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Abstract 

Extreme environments on Earth host a large diversity of microbial life. Bacteria, 
archaea, and fungi are able to survive under one or several extreme conditions includ‑
ing extreme ranges of temperature, pressure, pH or salinity. Despite extensive research 
on extremophilic microorganisms, a relatively unexplored frontier within the study 
of the deep biosphere is the survey of the diversity of microorganisms inhabiting deep 
geothermal reservoirs used for energy production. These sites offer unique access 
to investigate life in the deep biosphere. The conditions in these reservoirs are often 
within the range of the known limits of life, which makes them a suitable habitat 
for various extremophilic microorganisms. Moreover, microbial-driven processes 
such as microbially induced scaling or corrosion can decrease the efficacy of geo‑
thermal power plant systems. The present review summarizes the current knowl‑
edge and uncertainties surrounding microbial life in deep geothermal reservoirs. As 
the knowledge in deep geothermal fluids is still scarce, the microbial diversity in analo‑
gous environments, such as surface geothermal springs, deep-sea hydrothermal vents 
or deep subsurface environments, is also summarized here. The high diversity of micro‑
organisms inhabiting these analogous environments suggests that deep geothermal 
fluids may host an unsuspected microbial diversity. Moreover, the challenges associ‑
ated to the study of microorganisms in geothermal fluids are reviewed. These include 
notably challenges linked to sampling, DNA extraction from low biomass samples, 
DNA amplification and sequencing of unknown communities, and biases induced 
by comparison of the sequences obtained to reference databases. Such biases are 
even stronger concerning fungi and archaea, as specific databases are less extensive 
than those for bacteria. A broader knowledge on microorganisms in deep geothermal 
fluids may not only allow to reduce the negative impact of microbial activity in geo‑
thermal power plants, but could also provide new insights into the evolution of micro‑
organisms and their survival in extreme environments.
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Introduction
The productivity of geothermal systems depends not only on the rock properties of the 
reservoir but also on the fluid-chemical composition and physical properties (Finster 
et al. 2015). Despite the worldwide use of geothermal fluids, the complexity of these sys-
tems makes them hard to characterize precisely. One additional factor that is becom-
ing increasingly relevant is the diversity of life (mostly microbial) hosted in geothermal 
waters (Gniese et  al. 2014). Microbial life in such fluids is often ignored, despite the 
growing evidence of the presence of microorganisms in geothermal power plant systems 
(Inagaki et al. 2003; Filippidou et al. 2016; Westphal et al. 2019). The impact of micro-
bial diversity associated with geothermal energy production is a two-way road. Indeed, 
microorganisms (or microbial activity) are known to be involved in the formation of 
scales (e.g. silica scales), thus decreasing the power plant’s efficacy (Inagaki et al. 2003). 
At the same time, the exploitation of a geothermal reservoir might change the environ-
mental conditions, resulting in changes on the composition and metabolic processes of 
deep geothermal microbial communities. These changes could set off new metabolic 
reactions, for instance leading to silica precipitation or hydrogen sulphide production 
(Hao et al. 1996; Inagaki et al. 2003).

To date, the knowledge on the microbial diversity present in deep geothermal fluids 
is extremely scarce. Deep geothermal reservoirs can be considered more generally as a 
combination of the deep biosphere, which encompasses any ecosystem located below 
the seafloor or the terrestrial surface, from 1 m depth and beyond (Edwards et al. 2012; 
Shu and Huang 2021) and geothermal systems. Therefore, this review presents not only 
the limited number of studies performed in deep geothermal systems, but also an over-
view of the known microbial diversity present in other environments from the deep 
biosphere and in extreme environments that share some of the key environmental con-
strains with deep geothermal fluids used for electricity production. This comparison is 
intended as a source of baseline information for the identification of the potential diver-
sity of microbial life to be found in deep geothermal fluids. The parallels made are meant 
to underline the probability to find diverse microorganisms in deep geothermal fluids, 
but cannot replace microbial diversity studies on deep geothermal fluids. Moreover, it 
is important to highlight that even though microorganisms may be found in an environ-
ment, this does not necessarily mean that they are metabolically active, as they can also 
be present in a dormant state. Hence, one needs to establish the metabolic state of the 
observed microorganisms at the time of investigation, which can be aided, for instance, 
by hydrochemical and isotopic investigations. In addition to this diversity overview, we 
highlight the potential impacts of microorganisms on the functioning of geothermal 
power stations and the challenges to study them in these specific settings.

Generalities about bacteria, archaea and fungi

By definition, microorganisms consist of all living forms with a cellular state that is invis-
ible to the naked eye. This term includes prokaryotes (organisms lacking a nucleus), such 
as Archaea and Bacteria, as well as eukaryotes (organisms having their DNA encapsu-
lated into a nucleus inside the cells) such as fungi, protists and micro-algae, and non-
cellular life forms such as viruses or prions. Current knowledge on the diversity of life 
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in geothermal environments indicates that the microorganisms potentially present in 
geothermal power plants could belong to all these microbial groups (Ghozzi et al. 2013; 
Inskeep et al. 2013; Strazzulli et al. 2017; Oliverio et al. 2018; Prieto-Barajas et al. 2018) 
However, the focus of this review is on the archaeal and bacterial domains, as well as 
on the fungal kingdom. Archaea and bacteria are prokaryotic organisms, usually uni-
cellular, and their size ranges from 0.2 to 50  µm. Fungi are eukaryotic organisms and 
may either be unicellular, such as yeasts or chytrids, or pluricellular, such as filamentous 
fungi, for which the vast majority of the organism is represented by a mycelium that is 
within microbial size range.

Many bacteria and most fungi are able to form resistant cells, such as spores, which 
allow them to survive under conditions unsuitable for active growth (Kües and Fischer 
2006; Setlow 2010). In bacteria, known types of resistant cells include endospores (Fir-
micutes) (Nicholson et al. 2002), exospores (Actinobacteria) (Beskrovnaya et al. 2021), 
myxospores (Myxococcales) (Bui et al. 2009), cysts (Azotobacter) (Whittenbury, Davies 
and Davey 1970) or akinetes (Cyanobacteria) (Kaplan-Levy et al. 2010). Fungi can also 
form multiple types of spores, which can either be asexual (clones of the parental cell) 
or sexual (produced by sexual reproduction, which involves the fusion of two parental 
nuclei and the return to a haploid state through meiosis, including genetic recombina-
tion through crossing-overs). In addition to the formation of spores, some fungal extre-
mophiles may adapt their cell wall morphology or composition to extreme conditions by 
increasing its thickness or by including melanin and mycosporins. This is typically the 
case of black-fungi, which are considered as poly-extremophilic fungi (Gostinčar, Mug-
gia and Grube 2012). Archaea are not known to form spores, but they are highly resist-
ant to extreme conditions thanks to, for instance, the unique lipid structure of the cell 
membrane (Siliakus, van der Oost and Kengen 2017). The ability to produce resistant 
structures and to resist to diverse environmental conditions allow archaea, bacteria and 
fungi to colonise all known environments, including extreme environments.

Extreme environments and the known limits of life

Extreme environments can be defined in different ways. However, the factors usually 
used to define extreme environments are salinity, pH, temperature, pressure, radiation, 
water activity, and energy and nutrient limitations (Rothschild and Mancinelli 2001; 
Merino et al. 2019). Other factors, such as the presence of heavy metals or electric cur-
rents may also create extreme conditions (Rothschild and Mancinelli 2001). Organisms 
thriving and requiring extreme conditions to complete their life cycles are called extrem-
ophiles, while extremotolerant organisms only tolerate them (Rampelotto 2013). The dif-
ferent categories of extremophiles of interest for this review are summarized in Table 1. 
So far, in surface extreme environments, the main driver of microbial biogeography is 
either temperature (in environments with temperature above 70 °C) or pH (in environ-
ments with a temperature below 70 °C) (Power et al. 2018). However, such biogeographic 
considerations are currently unknown for deep geothermal environments.

The true limits of life are likely still unknown today but our knowledge on microor-
ganisms thriving or surviving under extreme conditions is constantly increasing (Merino 
et al. 2019). Additionally, the presence of dormant resistant structures might push even 
further the presence of microbial life in extreme environments, especially pushing the 
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limits of environments inhabited by dormant bacteria and fungi, two microbial groups 
for which the limits of active growth are below those reported so far for archaea. 
Accordingly, nearly all Earth’s environments studied so far do host life (Cottin et  al. 
2017). As shown in Table 2, which illustrates the currently known limits of life, extremo-
philic or extremotolerant microorganisms can withstand temperatures of up to 122 °C 
(the archaeon Methanopyrus kandleri) (Takai et al. 2008), pressures of up to 125 MPa 
(the archaeon Thermococcus piezophilus) (Dalmasso et  al. 2016), or a pH from 0 (the 
archaea Picrophilus oshimae, Picrophilus torridus, Acidiplasma aelicum) (Schleper et al. 
1995; Golyshina et al. 2009; Merino et al. 2019) to 14 (the fungus Penicillium spp.) (Dha-
kar et al. 2014). For all of the above, even though archaea hold many of the most extreme 
records, bacteria and fungi are not far behind.  Radiation requires particular mention 
in the subsurface, where microorganisms may be exposed to alpha-, beta- and gamma-
radiation due to the decay of different radioactive elements (uranium-238, thorium-232 
and potassium-40) (Blair et al. 2007; Lollar et al. 2014; Sauvage et al. 2021). Members of 
the archaeal, bacterial and fungal kingdom are known to resist to radiation, going as up 
as 30kGy of gamma radiation for the archaea Thermococcus gammatolerans EJ3 and the 
bacteria Deinococcus hohokamensis and 6kGy for the fungus Exophila dermatitis (Jolivet 
et al. 2003; Rainey et al. 2005; Romsdahl et al. 2021).

Characteristics of deep geothermal fluids and potential energy sources for microbial life

Properties of deep geothermal fluids vary greatly from site to site (Finster et al. 2015). 
Deep geothermal fluids present various parameters that are often considered as extreme 
for life, such as high temperature, high pressure or high salinity (main parameters sum-
marized in Table 3). Moreover, the presence of radioactive elements, heavy metals, dis-
solved gas, wide ranges of pH in geothermal reservoirs (Bertani 2005; Finster et al. 2015; 
Regenspurg et al. 2016; Moya et al. 2018), as well as the flow induced by the use of the 
fluids for energy or heat production, are all expected to constrain microbial life (Simões 
et al. 2010). Nevertheless, these parameters often fall within the known limits of micro-
bial life (see Table 2). Moreover, the presence of diverse organic carbon sources in geo-
thermal fluids suggests once more that such environments may not be as hostile to life as 
previously thought (Leins et al. 2022). Indeed, organic compounds in deep geothermal 
fluids, in particular dissolved organic carbon (DOC), may be used as a nutrient source 
for microorganisms, allowing their survival in such environments. Moreover, it was 

Table 1  Different categories of extremophiles and their respective limits of the concerned 
parameters

Adapted from (Merino et al. 2019). Salinity is only represented by NaCl concentration, however other salts could be 
considered.

Parameters Category Limits

High temperature [°C] Thermophile 45–80 °C

High temperature [°C] Hyperthermophile  > 80 °C

Pressure [MPa] Barophile (or piezophile) 10–50 MPa

Pressure [MPa] Hyperbarophile  > 50 MPa

Salinity Halophile NaCl (w/v) > 8.8%

High pH Alkaliphile pH > 9

Low pH Acidophile pH < 5
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shown that in geothermal fluids used for heat storage, the presence of DOC and sulphate 
(SO4

2−) can provide enough electron donors and acceptors to allow microbial respiration 
(Vetter et al. 2012). It is thus imaginable that similar processes happen in higher temper-
ature fluids as well. More generally speaking, in the terrestrial subsurface, the presence 
of sulphate, which can originate from the oxidation of pyrite for instance, can sustain 
the metabolism of sulphate-reducing organisms (Lau et al. 2016). On the contrary, low 
amounts of DOC in low temperature geothermal fluids (< 80 °C) may not necessarily be 
due to low concentrations in the original fluids, but to the degradation of organic carbon 
by microorganisms (Leins et al. 2022). The presence and origin of organic compounds 
in deep geothermal fluids is extensively discussed in (Leins et  al. 2022). Furthermore, 
the presence of CO2 in deep geothermal fluids (Alt-Epping et al. 2013; Canbaz, Ekren 
and Aksoy, 2022), may also serve as a carbon source for autotrophic microorganisms 
(Saini et al. 2011), further sustaining life in these extreme environments. The presence 
of hydrogen (H2) in some geothermal fluids (Leila et al., 2021) is another energy source 
that can sustain microbial life. In the deep biosphere, H2, which can come from tectonic 
activity, serpentinization or water radiolysis, can serve as an energy source for chemo-
lithotrophic growth (Freund et al. 2002; Blair et  al. 2007; Colman et al. 2017; Sauvage 
et al. 2021).

Microbial life in deep geothermal fluids and other related extreme 
environments
Diversity of microorganisms in environments analogous to geothermal power plants

Deep geothermal fluids display several extreme parameters, which are at the interface 
between environments from the deep biosphere and geothermal environments, making 
possible formulating parallels between these environments (Fig. 1). In fact, the microbial 
diversity found in systems with some of the same extreme conditions defined for deep 
geothermal fluids can provide hints on the microbial life that can be expected in the 
latter.

Table 3  General characteristics of fluids inside reservoirs of geothermal power plants used for 
energy production

DOC dissolved organic carbons, TDS total dissolved solids

Geothermal power plants used for electricity production

Parameters Typical ranges References

Temperature [°C] 73°–450 °C (Zarrouk and Moon 2014; Khare et al. 2019)

Depth 300 m–5000 m (Sanjuan et al. 2016; Moya et al. 2018)

Pressure [MPa] Up to 48 Mpa (Árpási, Lorberer and Pap 2000)

Cl− Up to 160 g/L (Leins et al. 2022)

TDS 95–280′000 mg/L (Finster et al. 2015)

pH 0.9–11.8 (Finster et al. 2015)

Radioactivity  > 200 pCi/L (equal to > 7.4 Bq/L) (Finster et al. 2015)

DOC Up to 25.9 mg C/L (Leins et al. 2022)

Formate Up to 40.4 mg/L (Feldbusch 2015)

Acetate Up to 47.6 mg/L (Leins et al. 2022)

Propionate Up to 2.64 mg/L (Leins et al. 2022)
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The microbial diversity currently known in the deep biosphere and in geothermal 
environments is summarized in Additional file 1: Table S1. From this information, the 
overlap of the reported microbial genera found in these different environments was rep-
resented graphically in Fig. 2. Despite the scarcity of knowledge on the microbial diver-
sity in deep geothermal fluids used for electricity production, it is noteworthy to see that 
the known diversity at the genus level largely overlaps with the diversity reported for 
each analogous environment considered here. The overlap underlines the fact that the 
microbial diversity present in other extreme analogous environments can provide useful 
hints on the microbial diversity that can be expected in deep geothermal fluids used for 
electricity production (Additional file 2).

The deep biosphere

Deep geothermal fluids are part of the deep biosphere, which includes all environ-
ments from 1 m below the surface (Edwards et al. 2012; Shu and Huang 2021). This 
includes the terrestrial subsurface, the marine subseafloor and all kinds of deep-sea 
environments. Generally speaking, the deep biosphere is known to host a large diver-
sity of microorganisms. Indeed, it is estimated that most prokaryotic life on Earth 
is located in the deep biosphere (Bar-On et al. 2018; Magnabosco et al. 2018; Drake 
and Reiners 2021) and the discoveries of life in such extreme habitats challenge our 
understanding of the limits of life (Inagaki et  al. 2003; Orsi, Biddle and Edgcomb 
2013; Ivarsson et  al. 2018; Zain Ul Arifeen et  al. 2020). These deep environments 

Fig. 1  Overlap in environmental conditions between deep geothermal fluids used for electricity production 
and other extreme environments. The parameters shown are temperature [°C], salinity [NaCl in g/L], and 
depth [m]. The presence of hydrocarbons is marked by an Asterix (*). For depth, the following abbreviations 
are used: meters below sea floor (mbsf ), meters below soil surface (mbss).
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are characterized by their high pressure and some, such as deep-sea hydrothermal 
vents, also involve geothermal fluids. The pressure in the deep biosphere, whether it 
is below water or below the Earth surface, increases gradually. Under water, the pres-
sure increases by 10 MPa per km against 30 MPa per km underground (Jebbar et al. 
2015). Besides pressure, organisms inhabiting the deep biosphere may have to deal 
with temperature extremes (high or low), high salinity, low concentrations of nutri-
ents, anaerobic conditions or the presence of toxic compounds (Rastogi et  al. 2010; 
Zain Ul Arifeen et al. 2020). Despite these harsh conditions, various prokaryotic and 
eukaryotic microorganisms have been frequently found in the deep biosphere (Schip-
pers et al. 2005; Orsi, Biddle and Edgcomb 2013; Borgonie et al. 2015; Zain Ul Arifeen 
et  al. 2020). Interestingly, fungi are the dominant group among eukaryotes in such 
environments (Orsi, Biddle and Edgcomb 2013; Rédou et  al. 2015; Zain Ul Arifeen 
et al. 2020).

The subsurface, which is part of the deep biosphere, is one of the largest microbial 
environments on Earth (McMahon and Ivarsson 2019). In subsurface environments, 
temperature is one of the most important parameters limiting life (Hoehler 2004). 
The temperature gradient in the continental subsurface is 25  °C  km−1 and thus, the 
habitable zone is theoretically limited to 5  km below the surface (Takai et  al. 2008; 
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Fig. 2  Main bacterial, archaeal and fungal genera reported so far in deep geothermal fluids and the 
analogous environments considered in this review. This graphical representation (Venn diagram) highlights 
the overlaps between environments. Taxonomic classification was only kept up to the genus level



Page 9 of 27Bregnard et al. Geothermal Energy           (2023) 11:28 	

Jebbar et  al. 2015). Life has been detected in waters, sediments or crust samples at 
various depths below the sea floor (Schippers et al. 2005; Mason et al. 2010; Inagaki 
et  al. 2015; Ivarsson, Bengtson and Neubeck 2016; Liu et  al. 2017; Purkamo et  al. 
2020; Quemener et al. 2020; Zain Ul Arifeen et al. 2020; Merino et al. 2022). Bacte-
ria detected in a 4.4 km deep crystalline bedrock correspond to the deepest evidence 
of microbial life in the subsurface (Purkamo et  al. 2020). Beside direct detection of 
microorganisms in the subsurface, the microbial degradation of hydrocarbons in fos-
sil fuel reservoirs up to 4 km below the seafloor further support the presence of active 
microbial life in the deep subsurface (Head et  al. 2003; Jones et  al. 2008). However, 
in fossil fuel reservoirs, microorganisms were found to be present only in reservoirs 
with a maximum temperature of 80  °C (Head et  al. 2003). The search for fossils in 
the subsurface or subseafloor can also give some hints on the presence and diver-
sity of microorganisms in such environments. In fact, fossils of bacteria, fungi, and 
prokaryotic microorganisms have been found in deep subseafloor basalts (Ivarsson 
et al. 2012; Bengtson et al. 2014), notably pointing out to the importance of this envi-
ronment for fungi (Ivarsson 2012). Biogeographical patterns of microbial communi-
ties are still not completely understood for the deep subsurface, and probably differ 
from one type of environment to another. For instance, it has been shown that the 
observed changes in microbial communities can be driven by advection in fractured 
rock aquifers (Zhang et  al. 2022) or a combination between nutrients, connectivity 
to the surface and geological processes in subsurface aquifers (Hubalek et al. 2016). 
Moreover, in some subsurface aquifers, it was shown that microbial communities are 
more similar to each other if environmental conditions are similar, and if they are 
in close geographic proximity (Magnabosco et al. 2014). Thus, changes in microbial 
communities could also be used to track changes in fractures systems and connec-
tivity between wells or to the surface (Magnabosco et  al. 2014; Hubalek et  al. 2016; 
Zhang et  al. 2022). This is something that can be of relevance in the planning and 
management of deep geothermal drilling projects.

Beside terrestrial subsurface and deep subseafloor, deep-sea environments are habi-
tats in which microorganisms proliferate. In these deep-sea environments, some of 
the most diverse microbial hotspots can be found in hydrothermal areas. Indeed, 
microorganisms can thrive in such environments, whether in the hydrothermal flu-
ids, around hydrothermal vents or in surrounding sediments and numerous bac-
teria, archaea, and fungi have been found there (Blöchl et  al. 1997; Edgcomb et  al. 
2002; López-García et  al. 2003; López-García et  al. 2007; Calvez et  al. 2009; Con-
nell et  al. 2009; Anantharaman et  al. 2016; Ding et  al. 2017; Dick 2019) (Additional 
file 1: Table S1). Deep-sea hypersaline anoxic basins (DHABs), such as the L’Atalante 
basin in the Mediterranean sea, can be considered as some of the most hostile envi-
ronments on Earth (anoxic and sulfidic conditions, combined with high salinity, 
high hydrostatic pressure, presence of toxic compounds such as hydrogen sulphide, 
manganese, and ammonium, as well as the complete absence of light) (Barone et al. 
2019). Nevertheless, communities of archaea, bacteria, and fungi has been discov-
ered recently in several DHABs, including some metabolically active fungi (Alexander 
et al. 2009; Stock et al. 2012; Bernhard et al. 2014; Steinle et al. 2018).
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Geothermal environments outside of the deep biosphere

The best characterized geothermal environments in terms of their microbiology cor-
respond to surface geothermal systems. Therefore, the microbial diversity present 
in such systems can also provide important indications as to the diversity of microor-
ganisms that can be found in deep geothermal fluids. Geothermal environments other 
than deep geothermal fluids or hydrothermal vent systems include all sorts of geother-
mal surface waters, such as hot springs and geothermal lakes, which can be subjected 
to extremes in temperatures and pH. In these geothermal surface waters, the microbial 
diversity is driven mainly by temperature but also by pH, and in-situ chemistry (Sharp 
et  al. 2014; Iacono et  al. 2020). The best-known example of surface geothermal hot 
springs are the manifestations of Yellowstone National Park (USA). Since the pioneering 
studies by Brock in 1978 (Brock 1978), the archaeal and bacterial communities of this 
area have been extensively studied through molecular analyses and isolation of organ-
isms, notably underlying the presence of Aquificales, Thermodesulfobacteriales, Cald-
iserica, Crenarchaea, Desulphurococcales and Thermoproteales in hot springs (Sand 
2003; Meyer-Dombard et al. 2005; Inskeep et al. 2013; Colman, Lindsay and Boyd 2019). 
Studies on archaea and bacteria in geothermal environments are numerous, not only 
in Yellowstone, but in various geothermal waters and soils (Power et  al. 2018; Prieto-
Barajas et al. 2018). Moreover, in the last decade, fungi have been also found in several 
geothermal environments including alkaline and acidic surface thermal hot springs and 
their surrounding soil. This studies have shown the dominance in one case of Penicil-
lium, Entyloma, Cladosporium, Engyodontium and Schizophyllum and in the other case 
of Ascomycota, with Thermomyces lanuginosus (34.78%) and Scytalidium thermophilum 
(28.26%) as dominant species (Pan et al. 2010; Liu et al. 2018). Fungi have been reported 
also in acidic geothermal lakes (Ascomycota, including Aspergillus, Paecilomyces, Ochro-
conis, Acidomyces, Penicillium, Cladosporium and Phialophora) (Ervin 2014; Wolfe et al. 
2014), hot springs of soda lakes (mainly Ascomycota (83.3%), followed by Basidiomycota 
(15.8%) and Glomeromycota (0.02%)) (Salano et al. 2017) or surface geothermal water 
sources (Chytridiomycota: Batrachochytrium dendrobatidis) (Forrest and Schlaepfer 
2011).

Diversity studies in deep geothermal fluids used for energy production

In terms of sustainability, one of the major challenges for the exploitation of geothermal 
resources is assessing the role of geothermal systems as a biodiversity reservoir. Geo-
thermal systems provide a unique set of environmental conditions that will result in very 
specialized ecosystems often harbouring a unique set of living organisms well adapted 
to survive under those conditions. Therefore, as part of the development of geother-
mal projects, understanding the biodiversity associated with each individual system is 
required to assess its impact. Moreover, as for any other ecosystem on Earth, the organ-
isms within a geothermal ecosystem can have a direct impact on the efficiency of the use 
of the energy resource. These two elements combined make the assessment of biodiver-
sity an important component of studies aiming at improving geothermal energy develop-
ment. There is a risk of contamination of geothermal fluids during drilling (Regenspurg 
et al. 2018), fluid sampling, or enhanced geothermal systems (EGS) stimulation (which 
stimulates the rock reservoir to increase the efficacy of the power plant) (Blöcher et al. 
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2016) and therefore, microorganisms detected in geothermal power plants may not all 
come directly from the fluids or the reservoir (Dahle et al. 2008). However, the consist-
ent detection of microorganisms in diverse geothermal environments suggest that some 
of them are indigenous to these environments.

The diversity of microorganisms detected or isolated in geothermal fluids used for 
electricity production is summarized in Table 4. It is interesting to note that all of these 
studies concern Archaea and Bacteria, but not Fungi. Even though the knowledge of the 
microbial diversity present in deep geothermal fluids is still scarce, some studies have 
shown the presence of microorganisms in fluids of up to 250 °C (in situ) and at 4200 m 
depth (Takai, Komatsu and Horikoshi 2001; Filippidou, Jaussi, et al. 2015). However, the 
active metabolic state of microorganisms under these extreme conditions was not dem-
onstrated. In fact, biomarkers of bacteria and archaea have been detected in different 
types of geothermal fluids (Takai and Horikoshi 1999; Takai, Komatsu and Horikoshi, 
2001; Fardeau et al. 2009; Alawi et al. 2011; Lerm et al. 2011; Morozova, Alawi et al. 2011; 
Lerm et  al. 2013; Westphal et  al. 2019; Kalwasińska et  al. 2020; Purkamo et  al. 2020). 
Moreover, biofilms (i.e., organised form of multispecies collective growth of organisms 
on surfaces) are common as deposits inside geothermal power plant pipes (Inagaki et al. 
1997; Inagaki et al. 2003; Fujino et al. 2008; Filippidou, Jaussi, et al. 2015; Filippidou et al. 
2016). In addition to the detection of biomarkers and biofilms, several bacterial strains 
have been isolated from geothermal fluids (Table 4). Those include Anoxybacillus geo-
thermalis (Filippidou, Jaussi, et  al., 2015; Filippidou et  al. 2016), Hydrogenobacter sub-
terraneus (Takai, Komatsu and Horikoshi 2001), Thermotoga elfii (Fardeau et al. 2009), 
Bacillus paralicheniformis (Kalwasińska et al. 2020), and other bacteria belonging to the 
Thermus and Hydrogenobacter genera (Inagaki et al. 2003). The archaeon Archaeoglobus 
fulgidus was also isolated from deep geothermal fluids (Fardeau et al. 2009). The absence 
of fungi in these studies does not necessarily derive from their true absence from the flu-
ids, but rather from the fact that most studies did not even consider investigating fungi. 
However, the discovery of numerous fungal extremophiles during the last decades shows 
the equal importance of searching for fungi in extreme environments (see for instance 
Nagano and Nagahama 2012).

A broad range of metabolically distinct bacteria and archaea has been detected in 
geothermal fluids, such as sulphate-reducing bacteria (ex. Desulfatomaculum and Des-
ulfococcus) (Alawi et  al. 2011), hydrogen-oxidizing bacteria (Hydrogenophaga spp., 
Acidovorax spp., Ralstonia spp., Pseudomonas spp.), thiosulfate-oxidizing bacteria (Dia-
phorobacter sp.) or biocorrosive strains (Morozova, Zettlitzer et al. 2011). Additionally, 
the archaeal and bacterial community of some saline geothermal fluids were shown to be 
dominated by Firmicutes, but the heat extraction or the addition of scaling inhibitors or 
nitrate changed this community to a community dominated by Firmicutes and Proteo-
bacteria (Westphal et al. 2019).

Issues caused by microorganisms in geothermal power plants: mineral precipitation, 

corrosion and biofilm formation

Microorganisms inhabiting geothermal fluids are thought to contribute to some of the 
most important issues affecting the performance of geothermal power plants, namely 
mineral scaling and corrosion (Westphal et  al. 2019). On the one hand, any type of 
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Table 4  Diversity studies on deep geothermal fluids or deposits in side geothermal power plants

The detection of microorganisms is marked by an X. A more detailed table is presented in Additional file 2
* Geothermal power plant not used for electricity production
** Deep subsurface geothermal water not used in a power plant

Site or 
region

Temperature 
[°C]

Depth 
[m]

pH Other 
measured 
conditions

Type(s) 
of 
sample

Archaea Bacteria Fungi Reference

Molasse 
Basin (DE)

61–103 °C NA 6.6–
7.3

salinity 
600–
900 mg/l; 
DOC: 6.4–
19.3 mg C/l

Fluids X X (Alawi et al. 
2011)

Bruchsal 
(DE)

132 °C (deep‑
est drilling 
point)

2500 m 5.4–
5.8

2.2 MPa 
(inside drill‑
ing pipes)

Biofilms X (Filippidou 
et al. 2016)

Gross 
Schönebeck 
(DE)

150 °C (reser‑
voir)

4200 m 5.5 at 
25 °C

Deposits X (Filippidou, 
Jaussi, et al. 
2015; Filip‑
pidou et al. 
2016)

Bad Blumau 
(AT)

107 °C 2800 m 8 salinity 
20 g/l; 
sulfate 
500 mg/l

Fluids X X (Westphal 
et al. 2019)

Neu‑
branden‑
burg (DE)

45–54 °C or 
65–85 °C

1250–
1335 m

6 mineraliza‑
tion 131 g/l; 
DOC 3.5 g/l

Fluids 
(different 
sources) 
and filter 
samples

X (Lerm et al. 
2013)*

Berlin (DE) 6–30 °C 30–60 m 7 low salinity 
(< 1 g/l)

Fluids 
(different 
sources) 
and filter 
samples

X (Lerm et al. 
2011)*

Northest 
Germany 
(DE)

 > 120 °C 3500 m 5.5–
5.9

salinity up 
to 420 g/l; 
20 MPa

Fluids X (Morozova, 
Zettlitzer et al. 
2011)*

Otake (JP) 75–90 °C NA NA NA Silica 
scale in 
an aging 
tank of 
geother‑
mal hot 
water

X (Inagaki et al. 
1997; Inagaki 
et al. 2003)

Hatchobaru 
(JP)

In situ: 250 °C, 
collected at 
96 °C

1500 m NA NA Fluids; 
produc‑
tion well

X (Takai, 
Komatsu and 
Horikoshi 
2001)**

Hatchobaru 
(JP)

In situ: 250 °C, 
collected at 
96 °C

1500 m NA NA Fluids; 
produc‑
tion well

X (Takai and 
Horikoshi 
1999)

Otake (JP) NA NA NA NA Silica 
scale

X (Fujino et al. 
2008)

Melun-
L’Almont 
(FR)

70 °C 2000 m 6.4 DOC 
2.3 mg/L

Fluids X X (Fardeau et al. 
2009)

Pyrzyce (PL) 61 °C 1640 m 6.2 TDS 121 g/L Fluids X X (Kalwasińska 
et al. 2020)

Stargard 
(PL)

85 °C 2578 m 5.9 TDS 140 g/L Fluids X X (Kalwasińska 
et al. 2020)

Otaniemi 
(FI)

46–76 °C 3203 m 
to 
4375 m

NA NA Fluids X (Purkamo 
et al. 2020)
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mineral depositions inside the pipes is problematic. Indeed, these deposits can clog 
the wells or any part of the system, thus disturbing the normal operation of geother-
mal power plants (Regenspurg et al. 2015). Beside abiotic factors contributing to it (i.e. 
temperature variations), microorganisms in geothermal environments are often involved 
in silica precipitation (Inagaki et al. 2003). Thermophilic bacteria such as Thermus ther-
mophilus are known to induce silica scaling (Fujino et al. 2008). Even though the role of 
microorganisms has not been assessed in all scaling types, such as in the case of copper-
based scaling (Regenspurg et al. 2015), their impact cannot be excluded.

On the other hand, corrosion of metals induced by microorganisms (microbially 
induced corrosion, MIC) is also common in infrastructures, such as pipelines or power 
production infrastructures (Beech et  al. 2005; Little and Lee 2007). Despite several 
examples of the highly problematic consequences of MIC in these systems (e.g., costly 
maintenance and efficacy reduction), the relation between microorganisms and corro-
sion issues is still not fully understood (Ibrahim et al. 2018). Mechanisms leading to MIC 
are still under investigation and might be multiple (Tripathi et  al. 2021). One specific 
case of MIC that has been more thoroughly investigated is the case of sulphate reducing 
bacteria (SRB), whose metabolism notably results in H2S production, a highly corrosive 
compound (Ibrahim et al. 2018). SRB are involved in MIC in wastewater treatment, oil 
or gas facilities or other pipeline systems (Hao et al. 1996; Sherar et al. 2011; Ibrahim 
et al. 2018), or in geothermal power plants with fluids containing sulphate or another 
suitable electron acceptor, seriously affecting the power plant operation (Valdez et  al. 
2009; Lerm et al. 2013). In addition, sulfur-oxidizing bacteria (SOB) can oxidize H2S into 
H2SO4, which is a highly corrosive compound (Muthukumar et al. 2003; Ibrahim et al. 
2018). Bacteria producing acids, reducing or oxidizing iron or oxidizing manganese all 
have the potential to induce corrosion in infrastructures (Muthukumar et al. 2003).

The formation of biofilms inside pipes happens frequently. Indeed, biofilms are an 
important growth form (Flemming and Wuertz 2019) providing survival benefits in var-
ious environments and are thought to be a well-conserved trait throughout microbial 
evolution (Hall-Stoodley et al. 2004; Harding et al. 2009). Inside biofilms, microbial cells 
benefit of a higher protection thanks to the surrounding cells and all cells may benefit 
from compounds produced by others. Therefore, communities living in a biofilm are 
often more resistant than free-living cells to biotic (i.e., predation) or abiotic challenges. 
Moreover, an extracellular matrix, composed of extracellular polymeric substances 
(EPSs), is formed to keep the cells together (Hall-Stoodley et al. 2004). Therefore, in geo-
thermal power plants, it is not only the cells themselves that can cause issues, but the 
sticky matrix compounds may also be problematic and cause, for instance, the blocking 
of filters.

The different issues mentioned above rarely happen alone and combinations of prob-
lems are common, with microbially induced mineral precipitation, H2S production or 
corrosion happening simultaneously (Ibrahim et al. 2018). The issues caused by microbi-
ally induced mineral precipitation and corrosion, as well as biofilm formation, are not 
specific to geothermal power plants, but are also common in the oil and gas industries 
(Ibrahim et al. 2018; Madirisha et al. 2022). Thus, a better understanding of the issues 
caused by microorganisms in one of these industries could also help to better under-
stand what happens in the others.
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Challenges and risks of studying microbial diversity in deep geothermal fluids
As for other extreme and hardly accessible environments, literature on microorgan-
isms present in deep geothermal fluids has to be evaluated carefully, notably because 
of uncertainties in sampling and data processing. In the following section, an overview 
of potential problems associated with sampling and potential biases in data analysis are 
presented.

Microbial activity produces, in some cases, a macroscopic manifestation such as a 
colour change or the appearance of an odour. However, most of the microbes remain 
undetectable without any prior amplification step or by their indirect detection using 
biomolecules or metabolic products. The presence of microorganisms in environ-
ments such as deep geothermal fluids, can be shown by the detection of biomarkers, 
such as phospholipids or phospholipid fatty acids (Vetter et  al. 2012). Such methods 
do not allow the identification of specific microorganisms present in the environment, 
but can be used to monitor changes in the microbial communities present in the flu-
ids (e.g., SRB present branched fatty acids and monoenoic fatty acids, thus the presence 
of these fatty acids in the fluids may indicate the presence of such bacteria). Therefore, 
phospholipid profiles can be useful indicators of disturbances or changes in the system 
(Vetter et al. 2012). As only a very small fraction of microorganisms is amenable to cul-
tivation in the laboratory, a very significant experimental bias is introduced in microbial 
diversity studies if only culture-dependent techniques are applied (Amann, Ludwig and 
Schleifer 1995; Amann 2000). This bias is exacerbated when extreme environments are 
considered, as the microorganisms living under extreme conditions tend to be highly 
unculturable (Lewin et al. 2013). For this reason, the advancement of technologies rely-
ing on DNA or RNA detection (also called culture-independent or molecular methods) 
has unravelled an unprecedented diversity on and within the Earth. Indeed, the use of 
genomic tools (i.e., the analysis of the genetic material present in an environment either 
through targeted sequencing or whole-genome sequencing) allows to bypass cultivation 
in order to have a better understanding of the microbial diversity in different ecosystems 
(Ye et al. 2019). These methods are therefore of particular interest for the investigation 
of microorganisms in extreme environments (Cowan et al. 2015; Garrido-Cardenas and 
Manzano-Agugliaro 2017). However, as in other extreme environments, genomic stud-
ies of microorganisms in deep geothermal fluids possess challenges at each step of the 
process: from the sampling of the fluids to the final analysis of the genomic data gener-
ated (Fig. 3).

Sampling and biomass concentration

There are multiple challenges in the sampling of geothermal fluids (Arnórsson et  al. 
2006), but one that is particularly relevant when studying microorganisms is the high 
temperature of the fluids. Since the brines will be cooled down to ambient conditions 
after extraction from the reservoir, the possibility for contamination during sampling 
is large and has to be minimized. For this, avoiding the use of open-air systems, and 
the use of pre-sterilized containers are required. In addition, maintaining conditions as 
aseptic as possible should be considered, whenever this is feasible. This might be highly 
challenging considering the set-up of the sampling site and therefore, including controls 
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Fig. 3  Summary of the steps required to analyse the microbial diversity in deep geothermal fluids using a 
culture-independent approach based on the detection of genetic material. Challenges linked to each step of 
the analysis are mentioned in red. Figure created with BioRender.com
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for contamination is required. Contaminations that can occur at this step include all 
types of DNA contaminants, which can come from the sampling environment (air for 
instance), material or researchers themselves (Eisenhofer et  al. 2019). Moreover, dur-
ing sampling, the fluids, which are originally in an anoxic and light-deprived state, will 
be exposed to oxygen and light. Such exposure may influence the microbial community 
composition, as both oxygen and light can be toxic compound for organisms (Downes 
and Blunt 1877; Fenchel and Finlay 2008).

Collecting the fluids under sterile conditions is not the only challenge during sam-
pling, as the recovery of enough DNA for further analysis is also needed. As microbial 
biomass in geothermal fluids may be extremely low, the recovery of enough DNA (or 
other macromolecule) from low biomass samples is difficult (Barton et al. 2004; Barton 
et al. 2006; Lewin et al. 2013). One way to improve the recovery of microbial DNA from 
low biomass samples is to concentrate this biomass by filtration before DNA extraction. 
Using 0.22  µm or 0.1  µm pore size nitrocellulose filters will select microbial biomass 
(bacteria, archaea and fungi) while using 0.02 µm pore size filters would allow to capture 
viruses (Miyoshi et al. 2005; Russell, Zydney and Gomez 2023). In the case of geothermal 
fluids, filtering up to 5  L of fluids for DNA extraction only produced low amounts of 
DNA (unpublished) and thus the filtration of larger volumes (for instance 40 L) is often 
required.

DNA extraction

Once the biomass is concentrated on filters, DNA needs to be extracted. Geothermal 
fluid samples may not only contain vegetative cells but also resistant cells like spores, 
which are commonly found in extreme environments (Filippidou et  al. 2019). Thus, 
extracting DNA from both cell types is important. Extracting DNA from spores is obvi-
ously more difficult than from vegetative cells and usual DNA extraction techniques do 
not allow the efficient recovery of DNA from resistant structures (structures resistant 
to lysis) (Belgrader et al. 2000; Filippidou, Junier, et al. 2015). Therefore, an enrichment 
treatment, which will concentrate the resistant cells and maximize the extraction of their 
DNA, can be applied on the samples, for instance (Wunderlin et al. 2016; Corona Ram-
irez et al. 2023). As this additional step destroys vegetative cells, each sample needs to 
be split into two to recover DNA from the vegetative cells (direct DNA extraction) and 
from resistant cells (enrichment treatment). It is also important to keep in mind that the 
choice of different DNA extraction techniques will undeniably introduce biases (Brooks 
et al. 2015).

Another issue of DNA extractions is the unavoidable presence of contaminants in 
DNA extraction kits. Indeed, microbial contaminants are common in these kits and 
are even more problematic when working with low biomass samples (Salter et al. 2014; 
Glassing et al. 2016; de Goffau et al. 2018; Karstens et al. 2019). In fact, the DNA of con-
taminants will overpower data in samples with low DNA content, therefore hiding true 
results (Stinson et  al. 2019). Consequently, performing contamination controls during 
DNA extraction is mandatory (de Goffau et al. 2018). Moreover, the UV sterilization of 
the different components of DNA extraction kits might also help to mitigate these types 
of contamination sources (Gefrides et al. 2010).
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In addition to using the DNA present in the samples, one could also use RNA (ribonu-
cleic acid involved in the synthesis of proteins) (Madigan and Martinko 2007). The use 
of DNA allows to target all the organisms present, whether they are in an active or dor-
mant (resistant) form, while targeting RNA allows to target only the active organisms, as 
RNA is only expressed by active life forms. Different RNA sequencing technologies are 
available and allow to precisely monitor the state of the targeted cells (Finotello and Di 
Camillo 2015).

Sequencing methods and data analysis pipelines

After DNA extraction, the choice of the sequencing technology (i.e., how the DNA 
sequences of interest will be obtained and how long they will be) will induce differ-
ences in the resulting datasets. Nowadays, available technologies are numerous, allowing 
either for whole genome or marker genes analyses (i.e., analysis using selected genes as 
molecular markers, also called targeted sequencing or amplicon sequencing; Fig. 3). To 
analyse samples containing low amounts of biomass, analysis of marker genes is usually 
more feasible (Knight et al. 2018). Thus, in this review, only the method using molecular 
marker genes will be discussed in further details.

Molecular markers correspond to genes shared by all the organisms and exerting the 
same function, allowing to appropriately compare species diversity. Ideally, a molecular 
marker should contain both, regions that are conserved (i.e., very few variations among 
the organisms in the group considered) and some that are highly variable (i.e., large dif-
ferences among the organisms in the group considered to allow to identify the organ-
isms). One of the most widely used molecular markers to study microbial diversity are 
the genes encoding ribosomal RNAs. Bacteria, archaea and fungi (and other eukaryotes) 
all have ribosomes, which are responsible for the synthesis of proteins. These ribosomes 
are composed of proteins, but also by RNA fragments (ribosomal RNA or rRNA) that 
are structural and play a key role in the synthesis of proteins. These rRNA and the genes 
coding (rDNA) for them are well conserved throughout evolution. Given their conser-
vation, common ancestry and evolution, rDNA are suitable markers to compare the 
phylogenetic distance of organisms (i.e., how organisms are related to each other) and 
are often used to define “microbial species”. Using marker genes, several amplification 
methods are available, including Polymerase Chain Reaction (PCR) and quantitative 
Polymerase Chain Reaction (qPCR). A PCR will amplify all the maker genes present in 
the sample, allowing to identify the species present. However, a PCR does not inform on 
the real abundance of species, on the contrary to qPCR, which is a real-time amplifica-
tion method. This means that a qPCR allows to follow in real time the amplification of 
the marker genes and to enumerate them, either in a relative or absolute manner. These 
methods of amplification can be also used to target RNA, but using a modified version 
(reverse transcription PCR (RT-PCR) and reverse transcription quantitative PCR (RT-
qPCR)) (Jalali, Zaborowska and Jalali 2017). To target for organisms by PCR or qPCR, 
corresponding amplification primers have to be chosen depending on the type of micro-
organism studied and the desired amplification target. The choice of primers will also 
impact the obtained results, as different regions will be amplified. For archaea and bac-
teria, different variable regions of the 16S rRNA gene are widely used in diversity studies 
and the entire gene is used as standard for identification. For fungi, the ITS (Internal 
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Transcribed Spacer) regions, which also belong to ribosomal RNA operon, are com-
monly used (Tedersoo and Lindahl 2016). However, for the analysis of specific regions of 
the 16S rRNA gene and the ITS, only partial regions are often used and selected thanks 
to different primer pairs.

Finally, following an amplification of a marker gene through a PCR, amplicons need 
to be sequenced to determine the nucleotide sequences of the initial DNA fragment. 
This can be achieved by different technologies, such as short read sequencing techniques 
(e.g. Illumina sequencing (Illumina, CA, USA)) or long read sequencing techniques 
(e.g. Pacific Biosciences (CA, USA)) (Garrido-Cardenas and Manzano-Agugliaro 2017). 
Afterwards, the sequences obtained (the amplicon sequencing data) are compared 
between them. At this step, various combination of classification algorithms and refer-
ence databases can be set up to identify the organisms present in the sample.

While processing these amplicon sequencing data, several decisions have to be made 
and those will drastically influence the results (Xue, Kable and Marco 2018; Pauvert et al. 
2019). First, raw sequencing reads have to be processed using different software and 
pipelines, such as QIIME2 or mothur (Schloss et al. 2009; Bolyen et al. 2019). Process-
ing of these raw sequencing reads will allow the removal of sequencing errors and to 
group the reads according to their sequence similarity (Callahan et al. 2017). Sequences 
above a given threshold of similarity can be grouped into Operational Taxonomic Units 
(OTUs) or kept as Amplicon Sequence Variants (ASVs; exact sequences). OTUs and 
ASVs are two different approaches to identify the number of distinct biological entities 
in the sample and to classify the sequences of a dataset. The use of OTUs or ASVs has its 
respective drawbacks and benefits and the choice of one or the other will mostly depend 
on the study objectives Recently, the benefits conferred by ASVs, such as an improve-
ment in reproducibility and a better accuracy to assess diversity in communities not well 
covered in reference databases, seem to tip the scale in their favour (Callahan et al. 2016; 
Callahan et al. 2017; Knight et al. 2018). At this stage of the analysis, the read count of 
biological entities (OTUs or ASVs) in the samples is translated into an OTUs or ASVs 
table. The next critical step is the choice of a reference database and of a classifier to add 
a taxonomic information to the sequences. Indeed, OTUs or ASVs present in the data-
set first need to be compared to known reference sequences of organisms in a database 
in order to know to which organisms these sequences initially belonged to. To do that, 
different classifiers can be used, such as RDP, UCLUST, consensus vsearch, consensus 
BLAST (basic local alignment and search tool) and scikit-learn naïve Bayes, which were 
all compared using mock (artificially produced) communities (Bokulich et al. 2018).

Various reference databases for microorganisms exist, such as Greengenes (DeSantis 
et al. 2006) and Silva (Quast et al. 2012) for the 16S rRNA gene of bacteria and archaea, 
or UNITE (Nilsson et al. 2019) and ITSoneDB (Santamaria et al. 2012) for the ITS region 
of fungi. As several databases exist and are built and curated differently, results will not 
be the same if one or the other database is used. The biases induced by different data-
bases and different extraction methods are often addressed separately, but only few 
comparative studies on combined biases exist (Abellan-Schneyder et al. 2021; Ramakodi 
2021). Actually, the database problem does not only occur when working with largely 
unknown environments, but also while working with extremely well-known microbi-
omes, such as the human gut microbiome. While mock communities (i.e., artificially 
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created communities in which all members are known) can be used to test if the study 
design is suitable to a certain type of sample (Abellan-Schneyder et al. 2021), it is not 
possible to create mock communities for environments in which the microbial diversity 
is unknown such as in the case of deep geothermal fluids.

Once a taxonomy has been assigned by a classifier in order to link OTUs or ASVs with 
organisms, the final step is the choice of correct and judicious normalisation and analy-
sis methods to ensure results of good quality (McMurdie and Holmes 2014; Weiss et al. 
2017; Knight et al. 2018; Calle 2019). In summary, various techniques can be applied to 
study microorganisms in deep geothermal fluids, including amplicon sequencing tech-
niques, and several steps imply crucial decisions. Informed decisions from the start to 
the end of the process will ensure a proper analysis of this poorly known, but nonethe-
less rich of life, extreme environment.

Conclusions
By summarizing the current knowledge on the microbial diversity present in deep geo-
thermal fluids and in analogous environments (the deep biosphere and geothermal 
environments), this review highlighted the probable habitability of deep geothermal res-
ervoirs for electricity production. Indeed, the past few decades of research demonstrate 
that microorganisms persist in geothermal ecosystems and the deep biosphere, underly-
ing an astonishing diversity of life even in the most extreme conditions (Shu and Huang 
2021). This review further underlines the scarcity of knowledge on the microorganisms, 
and in particular a large knowledge gap for fungi inhabiting deep geothermal fluids. This 
supports the need for further studies to establish the diversity of microorganisms pre-
sent in those environments and their potential impacts on geothermal power plants, to 
help mitigating MIC or microbial induced scaling inside the power plants. This knowl-
edge will impact not only the geothermal industry but will also be essential to improve 
our understanding of the evolution of life, as these ecosystems can be used as analogues 
to Early Earth environments (Rampelotto 2013; Brown and Fritz 2019; Filippidou et al. 
2019). Moreover, understanding the deep subsurface biosphere will give valuable clues 
in the search for life outside Earth (Hoehler 2004; von Hegner 2020). In fact, most, if 
not all, known exoplanets display extreme environmental conditions, hence the interest 
to study extreme microorganisms present on Earth in order to have a better knowledge 
on how to search for life elsewhere in the universe (Lal 2008; Cottin et al. 2017; Martins 
et al. 2017).

Finally, this review also illustrated the numerous challenges and biases induced while 
studying the microbial diversity in a mostly unexplored extreme environment. Careful 
attention should be given to the analytical methods used to study microorganisms in 
deep geothermal fluids and common ground between different studies should be consid-
ered before direct comparison. For instance, even though it would not be possible to use 
the same database for all diversity studies, raw sequencing data should always be made 
available with publications to allow re-analysis of data before comparison if necessary. 
Moreover, for the same samples, different treatments, such as different DNA extraction 
methods, should be applied in order to gain a better understanding of the general diver-
sity of microorganisms present in these fluids (Additional file 3).
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Definitions
Diploid cell: cell containing two exemplars of each chromosome.

Extremophile: organism that requires one or several extreme environmental param-
eters to grow.

Extremotolerant: organism that tolerates one or several extreme conditions to grow.
Genome: All genes of an organism.
Haploid cell: cell containing only one exemplar of each chromosome.
ITS (internal transcribed spacer) rRNA amplicon sequencing: amplified region of the 

ribosomal genes used to detect and identify fungi.
Marker genes: DNA regions shared by all the organisms compared; also called molec-

ular markers.
Nucleotides: the five organic molecules that compose DNA or RNA sequences. These 

nucleotides are adenine (A), thymine (T), guanine (G), cytosine (C) and uracil (U).
Sequencing: determination of one/several DNA sequences (i.e. search what is the 

order of the nucleotides (A, T, G or C) composing the DNA).
16S rRNA amplicon sequencing: amplified region of the ribosomal genes used both to 

detect and identify bacteria and archaea.

Abbreviations
Bs	� Below soil surface
Bsf	� Below sea floor
Bw	� Below water surface
DOC	� Dissolved organic carbons
NGS	� Next generation sequencing
TDS	� Total dissolved solids
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