size. For example, in the medical applica-
tions that include very high-dimensional datasets, the classification parameters are also 
increased. Therefore, the performance of the classifier declines significantly [2–4].

For preventing the curse of dimensionality, some dimension (feature) reduction tech-
niques are used [5–7]. Traditional techniques to reduce the dimensions are divided into 
two main categories: feature extraction and feature selection [8]. In the first approach, 
instead of the original features, secondary features with low dimensions are extracted. 
That means that a high dimensional space is transferred to low dimensional space. How-
ever, the second approach includes four sub-categories that include filter method, wrap-
per method, hybrid methods, and embedded methods [9, 10]. The subset of features in 
the pre-processing step is selected in filter methods independent of any learner method 
[11]. In contrast, Wrapper methods apply a learner method to investigate the subsets of 
features based on their predictive power. Dealing with extensive data and side informa-
tion, each of these methods has advantages and disadvantages regarding the time being 
used, consistency with data, efficiency, and accuracy.

The feature selection approaches are divided into three main groups: supervised, 
unsupervised and semi supervised [7]. In the supervised method, the label of dataset 
exists, based on which the evaluation and selection of suitable features are made. That 
is, while in unsupervised type, the classes of the label are not available, and evaluating 
and selecting are done based on the ability to meet some of the properties of the data 
set, including the locality preserving ability and/or variance. Since in most datasets, 
label or side information is available in small quantities, and obtaining these labels is 
costly, semi-supervised or constrained methods are used. The semi-supervised feature 
selection method uses data with labels and unlabeled; in contrast, the other choice of 
semi-supervised method is the pairwise constraint. In this method, not all data sets have 
labels, but there is side information like a pairwise constraint [12, 13].

A pairwise constraint is a pair of data belonging to the different clusters (cannot-link) 
or the same cluster (must-link) [14]. In fact, in the real world, in case of lack of label, the 
best possible information to select the feature is pairwise constraints. Overall, obtain-
ing label is too costly, and in many cases, these constraints inherently exist. In the case 
of the existence of labels, one can turn this type of data set into pairwise constraint (by 
transitive closure and vice versa), which is one of the advantages of working on the pair-
wise constraint [15]. Because of the importance of pairwise constraint and inherent and 
low-cost nature of this pairwise constraint, many studies have been conducted such as 
the development of constrained algorithms to consider the pairwise constraint in the 
process of the machine learning task, active learning algorithms to obtain the best and 
most valuable pair to increase the accuracy, the transformation of the objective func-
tions in the machine learning task, and the like. One of the studies that have rarely been 
done in the field of feature selection on the basis of the pairwise constraint. The purpose 
of this method is to reduce the dimension size by considering the pairwise constraint so 
that the constraint algorithm has the best results, accuracy, and efficiency. Most of the 
methods available in this field are improvements to previous similar methods (usually 
unsupervised feature selection).

In the present paper, a novel pairwise constraints-based method is proposed for fea-
ture selection and reduce dimensions. Our method is complementary to previous 
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methods. In this study, in addition to the constraints, the quality of the constraints is 
also used. The quality of the pair of constraints is the power of the relationship between 
two pairs of data or vice versa (uncertainty). In the proposed method, in the first, the 
similarity between the pair constraints is calculated. Then an uncertainty region is cre-
ated based on it. The uncertainty region and its coefficient are used to indicate the power 
and quality of the pair of constraints. These coefficients are then ensemble with a previ-
ous basic method, then in an iterative process are selected most informative pairs. There 
was a considerable improvement by comparing the proposed method with the previous 
methods. It might be argued that the proposed method has reduced the computational 
complexity of the machine learning algorithm despite increasing the classification accu-
racy. On the other, the number of final selected features imposes another challenge on 
feature selection methods. In other words, the number of relevant and non-redundant 
features is unknown; thus, the optimal number of selected features is not known either. 
In this proposed method, unlike many previous works, the optimal number of selected 
features is determined automatically based on the overall structure of the original fea-
tures and their inner similarities.

The rest of this paper is organized as follows. “Related work” section summarizes 
related works to feature selection. “Proposed methodology” section introduces some 
preliminaries of this work, and our proposed method (PCFS) in details. The results of 
simulation and experimental analysis are illustrated in “Experimental analysis” section. 
The conclusion is given in “Conclusion” section.

Related work
The dimensionality reduction techniques are mostly divided into two categories: feature 
extraction and feature selection [16–18]. In the feature extraction methods, the data is 
transformed from the original space into a new space with fewer dimensions. On the 
contrary, the size of the dataset is directly reduced by the feature selection methods by 
picking a subset of relevant and non-redundant features and retaining adequate infor-
mation for the learning task [19]. The objective of the feature selection methods is seek-
ing the related features with the most predictive information from the original feature 
set [20]. The feature selection was determined to be an essential technique in many prac-
tical applications, including text processing [21–23], face recognition [24–26], image 
retrieval [27, 28], medical diagnosis [29], case-based reasoning [30] and bioinformatics 
[31]. One of the basic research subjects in pattern recognition is feature selection, with 
a long history started in the 1970s. Also, many attempts have been made to review the 
feature selection approaches [2–4].

Following the availability of the class labels of training data, the feature selection 
methods can be roughly divided into three categories: supervised feature selection, 
unsupervised feature selection, and semi-supervised feature selection [2, 29, 32]. In 
the supervised approaches, training samples are characterized by the vector of feature 
values with class labels, which are applied to direct the search process to associated 
information; however, in the unsupervised feature selection, the feature vectors value 
are described without class labels [33]. Since the labeled information is used, the super-
vised feature selection methods often show better performance compared to unsuper-
vised and semi-supervised techniques [34]. In a large number of real-world applications, 
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collecting the labeled patterns will be hard, and there are abundant unlabeled data and 
small labeled patterns. In order to handle this ‘incomplete supervision,’ semi-supervised 
(pairwise constraint) feature selection methods were developed, which use both unla-
beled and labeled data for the machine learning task. In the semi-supervised feature 
selection methods, the local structure of both labeled and unlabeled data or the label 
information of labeled data and data distribution is used for the purpose of selecting 
final related and non-redundant features. In semi-supervised learning, part of the data 
is labeled and part of it is unlabeled. Consequently, the interesting topic of feature selec-
tion for semi-supervised feature selection is a more complex problem, and researching 
this area is recently attracting more interest in many communities. Sheikhpour et al. [35] 
provides a survey of feature selection methods. In this study, semi-supervised feature 
selection approaches are surveyed and taxonomies of these methods are introduced 
based on two different aspects. In [36] a novel Graph-based Semi-Supervised Sparse 
Feature Selection method is developed based on the mixed convex and non-convex 
minimization. The reported results of this method showed that the method selects the 
non-redundant and optimal subset of features and improves the performance of the 
machine learning task. In [37] a semi-supervised feature selection method is presented 
that integrates the neighborhood discriminant index and the Laplacian score method to 
efficiently work with both unlabeled and labeled data. The aim of this method is to find 
a set of relevant features that has a good ability to hold local geometrical structure and 
to identify samples belonging to different classes. Moreover, in [38] a semi-supervised 
feature selection method is developed for bipolar disorder. In this method, a novel semi-
supervised technique is utilized to reduce the dimension of high-dimensional data. Also, 
Liu et al. [39] proposed Rough set based semi-supervised feature selection method. In 
this method, the unlabeled data can be predicted via various semi-supervised learning 
methods and the Local Neighborhood Decision Error Rate is developed to create multi-
ple fitness functions to evaluate the relevance of the generated feature sets.

Feature selection methods might be divided into four categories: filter, wrapper, 
embedded, and hybrid approaches [40, 41]. In the filter-based methods, every single fea-
ture is ranked with no consideration of learning algorithms on the basis of its discrimi-
nating power among various classes. The statistical analysis of the feature set is required 
in the filter approach to select the final feature set [42, 43]. On the contrary, a learn-
ing algorithm is applied in the wrapper-based feature selection methods to assess the 
quality of feature subsets in the search space iteratively [44, 45]. The wrapper approach 
needs a high computational cost for high-dimensional datasets since every single sub-
set is investigated by a specified learning model. In the embedded model, it is consid-
ered that the model building process includes the feature selection procedure as a part of 
it, in which both redundant and irrelevant features can be handled; as a result, training 
learning algorithms with a considerable number of features will take a great deal of time. 
On the other hand, the purpose of the hybrid-based approaches is employing the proper 
performance of the wrapper model and the computational efficiency of the filter model. 
However, the accuracy issue may be challenging in the hybrid model since the filter and 
wrapper models are taken into account as two separate steps [46].

Term Variance (TV) [47], Laplacian Score for feature selection (LS) [48], Relevance-
Redundancy Feature Selection (RRFS) [49], Unsupervised Feature Selection based on 



Page 5 of 21Rostami et al. J Big Data            (2020) 7:83 	

Ant Colony Optimization (UFSACO) [50] are some existing filter-based unsupervised 
feature selection methods. Furthermore, a clustering algorithm is used in the unsuper-
vised wrapper feature selection methods to investigate the quality of picked features. On 
the one hand, the higher computational complexity in learning is considered as the major 
disadvantage of these approaches, which is because of the application of specified learn-
ing algorithms. Also, the inefficiency of them on the datasets with many features has 
been shown. On the contrary, the statistical analysis of the feature set is required by the 
unsupervised filter method only for solving the feature selection task without employing 
any learning models. A feature selection method may be investigated in accordance with 
effectiveness and efficiency. Although the time needed to discover a subset of features is 
important for the efficiency, the effectiveness is associated with the quality of the subset 
of features. These issues are in disagreement with each other: in general, one is reduced 
by improving the other. Alternatively stated, the computational time is advantageous 
in the filter-based feature selection methods, and they are typically faster, although the 
quality of selected features is considered in the unsupervised wrapper methods.

Recently, the graph-based methods, including graph theory [51–53], spectral embed-
ding [54], spectral clustering [55], and semi-supervised learning [56], have contributed 
significantly to feature selection because of their capability of encoding similarity rela-
tionships among the features. Recently, many graph-based unsupervised and semi-
supervised feature selection methods are presented to extract the relationships among 
the features. For example, a spectral semi-supervised feature selection criterion called 
the s-Laplacian score was presented by Cheng et al. [57]. According to this criterion, a 
Graph-based Semi-Supervised Feature Selection method called GSFS was proposed. In 
this method, in order to select relevant features as well as to remove redundant features, 
the conditional mutual information and spectral graph theory are employed. Moreover, 
in [58], the authors designed a graph-theoretic method for non-redundant unsupervised 
feature selection. In this method, the feature selection tasks as the densest subgraph 
finding from a weighted graph. In [59], a dense subgraph finding method is selected for 
the unsupervised feature selection problem. In this paper, a novel normalized mutual 
information is used to calculate the similarity among two features.

Proposed methodology
The detail of the proposed method will be explained in this section. First, the general 
concepts related to the proposed method will be expressed, and then the details of the 
proposed semi-supervised feature selection method are introduced.

Background and notation

Let us review some definitions and concepts, which are the foundations of the proposed 
algorithm, before getting to the algorithm.

Neighborhoods and pairwise constraint

Laplacian ranking is the basis for the unsupervised method, including the selection of 
features with pairwise constraints, and in this method, the strongest feature in terms 
of the ability for preserving local is selected. The main key in assumptions in Laplacian 
feature selection is on the basis that the data belonging to the same class are closing 
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together and more similar. Laplacian ranking of the rth feature of Lr that should be a 
minimum is expressed by Eq. (1):

which Sij can be expressed based on the relationship between the neighborhood and 
each data, and t is a fixed value that is initialized and neighborhood means that xi via the 
K of the nearest neighborhood reaches xj and neighborhoods can have various concepts 
such as the similarity of data to each other. Rankings expressed are unsupervised and use 
no other information except for the data set. This article uses concepts such as Laplacian 
ranking and neighborhood, and on the assump.ion that pairwise constraint exists as ML 
(Must-link) and CL (Cannot-link), it attempts to select and rank appropriate features. 
So, all ML and CL set with datasets are prepared. Then, using Eq. (2), it is attempted to 
rank features. It should be noted that with the use of concepts of the neighborhood.

In where, C1
r  and C2

r  represent two types of rankings based on the pairwise constraint. 
In fact, features are selected that have the best ability to protect constraints. If there are 
two samples are in the ML set so the relevant feature means that the feature values are 
close together. If the two samples are in the CL set, relevant feature means that features 
values are far apart. In the follow.ng, for each feature, two types of ranking are calculated 
and from the maximum value, two rankings, feature selection is done.

In general, if 
{

xi, xj , xk
}

 is the three data of the data set, then each pair’s relationship is 
expressed as {ML,CL} , and the clustering label is expressed with lab, then relations and 
Eq.  (3) must be established. By closure of pairwise constraints, neighborhoods can be 
formed.

(3)

Neighborhoods are a set of a neighborhood whose number is usually smaller or equal 
to the number of clusters defined in the algorithm. Each neighborhood includes several 
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sample data that must be in the same cluster together. The basic premise in that neigh-
borhood is that different data in different clusters should be placed in different neigh-
borhoods, and no two Neighborhoods should be found where data exists as the same 
cluster.

Measuring the uncertainty of constraints

In the real world, constraints arise from domain knowledge or expert knowledge. Pair-
wise constraints have weak relationships, and strangeness (uncertainty) of the relations 
is variable. Hence, it is needed to create an uncertainty region. By finding the region, it is 
easy to have an impact on our ranking and see better results in reduced dimensions. In 
order to do this, the authors use the thresholding histogram method. This method actu-
ally used the classifying method with two classes, and its purpose is to reduce ambiguity 
in the range of values. First, the similarity values of each pair Sen matrix are collected, 
and then these values are divided into intervals, and the average of each interval is deter-
mined as ( Di ). In the next step, for each interval, the number of pairs in this range is 
counted as the g ( Di ). So, from these values, a weighted moving average with five win-
dows, f ( Di ), is calculated by Eq (4). The authors start from the beginning of the intervals 
and find the first valley points in the modified histogram f (Dv) . Finally, the uncertainty 
region is calculated.

Step 1:

Step 2: find the first valley points subject to:

Step 3: find the boundary of the uncertainty region:

Step 4: find the pairs in similarity matrix that h.ve uncertainty relationship:

Weights of the terms obtained

Given that each feature has a certain weight and importance, and not all features may 
be required for the machine learning task, so in the first step it is necessary to deter-
mine the weight of each feature. For this purpose, Laplacian Score (LS) is used. LS is an 
unsupervised univariate filtering method which is based on the observation that if a data 
point is close to each other; it may belong to the same class. The basic idea of LS is to 
evaluate the feature relevance according to its power of locality preserving. The LS for 
the feature A is determined using Eq. (8):

(4)

f (Di) =
g(Di)

∑z−1
e=1 g(De)

×
g(Di−2)+ g(Di−1)+ g(Di)+ g(Di+1)+ g(Di+2)

5
, ∀i = 2, 3, . . . ., z−3

(5)f (Dv−1) > f (Dv) and f (Dv) < f (Dv+1)

(6)md = Dvandmc = max(Di)−md

(7)SimilarityMatrixSenij :

{

md ≤ ifSenij ≤ mc : uncertainity region

else : strong region
∀i, j
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where, A(i) represents the value of the feature A in the i-th a pattern, Ā denotes the 
average of the feature A, D is a diagonal matrix that Dii =

∑

j Sij , and Sij represents the 
neighborhood relation between patterns, calculated as Eq. (9):

where, t is a suitable constant, xi represents i-th pattern, and xi and xj are neighbors if xi 
is among k nearest neighbors of xj or xj is among k nearest neighbors of xi.

The proposed PCFS algorithm

In this section, a novel Pairwise Constraint Feature Selection method (PCFS) is pro-
posed. This method uses pck-mean which is one of the soft constraints clustering algo-
rithms with small and effective changes. The proposed method has been able to use both 
standard objective function and a penalty for the violation of constraints, with changing 
the objective function. These two sections together constitute the objective function and 
are locally minimized. The proposed method, named-Dim-reduce() function, is affected 

by the current clustering and vice versa.
Briefly, the data set are embedded as a data-term matrix, and then other variables val-

ues are initialized. The whole of the procedure is repeated in a loop until the clusters 
not changed (or with the predefined number of the loop). In each iteration, given the 
current clustering and set of constraints ML and CL, Dim-reduce() performs to produce 
a reduced feature (line 2). After this, neighborhoods are formed from the closure of pair-
wise constraints, and then the center of pairwise constraints of each neighborhood is 
calculated. If a neighborhood does not have any data, randomly a data, it should not 
be a member of other neighborhoods, is as the center of that cluster. Finally, centers of 
clusters are initialized by the center of neighborhoods (lines 3–6). For assigning clusters 

(8)LS(S,A) =

∑

i,j (A(i)− A(j))Sij
∑

i (A(i)− Ā)Dii

(9)Sij =

{

e
xi−xj

t , ifxi and xj are neighbors

0, otherwise
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and estimating (updating) center of clusters, section A and B is performed (8–9). These 
two sections are repeated until convergence, as pck-means. After convergence, the pro-
cedure is repeated until meet stop conditions. Dim-reduce() function is the core of PCFS 
that is summarized in Algorithm 2. In this method, in addition to the usual input in fea-

ture selection, pairwise constraints arise as input.
There are two main functions in this algorithm that respectively, Sen-func() in algo-

rithm  3 and Str-unc() in algorithm  4 are expressed. The first function extracts the 
matrix of similarities between data pairs, and then in the second function, the uncer-
tainty region and strength of the relationship is calculated for each pair. After calculating 
the two functions within an iterative process, the authors rank the features by Eq. (10). 
Finally, Repeat will continue until the selected features are changed.

In which, Strij indicates the quality (power) of the relationship between each data pairs, 
and each element in the matrix are calculated through the uncertainty region. For the 
ranking of features, this formula assumes that if the power of pairs (in the set of pairwise 
constraints) is low, the authors mostly use similarity matrix; otherwise, (in case of reli-
ability and high strength of the relationship of pairwise), Minkowski distance is used. 
In fact, using this method, strength and quality are added to the formula, and thereby 
better results can be obtained. The summarization of calculating the similarity matrix 
is possible in algorithm 3. First, the authors assigned clusters as labels of data set (lines 
3–6). Then the classification model is performed on the dataset with produced labels 
from clustering (line 8). In the iterative process, a similarity matrix based on anticipated 
labels (from the classification model) is created. During different iterations, this similar-
ity matrix is updated and normalized.

(10)Cb =

∑

(xi ,xj)∈ML

(

fbi − fbj
)2

× Strij +
(1−Senij)

∑

(xk ,xz)∈ML
(1−Senkz)

×
(

1− Strij
)

∑

(xi ,xj)∈CL

(

fbi − fbj
)2

× Strij +
(1−Senij)

∑

(xk ,xz)∈cL
(1−Senkz)

× (1− Strij)
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Finally, the Matrix calculation of strength, Str and the uncertainty region as algorithm 4 
is summarized. After finding the uncertainty region (line 3), it is time to calculate Str 
matrix. For data pairs that are in the uncertainty region, the relative strength of them is 
equal to β, and outside of this range, it is 1–β. This β parameter was chosen after several 
preliminary runs, and this the value of β is empirically considered as 0.3.

Experimental analysis
To investigate the performance of the proposed method (i.e., PCFS), several extensive 
experiments are performed. The obtained results are compared with six state-of-the-art 
and well-known methods such as LS [48], GCNC [60], FGUFS [61], FS [62], FAST [63], 
FJMI [64], LS [48], PCA [65] and the description of this method is described below.

LS (Laplacian Score): this is a graph-based feature selection method that works in 
unsupervised mode. This method models the data space into a graph, and probably 
belong to the same class based on the idea of whether two data points are near to each 
other.

GCNC (Graph Clustering with the Node Centrality): GCNC is a feature selection 
method, in which the concept of graph clustering is integrated with the node centrality. 
This approach can handle both redundant and irrelevant features.

FGUFS (Factor Graph Model for Unsupervised Feature Selection): The similarities 
between features are explicitly measured in this method. These similarities are passed to 
each other as messages in the graph model. The message-passing algorithm is applied to 
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calculate the importance score of each feature, and then the selection of features is per-
formed on the basis of the final importance scores.

FS (Fisher Score): This method is a univariate filter method that scores features such 
that based on that feature, the distance between the samples from the same class is 
short, and the distance between the samples from different classes is long. Therefore, 
this criterion gives higher ratings to features that have such a separation property.

FAST (Fast clustering-based feature selection method): In this method, the graph-theo-
retic clustering methods are used to divide the features into clusters. Then the most rep-
resentative feature that is significantly associated with target classes is picked from each 
cluster to develop a subset of features.

FJMI (Five-way Joint Mutual Information): In this paper, a feature selection method is 
proposed, in which a two-through five-way interaction between features and the class 
label is considered.

PCA (principal component analysis): PCA is a linear transformation-based multivari-
ate analytical dimensionality reduction algorithm. PCA is often utilized to extract sig-
nificant information from the high dimensional dataset.

The results are reported in terms of two measures, including the classification accu-
racy (ACC) and the number of selected features. ACC is defined as follow:

where TP, TN, FP, and FN stand for the number of true positives, true negatives, false 
positives, and false negatives, respectively.

Datasets

In the present study, a large number of datasets with different properties are applied 
in the experiments to demonstrate the robustness and effectiveness of the proposed 
approach. SPECTF, SpamBase, Sonar, Arrhythmia, Madelon, Isolet, Multiple Features, 
and Colon has taken from the UCI repository are included in these datasets [66] and 
have been extensively used in the literature. Table 1 presents the basic characteristics of 
these datasets. The datasets have been chosen in such a way that they consider several 
characteristics, including the number of different classes, the number of features, and 

(11)ACC =
TP + TN

TP + TN + FP + FN

Table 1  Characteristics of the used datasets

Dataset Features Classes Patterns

SPECTF 44 2 80

SpamBase 57 2 4601

Sonar 60 2 208

Arrhythmia 279 16 351

Madelon 500 2 4400

Isolet 617 26 6238

Multiple Features 649 10 2000

Colon 2000 2 62
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the number of samples. For instance, Colon is a significantly high dimensional dataset 
with a small sample size; however, SpamBase is the example of a low dimensional with a 
large sample size dataset. Again, Isolet is a multi-class dataset that has 26 different kinds 
of classes. In these experiments, the generations of pairwise constraints are simulated 
as the following: The pairs of samples from the training data and created cannot-link 
or must-link constraints are randomly selected on the basis of whether the underlying 
classes of the two samples are similar or dissimilar.

Some of these datasets contain features that take a wide range of values. Note that fea-
tures with small values will be dominated by those features with large values. The nor-
malization of datasets is performed to tackle this issue. The primary reason for selecting 
this normalization method is that the information related to standard deviation can 
be partially preserved by the other methods; however, the topological structure of the 
datasets is retained by the max–min normalization in many cases. For each dataset, the 
results are achieved over ten independent runs to obtain relatively more stable and accu-
rate approximations. In every single run, each dataset is firs normalized and is randomly 
split into a test set (1/3 of the dataset) and a training set (2/3 of the dataset). The test set 
is applied for evaluating the selected features, while the training set is applied to pick the 
final feature subset. A number of these datasets include features with missing values; 
thus, every single missing value was replaced with the mean of the available data on the 
respective feature to handle these kinds of data in the experiments.

Classifiers used in the experiments

In order to demonstrate the generality of the proposed method, several well-known clas-
sical classifiers such as Support Vector Machine (SVM), Decision Tree (DT), and Naïve 
Bayes (NB) were employed to test the classification prediction capability of the selected 
features. SVM is a learning machine which is generally used for the classification prob-
lem. SVM was presented by Vapnik and became very popular over the past 10  years. 
The maximization of a margin between data samples is the purpose of SVM. NB is a 
family of simple probabilistic classifiers on the basis of using Bayes theorem with strong 
(naive) independence assumptions between the features. In simple terms, it is assumed 
in a Naïve Bayes classifier that in terms of the target class, the features are conditionally 
independent of each other. Decision Tree (DT) is considered as one of the most suc-
cessful methods for the classification problem. The tree is created by training samples, 
and a rule is represented by each path from the root to a leaf, which gives a classification 
of the pattern. The normalized information gain is examined in this classifier to make 
decisions.

Moreover, Weka (Waikato Environment for knowledge analysis) is the experimen-
tal workbench [67], which is a collection of machine learning algorithms for mostly 
data mining tasks. In this work, SMO, AdaBoostM1, and Naïve Bayes as the WEKA 
implementation of SVM, NB, and AB have been applied. WEKA can be considered an 
advanced tool for machine learning and data mining. This free software can be used 
under the GNU General Public License. The software includes a set of “visualization” 
tools, data analysis methods and forecasting models that are put together in a graphical 
interface so that the user has the best way to execute commands. For this purpose, first 
the selected feature subset is determined by each feature selection method and then each 
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selected subset is sent to Weka tool for evaluation. Moreover, the used parameters of the 
mentioned classifiers have been set to the default values of the WEKA software. The pro-
posed method involves several parameters that must be set before starting the method. 
The appropriate values for some of these parameters are chosen as trial and error after a 
number of primary runs so they do not mean the best value for these parameters. More-
over, in all of these experiments, the values used in each of the compared methods were 
used to adjust the parameters.

Experimental result and discussion

In the experiments, the number of selected features and the classification accuracy is 
used as the performance measures, and first, the performance of the proposed method is 
investigated over different classifiers. The summary of average classification accuracy (in 
%) over ten independent runs of the different feature selection methods using SVM, NB, 
and DT classifier is listed in Table 2. Each entry of these tables denotes the mean value 
and also standard deviation (indicated in parenthesis) of 10 independent runs. The best 
mean values of average percentage accuracy are marked in italicface. Table 2 reveals that 
in most case, the proposed method performs better compared to other feature selection 
methods.

Moreover, Figs.  1, 2, 3 show the average classification accuracy over all datasets on 
the SVM, Naive Bayes, and Decision Tree classifiers, respectively. As can be seen in 
these figures, on SVM and Naive Bayes classifiers, the proposed method had the highest 
average classification accuracy, and on the Decision Tree classifier, FJUFS method won 
the highest rank. The results of Fig. 1 show that the proposed method obtained 82.87% 
average classification accuracy and achieved the first rank with a margin of 1.95 percent 
compared to the FJMI method, which obtained the second-best average classification 
accuracy. Moreover, from the Fig. 2 results, it can be seen that the differences between 
the obtained classification accuracy of the proposed method and the second-best ones 
(FJMI) and third-best ones (FGUFS) on Naive Bayes classifier were reported 1.17 (i.e., 
80.38–79.21) and 3.07 (i.e., 80.38–77.31) percent. Furthermore, on the Decision Tree 
classifier, FGUFS method feature selection method gained the first rank with an average 
classification accuracy of 79.66%, and the proposed PCFS method was ranked second 
with an average classification accuracy of 79.02%.

Also, Tables 3, 4, 5 show the number of times the best results are achieved by differ-
ent feature selection methods in ten independent run on SVM, NB and DT classifiers, 
respectively. It can be seen from Table 3, 4, 5 results that in most cases, the proposed 
methods obtained the highest rate compared to those of other methods in ten independ-
ent run with different classifiers.

Table 6 records the average number of selected features of the seven feature selection 
methods in the ten independent runs for each dataset. It can be observed that, in gen-
eral, a significant reduction of dimensionality is achieved by all the different methods by 
picking only a small portion of the original features. Overall, the proposed method the 
minimum number of selected features of 40.3 features. While this value for LS, GCNC, 
FGUFS, FS, FAST, FJMI, and PCA equal to 40.7, 41.2, 46.5, 47.0, 46.2, 46.6, and 44.4 
respectively.
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Table 2  Performance comparison of different feature selection methods on eight datasets

Dataset Method Evaluation criteria

SVM NB DT

SPECTF LS 75.87(1.78) 76.79(1.84) 76.88(1.19)

GCNC 77.32(0.35) 78.18(1.05) 77.07(1.92)

FGUFS 78.68(0.83) 78.19(2.15) 76.23(2.08)

FS 77.83(2.32) 73.83(0.92) 69.25(1.78)

FAST 78.91(1.24) 76.78(0.25) 73.18(1.60)

FJMI 79.08(2.18) 78.29(1.45) 74.22(2.43)

PCA 75.56(1.98) 75.72(1.83) 77.81(1.71)

PCFS 79.41(0.92) 78.10(0.31) 78.94(1.04)

SpamBase LS 85.69(0.17) 75.63(0.12) 75.71(1.15)

GCNC 88.27(1.19) 88.11(0.75) 88.96(1.09)

FGUFS 88.63(1.16) 87.71(2.37) 86.71(1.35)

FS 86.23(0.08) 86.42(3.89) 86.49(2.81)

FAST 87.47(1.87) 80.50(4.14) 88.88(1.93)

FJMI 86.89(3.21) 86.97(3.44) 87.35(2.36)

PCA 87.17(1.13) 84.12(0.75) 83.66(1.11)

PCFS 90.06(1.28) 90.76(2.34) 88.46(1.63)

Sonar LS 79.21(1.38) 69.42(0.94) 79.09(1.94)

GCNC 82.33(2.52) 74.36(2.48) 78.72(1.65)

FGUFS 80.34(1.34) 75.73(1.84) 79.96(1.42)

FS 73.81(1.89) 73.31(3.06) 73.76(0.54)

FAST 75.95(0.98) 72.52(1.51) 73.24(2.73)

FJMI 77.31(0.66) 75.96(1.16) 78.68(1.83)

PCA 77.20(1.38) 68.42(2.31) 79.35(1.84)

PCFS 81.81(2.09) 77.28(1.88) 80.89(2.42)

Arrhythmia LS 56.78(2.34) 56.36(3.24) 57.49(3.24)

GCNC 58.18(1.28) 59.04(2.30) 58.99(2.43)

FGUFS 59.37(1.26) 59.37(1.67) 57.81(2.12)

FS 52.89(0.25) 59.34(4.81) 54.15(2.68)

FAST 57.74(3.56) 52.72(4.33) 57.33(1.24)

FJMI 59.09(1.84) 58.74(3.22) 59.56(3.16)

PCA 56.72(2.67) 55.31(3.54) 57.40(3.92)

PCFS 61.61(2.34) 58.28(0.25) 59.34(2.76)

Madelon LS 65.76(1.27) 61.88(2.80) 64.48(2.28)

GCNC 66.56(1.38) 62.68(2.32) 63.68(2.48)

FGUFS 67.78(2.15) 63.55(1.76) 65.79(2.13)

mRMR 76.82(1.81) 73.15(2.14) 71.38(2.14)

FAST 71.43(1.24) 73.35(2.48) 70.91(1.94)

FJMI 77.12(3.02) 72.28(1.12) 71.44(2.54)

PCA 66.72(1.47) 62.58(2.66) 67.18(2.32)

PCFS 78.76(1.67) 76.24(3.08) 64.82(1.92)

Isolet LS 83.78(1.08) 83.61(1.22) 82.72(2.42)

GCNC 88.58(2.29) 82.78(2.42) 81.29(3.39)

FGUFS 91.74(3.08) 86.66(1.82) 84.44(2.56)

FS 87.95(2.21) 75.41(0.27) 75.58(1.31)

FAST 84.28(2.48) 81.25(0.78) 80.49(3.16)

FJMI 91.16(1.48) 88.92(1.92) 81.08(2.88)

PCA 64.71(1.83) 61.81(2.89) 63.48(2.21)

PCFS 93.55(2.75) 87.06(1.39) 87.55(1.80)
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Table 2  (continued)

Dataset Method Evaluation criteria

SVM NB DT

Multiple features LS 91.36(0.13) 91.43(0.12) 90.62(0.12)

GCNC 91.81(2.26) 88.78(1.02) 92.55(0.54)

FGUFS 92.21(1.24) 89.93(1.35) 92.79(2.38)

FS 94.78(0.11) 92.32(1.42) 92.15(1.20)

FAST 94.91(1.91) 92.48(1.95) 92.59(2.67)

FJMI 95.82(0.64) 93.28(3.14) 93.04(2.05)

PCA 92.29(1.64) 89.82(1.98) 91.78(2.42)

PCFS 94.87(0.25) 94.90(2.68) 93.14(2.45)

Colon LS 74.10(1.18) 73.82(1.67) 76.03(2.48)

GCNC 75.17(1.76) 76.53(1.21) 76.47(3.38)

FGUFS 78.23(2.23) 75.91(2.34) 77.96(1.22)

FS 72.31(3.92) 69.15(2.26) 72.61(2.21)

FAST 74.11(1.71) 73.26(3.52) 71.83(1.65)

FJMI 82.37(4.04) 76.58(2.09) 81.48(1.72)

PCA 76.12(1.54) 76.43(1.51) 76.42(2.12)

PCFS 83.19(2.32) 79.24(3.01) 81.92 (1.33)

70

72

74

76

78

80

82

84

LS GCNC FGUFS FS FAST FJMI PCA PCFSA
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(in
 %

)

Different Feature Selection Methods
Fig. 1  Average classification accuracy over all datasets on the SVM classifier
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Fig. 2  Average classification accuracy over all datasets on the Naive Bayes classifier
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Also, the comparison of the accuracy of the proposed method with the other feature 
selection methods according to the various numbers of selected features is performed 
by conducting several experiments. The classification accuracy (average over ten inde-
pendent runs) curves of SVM and DT classifiers on multiple features and colon datasets 
are respectively plotted in Figs. 4 and 5. The results of this table indicated that the pro-
posed method, in most cases, is superior to other methods and has highest classification 
accuracy.
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Fig. 3  Average classification accuracy over all datasets on the Decision Tree classifier

Table 3  Number of times different methods achieve the best results with SVM classifier

Dataset LS GCNC FGUFS FS FAST FJMI PCA PCFS

SPECTF 0 1 1 0 0 2 0 6

SpamBase 0 2 0 0 1 1 0 6

Sonar 0 1 0 0 0 1 1 7

Arrhythmia 0 1 1 0 0 0 0 8

Madelon 0 1 0 1 1 1 0 6

Isolet 0 1 1 0 2 1 0 5

Multiple Features 0 1 1 1 1 1 0 5

Colon 0 1 1 0 1 1 1 5

Average 0 1.12 0.62 0.25 0.75 1 0.25 6

Table 4  Number of times different methods achieve the best results with NB classifier

Dataset LS GCNC FGUFS FS FAST FJMI PCA PCFS

SPECTF 1 1 1 0 0 2 0 5

SpamBase 0 1 0 1 1 1 0 6

Sonar 0 1 0 0 1 0 1 7

Arrhythmia 0 1 1 0 0 1 0 7

Madelon 0 1 1 0 1 1 0 6

Isolet 0 1 1 1 1 1 0 5

Multiple features 0 2 1 1 1 1 0 4

Colon 0 1 0 0 0 2 1 6

Average 0.12 1.12 0.62 0.37 0.62 1.12 0.25 5.75
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Furthermore, a large number of experiments were performed to compare the execu-
tion time of the proposed method and other supervised and unsupervised feature 
selection methods. In these experiments, related execution times (in ms) for different 
methods are reported in Table 7. It can be concluded from the results reported in this 

Table 5  Number of times different methods achieve the best results with DT classifier

Dataset LS GCNC FGUFS FS FAST FJMI PCA PCFS

SPECTF 1 1 1 0 0 2 1 4

SpamBase 0 1 0 1 1 0 0 7

Sonar 0 1 0 0 1 1 1 6

Arrhythmia 0 1 1 0 1 1 0 6

Madelon 0 1 1 0 1 0 1 6

Isolet 0 1 0 0 1 1 1 6

Multiple Features 0 2 0 1 1 1 0 5

Colon 0 1 0 1 0 1 1 6

Average 0.12 1.12 0.37 0.37 0.75 0.87 0.62 5.75

Table 6  Average number of selected features in ten independent run

Data Set PCFS LS GCNC FGUFS FS FAST FJMI PCA

SPECTF 18.8 19.3 17.2 18.7 18.6 19.2 19.3 21.4

SpamBase 26.2 29.4 27.5 31.5 31.7 30.5 30.1 22.1

Sonar 16.8 18.2 17.4 23.4 21.5 21.7 22.6 18.2

Arrhythmia 19.2 18.7 18.3 20.3 21.5 21.6 21.7 22.8

Madelon 55.8 54.7 57.7 61.2 61.6 60.8 61.5 58.2

Isolet 73.4 71.8 72.8 81.3 83.4 80.2 81.5 79.1

Multiple Features 72.5 73.2 75.5 84.7 86.8 85.1 85.8 85.7

Colon 40.4 41.0 43.6 51.5 51.2 50.7 50.9 48.1

Average 40.3 40.7 41.2 46.5 47.0 46.2 46.6 44.4
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Fig. 4  Classification accuracy (average over 10 runs), on multiple features dataset with respect to the 
number of selected features with a SVM classifier, and b DT classifier
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table that, in most cases, the PCFS proposed method has lower running times than the 
other methods.

Complexity analysis

this subsection, the computational complexity of the proposed method is calculated. 
The first phase of the method which utilizes the PCFS clustering to determine of 
clusters. The time complexity of this phase is O

(

In2s
)

 where I  . Number of iterations 
for algorithm convergence indicates, n denotes the total number of initial features 
and s is the number of samples. In the next phase, Dim-reduce function is used to 
produce a reduced feature The complexity of Dim-reduce function is O

(

n2
)

 . Con-
sequently, the final computational complexity of the PCFS methods is O

(

In2s + n2
)

 . 
When the number of samples (i.e., s ), and number of iterations (i.e., I  ), much smaller 
than the total number of features, the final time complexity of the proposed method 
can be reduced to O

(

n2
)

.

Conclusion
Over the last 10 years, the fast growth of computer and database technologies has led 
to the rapid growth of large-scale datasets. On the other hand, applications with high 
dimensional datasets that require high speed and accuracy are rapidly increasing. An 
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Fig. 5  Classification accuracy (average over 10 runs), on Colon dataset with respect to the number of 
selected features with a SVM classifier, and b DT classifier

Table 7  Average execution time (in ms) of  different feature selection methods over  ten 
independent runs

Dataset PCFS LS GCNC FJUFS FS mRMR FAST FJMI PCA PCA

SPECTF 161 162 168 230 158 1906 87 2452 162 162

SpamBase 1456 1572 3780 5267 3926 15180 2908 17383 3921 3921

Sonar 260 289 275 741 165 3511 181 4781 2892 2892

Arrhythmia 4387 4088 7734 6282 5617 4842 2863 5906 5814 5814

Madelon 8932 17852 31849 44289 31795 19045 9642 22575 36725 36725

Isolet 8468 19710 33126 47891 32771 23734 11928 27826 31732 31732

Multiple Features 9765 18941 32674 36891 29810 21778 10403 27681 30348 30348

Colon 7987 10154 113598 139897 109884 11962 8295 16783 112864 112864
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important issue with data mining applications, including pattern recognition, classifi-
cation, and clustering, is the curse of dimensionality, where the number of features is 
much higher compared to the number of patterns. From a general perspective, feature 
selection approaches are categorized into three groups, supervised, unsupervised, 
and semi-supervised. Supervised feature selection methods have a set of training pat-
terns available, each of which is described by taking the values of the features with the 
labels, while in the unsupervised modes, feature selection methods encounter sam-
ples without labels. Semi-supervised feature selection is also a type of feature selec-
tion that employs both unlabeled and labeled data simultaneously to improve feature 
selection accuracy.

In the present paper, a novel pairwise constraints-based method is proposed for 
feature selection. In the proposed method, in the first, the similarity between the pair 
constraints is calculated. Then an uncertainty region is created based on it. Then in an 
iterative process, most informative pairs are selected. The proposed method was com-
pared to different supervised, and unsupervised feature selection approaches, includ-
ing LS, GCNC, FJUFS, FS, FAST, FJMI and PCA. The reported findings indicate that, 
in most cases, the proposed approach is more accurate and selects fewer features. For 
example, numerical results showed that the proposed technique improved the clas-
sification accuracy by about 3% and reduced the number of picked features by 1%. 
Consequently, it can be said that the proposed method reduces the computational 
complexity of the machine learning algorithm, despite the increase in classification 
accuracy.
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