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Enhancing point cloud registration 
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of the Terracotta Warriors
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Abstract 

Point cloud registration technology, by precisely aligning repair components with the original artifacts, can accurately 
record the geometric shape of cultural heritage objects and generate three-dimensional models, thereby providing 
reliable data support for the digital preservation, virtual exhibition, and restoration of cultural relics. However, tradi-
tional point cloud registration methods face challenges when dealing with cultural heritage data, including complex 
morphological and structural variations, sparsity and irregularity, and cross-dataset generalization. To address these 
challenges, this paper introduces an innovative method called Enhancing Point Cloud Registration with Transformer 
(EPCRT). Firstly, we utilize local geometric perception for positional encoding and combine it with a dynamic adjust-
ment mechanism based on local density information and geometric angle encoding, enhancing the flexibility 
and adaptability of positional encoding to better characterize the complex local morphology and structural variations 
of artifacts. Additionally, we introduce a convolutional-Transformer hybrid module to facilitate interactive learn-
ing of artifact point cloud features, effectively achieving local–global feature fusion and enhancing detail capture 
capabilities, thus effectively handling the sparsity and irregularity of artifact point cloud data. We conduct extensive 
evaluations on the 3DMatch, ModelNet, KITTI, and MVP-RG datasets, and validate our method on the Terracotta 
Warriors cultural heritage dataset. The results demonstrate that our method has significant performance advantages 
in handling the complexity of morphological and structural variations, sparsity and irregularity of relic data, and cross-
dataset generalization.

Keywords Cultural heritage protection, Point cloud registration, Convolutional-Transformer, Local geometric 
perception

Introduction
Cultural heritage protection has long been a focal point 
of attention for both the global academic community 
and conservation circles. As a part of the world cultural 

heritage, the Terracotta Warriors holds significant his-
torical, artistic, and scientific value and embodies the 
cultural memory of China’s long history. However, due 
to prolonged natural erosion and human-induced dam-
age, the conservation and restoration of the Terracotta 
Warriors face enormous challenges. In this context, digi-
tal technology and artificial intelligence have gradually 
become important tools, among which the acquisition 
and processing of three-dimensional point cloud data 
show great potential in the 3D reconstruction, morpho-
logical analysis, and damage assessment of cultural relics 
[1–3]. Point cloud registration [4, 5], as an indispensa-
ble component of point cloud processing, plays a crucial 
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role in cultural heritage protection due to its accuracy 
and efficiency. The main goal of point cloud registration 
is to integrate multiple datasets collected from different 
perspectives or time instances into a globally consistent 
coordinate system, thereby achieving high-precision 3D 
reconstruction, object recognition, and scene analysis of 
cultural relics.

With the continuous advancement of point cloud 
acquisition technologies and the widespread application 
of sensors and scanning devices, modern point cloud reg-
istration encounters numerous challenges. One challenge 
is the complex morphological and structural variations, 
sparsity, and irregularity of the data, which lead to ineffi-
ciencies and susceptibility to local noise and overlap rates 
[6–8] when dealing with large-scale [9], high-density 
complex cultural relic point clouds using traditional reg-
istration methods. Additionally, the differences between 
different datasets [10–12] pose challenges to point cloud 
registration as they may contain variations in objects, 
environments, and sampling methods, resulting in insuf-
ficient generalization performance of existing algorithms.

To address these challenges, researchers have pro-
posed numerous innovative point cloud registration 
methods in recent years [13–15]. These methods cover 
various aspects ranging from traditional feature-based 
matching approaches to end-to-end methods. However, 
traditional feature-based matching methods often rely 
on handcrafted feature descriptors, leading to unstable 
performance when dealing with point clouds of different 
densities and scales. While deep learning-based methods 
partially address the issue of feature extraction, their gen-
eralization performance on large-scale cultural relic data 
and different datasets remains limited.

Inspired by the successful application of the Trans-
former architecture [16, 17] in the field of natural lan-
guage processing, recent research has introduced it into 
the field of computer vision, aiming to capture wide-
range relationships and integrate overall contextual infor-
mation. Our work aims to apply the Transformer to point 
cloud registration tasks and proposes a novel method 
called Enhancing Point Cloud Registration with Trans-
former (EPCRT). Our method utilizes the Transformer 
architecture to encompass both local and global geomet-
ric features of point cloud data, thereby not only improv-
ing the accuracy and efficiency of point cloud registration 
but also providing new technological means for cultural 
heritage protection.

This paper brings forward significant contributions 
across the following dimensions:

Local Geometric Perception Mechanism We introduce 
an innovative approach for local geometric perception 
and positional encoding, combining local density infor-
mation and geometric angle encoding to enhance the 

flexibility and robustness of positional encoding. This 
mechanism dynamically adjusts positional encoding 
information based on local structures, thereby better rep-
resenting the complex local morphology and structural 
variations of artifacts.

Convolutional-Transformer Hybrid Module We design 
a convolutional-Transformer hybrid module to facilitate 
interactive learning of point cloud features, achieving 
effective fusion of local and global features. This hybrid 
module captures the global semantic information of 
point cloud data while retaining local details, thereby 
improving registration performance and effectively han-
dling the sparsity and irregularity of artifact point cloud 
data.

Experimental Validation and Performance Evaluation 
We conduct extensive experimental validation on mul-
tiple standard datasets, including 3DMatch, ModelNet, 
KITTI, and MVP-RG, and validate it on the Terracotta 
Warriors cultural heritage dataset. Through benchmark-
ing against cutting-edge methods, we demonstrate the 
effectiveness and superiority of the proposed approach. 
Experimental results show that EPCRT exhibits signifi-
cant performance advantages in handling complex mor-
phological and structural variations, sparsity, irregularity, 
and generalization across different datasets.

Related work
Deep feature learning Methods In the field of cultural 
heritage protection, point cloud registration tasks are 
crucial for accurately reconstructing and safeguarding 
artifacts, and the application of deep learning in point 
cloud feature extraction has become increasingly preva-
lent. To address the inadequate registration accuracy of 
unsupervised point cloud registration algorithms in cases 
of partial overlap, Shen et  al. [18] proposed a depend-
able technique for evaluating inliers, enhancing the 
resilience of unsupervised point cloud registration. This 
method aims to effectively differentiate inliers and cap-
ture geometric differences between source point clouds 
and pseudo-target. Specifically, the method comprises 
a Matching Graph Optimization module and an Inlier 
Assessment module. In the Matching Graph Optimi-
zation module, aggregation of matching scores from 
neighbors improves the estimation of point-to-point 
matching graphs. This neighborhood information aggre-
gation helps construct discriminative matching graphs, 
providing high-quality correspondences for generating 
pseudo-target point clouds. The Inlier Assessment mod-
ule calculates inlier confidences for each estimated cor-
respondence based on structural differences between 
source and pseudo-target point cloud. Li et al. [19] pro-
posed a point cloud registration method named QGORE, 
aiming to achieve efficient point cloud registration while 
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ensuring outlier removal. QGORE’s key idea lies in 
employing a simple yet effective voting method to esti-
mate upper bounds through geometric consistency. This 
voting method yields results nearly equivalent to the 
tightness in traditional GORE methods. Moreover, to 
enhance computational efficiency, QGORE proposed a 
single-point RANSAC algorithm that explores “rotation 
correspondences” to estimate lower bounds, significantly 
reducing the iterations required by the traditional three-
point RANSAC algorithm.

To simplify the ego-motion estimation process by 
removing most of the complex parts and focusing on the 
core elements, Vizzo et al. [20] proposed a system based 
on the point-to-point ICP algorithm, combined with 
adaptive thresholding for correspondence registration, 
robust kernel functions, motion compensation methods, 
and point cloud subsampling strategies. The results indi-
cate that this system performs well under various oper-
ating conditions and does not require tuning for specific 
LiDAR sensors.

To address the challenge of reconstructing 3D models 
of artifacts with limited samples and avoiding overfit-
ting, Zhu et  al. [21] proposed a transfer learning-based 
method to recover the 3D shape of artifact faces from a 
single old photograph. This method utilizes UV position 
maps to represent the 3D shape and employs a convo-
lutional neural network to reconstruct the UV position 
map from the 2D image.

End-to-end Methods To enhance the robustness of 
point cloud registration algorithms, Zhang et  al. [22] 
proposed an end-to-end learning approach to learn par-
tial permutation matrices. This approach addresses the 
shortcomings of existing hard assignment methods in 
handling outliers and avoids misleading correspondences 
that can arise in soft matching methods. The algorithm 
introduces a registration framework called the Soft-to-
Hard Matching Procedure (S2H matching process). This 
process consists of two steps: the S-step and the H-step. 
In the S-step, soft matching matrices, which represent 
the matching probabilities between corresponding points 
rather than hard assignments, are learned using tech-
niques like graph signal processing. Then, in the H-step, 
partial permutation matrices are obtained by projecting 
and clipping the soft matching matrices, achieving hard 
assignment and avoiding misleading correspondences.

To address the challenges of partial overlap and differ-
ent datasets, Tan et al. [23] proposed a framework named 
MCLNet that leverages multi-level consistency algo-
rithms. MCLNet first trims points outside the overlap-
ping region using point-level consistency. It introduces 
a multi-scale attention module to ensure consistency 
learning at various levels, thereby establishing depend-
able correspondences. This module captures features at 

different scales, improving the handling of local feature 
matching in point cloud registration. To further enhance 
accuracy, the authors propose consistency learning to 
alleviate the adverse effects of non-coincident points. 
This method helps manage non-overlapping points in 
point clouds, preventing them from adversely affecting 
the matching results and making the overall framework 
more robust and reliable. Wang et al. [24] proposed a reg-
istration method named Neighborhood Multi-compound 
Transformer (NMCT). Firstly, they introduced Neighbor-
hood Position Encoding, which enhances the ability to 
extract relevant local feature information and local coor-
dinate information by selecting spatial points using the 
nearest neighbor method. Secondly, they employed the 
Multi-compound Transformer as the interaction mod-
ule for point cloud information, consisting of both spa-
tial and temporal transformers. The combination of these 
two stages enables NMCT to better handle the complex-
ity and diversity of point cloud data. The algorithm was 
extensively tested on multiple datasets, demonstrating 
excellent generalization and robustness.

Transformer Methods In the past few years, there has 
been notable advancement in point cloud registration 
techniques leveraging Transformer learning. To seam-
lessly integrate geometric and visual data from disparate 
modalities, Wang et  al. [25] introduced a Geometric-
Aware Visual Feature Extractor. This method gradually 
fuses geometric and visual information of RGB and depth 
data using a multi-scale local linear transformation. The 
depth data’s geometric attributes function akin to con-
volution kernels, reshaping the visual characteristics of 
RGB data. This process places the generated visual-geo-
metric features in a normalized feature space, mitigat-
ing visual differences caused by geometric variations and 
obtaining more reliable correspondences.

To address the issue of handling the relationships 
between point clouds in continuous scans during 3D 
point cloud registration, Zaman et  al. [26] proposed a 
method that uses a continual graph network architecture 
with an attention mechanism. This approach improves 
the registration of current point cloud pairs by leveraging 
the learned associations from previous point cloud pairs, 
thereby enhancing the expressiveness of the point clouds. 
The results show that this method significantly improves 
correspondence performance, registration performance, 
and generalization ability.

To enhance the performance of registration within 
expansive 3D environments, Han et  al. [27] introduced 
a model used on Hough voting for rejecting outlier cor-
respondences. This approach utilizes an overlap-based 
correspondence calculation method and extracts depth 
geometric features to enhance registration performance 
under low overlap ratios. Transform parameters are 
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represented in 6D Hough space using triplet voting to 
address ambiguity issues during the matching process. 
Similarity values are employed as features for each vote 
to reduce ambiguity during training. The algorithm com-
bines fully convolutional geometric feature networks and 
Transformer attention mechanisms to reduce noise dur-
ing the voting process. Finally, a binning method is used 
to determine consensus on correspondences and predict 
the final transformation parameters. This method dem-
onstrates superior performance on both indoor and out-
door datasets.

Inspired by the successful results achieved by feature 
learning-based methods, Transformer-based learning 
approaches, and end-to-end techniques, particularly in 
addressing challenges such as complex morphological 
and structural variations, sparsity, irregularity, generali-
zation across different datasets, and outdoor large-scale 
scenes, we introduce a Transformer-based end-to-end 
approach for point cloud registration.

Method
In alignment with the architectures of D3feat [28] and 
Predator [29], the end-to-end algorithm we propose uti-
lizes an encoder-decoder network with a hierarchical 
structure. Additionally, we employ RANSAC to estimate 
rigid transformations, as depicted in Fig. 1.

Problem setting
For two sets of points denoted as source 
P = {pi ∈ R

3 | i = 1, 2, . . . ,N } and target Q = {qi ∈ R
3 | i

= 1, 2, . . . ,M} , both residing in three-dimensional space, 
where N and M denote the number of points. Point cloud 
registration endeavors to align them through an unknown 
3D rigid transformation RT = {R,T } , which comprises 
rotation R ∈ SO(3) and translation T ∈ R

3 . This trans-
formation aims to minimize the disparities between 

corresponding points in the source and target clouds, 
achieving optimal alignment. The formula is as follows:

Here, ϑ symbolizes the ground truth correspondences 
between points in P and Q. The notation �•� signifies the 
Euclidean distance.

Encoder‑decoder
Encoder To process the denser original point cloud P 
and Q, each in RN×3 and RM×3 , we employ the KPConv 
module as our foundation. This module, comprising 
a sequence of residual units and strided convolutions, 
facilitates downsampling, thereby reducing the num-
ber of keypoints to P′ and Q′ , each in RN ′×3 and RM′×3 . 
Additionally, we adopt a shared encoding mechanism 
to extract pertinent features, yielding F ′

P′ and F ′
Q′ , each 

in RN ′×D and RM′×D , where D denotes the feature 
dimension.

Decoder The decoder module follows a conventional 
design, featuring a 3-layer network structure. It incorpo-
rates upsampling, linear transformation operations, and 
skip connections as its primary components.

Transformer
Local Geometric Perception Mechanism (LGP): In tra-
ditional Transformer models, positional encoding is 
typically implemented in a fixed manner, such as sine/
cosine positional encoding. However, for point cloud 
data, where the number of points is variable, traditional 
positional encoding methods are not suitable. Therefore, 
we introduce a Local Geometric Perception Mechanism, 
which dynamically adjusts positional encoding infor-
mation by integrating local density information and 

(1)min
R,T

∑

(pi ,qi)∈ϑ
�R · pi + T − qi�

2
2

Fig. 1 Network architecture of EPCRT. LGP Local Geometric Perception, MHCA Multi-head Cross Attention, FFN Feedforward Neural Network
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geometric angle encoding. The local density information 
allows the adjustment of positional encoding parameters 
based on the actual density, enabling the model to bet-
ter adapt to point clouds of different densities. Addition-
ally, we incorporate geometric angle encoding into the 
Local Geometric Perception Mechanism to enhance the 
model’s performance by capturing angle information of 
points in the point cloud. The Local Geometric Percep-
tion Mechanism enables the model to better understand 
the spatial structure and achieve improved performance 
in point cloud processing tasks.

Local Density Information: Obtaining local density 
information to adjust the parameters of dynamic posi-
tional encoding. Local density information is determined 
by counting the points located in the immediate vicinity 
of each point. By defining the local neighborhood using 
a spherical region, the local density information of each 
point can be obtained. This information is then used to 
adjust the magnitude of dynamic positional encoding, 
allowing it to better adapt to the local structure. The cal-
culation formula is as follows:

Here, N denotes the aggregate number of points within 
the point cloud, with pi indicating the coordinates of 
the i − th point, and K (·) stands as the kernel function, 
defined as follows:

where, r represents the distance between points,σ serves 
as the standard deviation of K (·) , regulating the extent of 
the local neighborhood.

Geometric Angle Encoding: Integrating geomet-
ric angle position information into dynamic positional 
encoding, so that positional encoding not only dynami-
cally adjusts its magnitude based on local density infor-
mation but also fine-tunes positional encoding according 
to angle information. This enables better capturing of the 
local structure and directional information. The calcula-
tion formula is as follows:

where, fi denotes the normal vector of the i − th point, β 
is the reference direction, θi stands as angle between nor-
mal vector and the reference direction, and ηi represents 
the angle information of the i − th point.

(2)ψi =

N
∑

j=1

(

K � pi − pj �
)

(3)K (r) = e
− r2

2σ2

(4)θi = arccos
(

fi · β
)

(5)ηi = [sin(θi), cos(θi)]

Dynamic Fusion Position Encoding: Integrating local 
density information ψi and angle information ηi into posi-
tional encoding, dynamically adjusting the magnitude 
of positional encoding to be correlated with local den-
sity. Specifically, points with higher local density will have 
smaller positional encoding values, while points with lower 
local density will have larger positional encoding values. 
Simultaneously, attention is paid to directional informa-
tion within the point cloud. This way, dynamic positional 
encoding better adapts to the local structure and enhances 
the performance of the model in registration tasks. The 
computation is expressed by the following formula:

where, point cloud data points are represented as 
pi =

(

xi, yi, zi
)

 , posi represents the position of the i − th 

point, posi =
√

x2i + y2i + z2i  , d represent the dimensions 
of positional encoding, D represent the dimensions of 
point cloud data, and αLGP

i  represents local geometric 
positional information.

Convolutional-Transformer Network: Traditional point 
cloud registration methods typically employ iterative local 
search strategies to achieve registration processes, but they 
lack in global correlation and feature learning. To optimize 
the efficiency and accuracy, we introduce a Convolutional-
Transformer network.

Firstly, we employ convolutional operations to extract 
features from the input data, aiming to capture local struc-
tural information. This helps reduce the dimensionality of 
the point cloud data and extract useful feature information. 
Next, we feed the features extracted by convolutional oper-
ations into a Transformer model. The Transformer model 
achieves global correlation and feature learning among the 
point cloud data through its cross-attention mechanism. 
With the multi-head attention mechanism, the Trans-
former is able to simultaneously consider different aspects 
of the point cloud data, thereby enhancing the accuracy 
and robustness.

we define F ′
P′ = (xP

′

1 , xP
′

2 · · · xP
′

N ′) and F ′
Q′ = (x

Q′

1
, x

Q′

2
· · · x

Q′

N ′ ) 
as the input MHAttn(F ′

P′ , F
′
Q′ , F

′
Q′) in the i-th layer, and 

Z′ = (z
P′,Q′

1 , z
P′,Q′

2 · · · z
P′,Q′

N ′ ) as the resulting matrix. The 
expression is given by:

(6)

LGP
i = sin

( posi

100002×d/D×ψi
+ ηi

)

+ cos
( posi

100002×d/D×ψ i
+ ηi

)

(7)
P′,Q′

i =

N ′
∑

j=1

softmax
(

αCross−
i,j

)

x
Q′

j WV ,Q′
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where, αCross−
i,j  represents the unnormalized weight coef-

ficient, characterized as follows:

Finally, the output defines the matching relationship 
between point clouds, as follows:

Loss function
Our proposed network EPCRT is built upon end-to-end 
training and supervised using ground truth data. The loss 
function is as follows:

Feature Loss In line with the methodologies of D3Feat 
[28] and Predator [29], we employ a circle loss function to 
assess feature divergence and regulate point-wise feature 
descriptors in the training. It is defined as follows:

Here, dji denotes the Euclidean distance between features, 

d
j
i =

∥

∥

∥
fpi − fqj

∥

∥

∥

2
 . εp and εn represent the matching and 

non-matching points of PRS (randomly sampled points 
from the source point cloud), corresponding to positive 
and negative regions, respectively. �p and �n denote 
positive and negative areas respectively, and � is a prede-
fined parameter. Similarly, the feature loss LP

FL for the tar-
get point cloud is calculated analogously. The total 
feature loss is expressed as LFL = 1

2 (L
P
FL + L

Q
FL).

Overlap Loss For supervised training, we employ a binary 
cross-entropy loss function, expressed as:

where, Olabel
pi

 represents the overlapping mark at point pi 
of ground truth, characterized as follows:

(8)

Cross−
i,j =

1
√

dhead

(

Conv
(

xP
′

i

)

WQ,P′

+ αLGP
i

)

(

x
Q′

j WK ,Q′
)T

(9)Fi = MLP
(

cat
[

F ′
P′ , z

P′,Q′

i

])

(10)

L
P
FL =

1

NP

NP
�

i=1

log



1+
�

j∈εp

ecβ
j
p(d

j
i−�p) •

�

k∈εn

e�β
k
p (�n−dki )





(11)

L
P
OL =

1

N

N
∑

i=1

Olabel
pi log

(

Opi

)

+

(

1− Olabel
pi

)

log
(

1− Opi

)

(12)

Olabel
pi =

{

1,
∥

∥

∥
TGT
P,Q(pi) − NN

(

TGT
P,Q(pi), Q

)∥

∥

∥
< τ1

0, otherwise

where TGT
P,Q signifies the ground truth rigid transforma-

tion, and NN denotes the nearest neighbor. τ1 serves as 
the threshold for overlap determination. Likewise, the 
overlap loss LQ

OL for the target point cloud is computed 
in a similar manner. The overall overlap loss is formulated 
as LOL = 1

2 (L
P
OL + L

Q
OL).

In summary, the overall loss function is L = LFL + LOL.

Experiments
Dataset and evaluation metrics
To assess the efficacy of EPCRT in handling issues such 
as complex structural variations, sparsity, irregularity, 
and large-scale scenes, we conducted extensive experi-
ments on various datasets, including real indoor scenes 
from 3DMatch [30] and 3DLoMatch [29], synthetic 
datasets ModelNet [31] and ModelLoNet, incomplete 
synthetic dataset Multi-View Partial [32], and outdoor 
large-scale odometry KITTI [33] dataset.

3DMatch The 3DMatch dataset comprises depth 
images from 62 different scenes sourced from datasets 
like 7-Scenes and SUN3D. 3DLoMatch is a dataset gen-
erated from the 3DMatch dataset. Notably, the over-
lap ratios for 3DMatch and 3DLoMatch datasets are 
greater than 30% and between 10% to 30%, respectively.

ModelNet The ModelNet dataset is based on the 
ModelNet40 dataset, a computer-aided design (CAD) 
synthetic dataset containing 12,311 models. ModelLo-
Net is a dataset generated from the ModelNet dataset. 
The overlap ratios for ModelNet and ModelLoNet data-
sets are 73.5% and 53.6%, respectively.

MVP-RG The MVP-RG dataset is derived from a 
synthetic and partially incomplete Multi-View Partial 
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(MVP) point cloud dataset [34]. It consists of 7,600 
pairs models.

Odometry KITTI The Odometry KITTI dataset com-
prises data captured from city, rural, and highway scenes 
using the Velodyne HDL-64E S3 LiDAR scanner. There 
are 11 large scenes.

Evaluation Metrics In line with the approaches of Pred-
ator [29], REGTR [35], and GMCNet [32], we evaluated 
the datasets using Relative Rotation Error (RRE) and Rel-
ative Translation Error (RTE). Additionally, Registration 
Recall (RR), Modified Chamfer Distance (CD), and Root 
Mean Square Error (RMSE) were employed for evaluat-
ing specific datasets. The definitions are outlined below:

where, RGT and tGT represent the ground truth error of 
rotation and translation. CGT

ij  denotes the collection of 
ground truth correspondences.

To distinguish Eq. (16), we specify the RMSE for the 
MVP-RG dataset as follows:

3DMatch and 3DLoMatch
To validate registration performance of EPCRT under 
low overlap, we adopted the training method from Preda-
tor and conducted evaluations on the 3DMatch and 
3DLoMatch datasets.

Additionally, we compared EPCRT with other cutting-
edge techniques, including FCGF [36], Predator [29], 
OMNet [37], REGTR [35], GeoTrans [38], RoReg [40], 
UDPReg [39], MAC [41], and RIGA [42]. Figure 2 shows 
the registration visualization of low overlap datasets. 

(13)RTE =

∥

∥

∥
t − tGT

∥

∥

∥

2

(14)RRE = arccos

(

trace
(

RTRGT
)

− 1

2

)

(15)

CD(P,Q) =
1

|P|

∑

p∈P

min
q∈Qraw

∥

∥

∥
TGT
P,Q(p)− q

∥

∥

∥

2

2

+
1

|Q|

∑

q∈Q

min
p∈Praw

∥

∥

∥
q − TGT

P,Q(p)
∥

∥

∥

2

2

(16)RMSE =

√

√

√

√

1
∣

∣

∣
CGT
ij

∣

∣

∣

∑

(p,q)∈CGT
ij

∥

∥

∥
TGT
P,Q(p)− q

∥

∥

∥

2

2

(17)LRMSE =
1

N

N
∑

i=1

∥

∥

∥
TGT (pi)− T (pi)

∥

∥

∥

2

As depicted in Table  1, our proposed algorithm not 
only outperforms other algorithms in terms of the three 
registration metrics on the sparsity datasets, but it also 
exhibits lower parameter count and average processing 
time. In the comparison of the Registration Recall (RR) 
metric with MAC, UDPReg, RoReg, and GeoTrans algo-
rithms under 3DLoMatch, our proposed algorithm dem-
onstrates improvements of 16.3%, 11.8%, 4.9%, and 2.1% 
respectively. 

ModelNet and ModelLoNet40
To further validate registration performance of EPCRT, 
we extended the training phase with the Predator and 
subsequently performed assessments on both the Mod-
elNet and ModelLoNet datasets. Additionally, we com-
pared the EPCRT algorithm against other cutting-edge 
techniques, including PointNetLK [43], DCP [44], 
RPM-Net [45], Predator[29], OMNet [37], REGTR 
[35], UDPReg[39], and HECPG [46]. Figure 3 shows the 

Fig. 2 Registration visualization on 3DMatch, 3DLoMatch
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registration visualization of the ModelNet and ModelLo-
Net datasets, respectively.

From Table  2, it is evident that our EPCRT achieves 
superior registration outcomes compared to other algo-
rithms on the ModelNet and ModelLoNet datasets. 
While our proposed algorithm slightly lags behind the 
UDPReg algorithm in terms of the Relative Translation 
Error (RTE) metric, overall, our proposed algorithm 
exhibits a clear advantage in handling registration tasks. 

MVP‑RG
To confirm the registration performance of our EPCRT 
algorithm in incomplete and irregularity models, we 
trained it using the Predator method and conducted 
evaluations. Additionally, we compared the proposed 
algorithm against other cutting-edge techniques, includ-
ing DCP [44], RPM-Net [45], GMCNet [32], IDAM [47], 
Predator [29], and DSMNet [48]. Figure 4 shows the reg-
istration visualization of the MVP-RG dataset.

From Table 3, it is apparent that our EPCRT algorithm 
achieves superior results on MVP-RG dataset compared 
to other algorithms. Through performance comparison 
with other algorithms, our proposed algorithm demon-
strates a clear advantage in handling point cloud registra-
tion tasks under incomplete and irregularity scenarios.

Outdoor dataset: odometry KITTI
To confirm the registration performance of EPCRT algo-
rithm in large-scale scenes, we trained it using the Preda-
tor method and conducted evaluations on Odometry 

Table 1 Performance on 3DMatch and 3DLoMatch datasets

The best results are in bold

Method 3DMatch 3DLoMatch Param.(M) Time(s)

RR(%) RRE(◦) RTE(m) RR(%) RRE(◦) RTE(m)

FCGF[36] 85.1 1.949 0.066 40.1 3.147 0.100 8.76 0.16

D3Feat[28] 81.6 2.161 0.067 37.2 3.361 0.103 24.3 0.40

OMNet[37] 90.5 4.166 0.105 8.40 7.299 0.151 – –

Predator[29] 89.0 2.029 0.064 59.8 3.048 0.093 7.43 0.54

REGTR[35] 92.0 1.567 0.049 64.8 2.827 0.077 – –

GeoTrans[38] 92.0 1.808 0.063 74.0 2.934 0.089 9.83 0.23

UDPReg[39] 91.4 1.642 0.064 64.3 2.951 0.086 – –

RoReg[40] 93.2 1.840 0.063 71.2 3.090 0.093 – –

MAC[41] 93.7 1.890 0.062 59.8 3.500 0.098 – –

RIGA[42] 89.3 1.798 0.056 65.1 3.016 0.089 – –

Our 94.3 1.497 0.041 76.1 2.765 0.068 7.5 0.16

Fig. 3 Registration visualization on ModelNet, ModelLoNet
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KITTI dataset. Additionally, we compared the proposed 
algorithm against other cutting-edge techniques, includ-
ing FCGF [36], D3Feat[28], Predator [29], SpinNet [49], 
HRegNet [50], GeoTrans [38], SHMDGR[22], GeDi [51], 
MAC[41], SC2 -PCR++ [52] and RIGA [42]. Figure  5 
shows the registration visualization of large-scale scenes 
dataset.

From Table  4, we can see that our EPCRT algorithm 
achieves superior registration results on the KITTI 
Odometry dataset compared to other algorithms. 
Through performance comparison with other algorithms, 

Table 2 Performance on ModelNet and ModelLoNet datasets

The best results are in bold

Method ModelNet ModelLoNet

CD RRE(◦) RTE(m) CD RRE(◦) RTE(m)

PointNetLK[43] 0.0235 29.725 0.297 0.0367 48.567 0.507

DCP[44] 0.0117 11.975 0.171 0.0268 16.501 0.3

RPM-Net[45] 0.00085 1.712 0.018 0.005 7.342 0.124

OMNet[37] 0.0015 2.947 0.032 0.0074 6.517 0.129

Predator[29] 0.00089 1.739 0.019 0.0083 5.235 0.132

REGTR[35] 0.00078 1.473 0.014 0.0037 3.93 0.087

UDPReg[39] 0.0306 1.331 0.011 0.0416 3.578 0.069
HECPG [46] – 1.472 0.016 – 3.371 0.089

Our 0.0006 1.132 0.013 0.0035 1.585 0.124

Fig. 4 Registration visualization on MVP-RG

Table 3 Evaluation results on MVP-RG dataset

The best results are in bold

Method RRE(◦) RTE(m) LRMSE(%)

DCP [44] 30.37 0.273 0.634

RPM-Net [45] 22.20 0.174 0.327

IDAM [47] 24.35 0.280 0.344

Predator [29] 10.58 0.067 0.125

DSMNet [48] 14.17 0.158 −

GMCNet [32] 16.57 0.174 0.246

Our 7.33 0.061 0.022

Fig. 5 Registration visualization on Odometry KITTI
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our algorithm demonstrates a clear advantage in han-
dling point cloud registration tasks in large-scale scene. 

Cultural heritage dataset
To evaluate the registration performance of the proposed 
algorithm in cultural heritage datasets, we first validate it 
using the dataset of the Terracotta Warriors in the Mau-
soleum of the First Qin Emperor collected by Northwest 
University, as shown in the Figs. 6 and 7. Additionally, we 
compared the proposed algorithm against other cutting-
edge techniques, including Predator [29], as shown in 
Table 5.

From the Figs. 6, 7 and Table 5, it can be seen that there 
are good registration results in the head, feet, leg, and 
arms of the Terracotta Warriors.

Table 4 Evaluation results on Odometry KITTI dataset

The best results are in bold

Method RTE(cm) RRE(◦) RR(%)

FCGF [36] 9.5 0.30 96.6

D3Feat [28] 7.2 0.30 99.8
SpinNet [49] 9.9 0.47 99.1

Predator [29] 6.8 0.27  99.8
HRegNet [50] 12 0.29 99.7

GeoTrans [38] 7.4 0.27 99.8
GeDi [51] 7.5 0.33 99.8
SHMDGR[22] 9.3 0.28 97.6

MAC [41] 8.4 0.40 99.5

SC2 -PCR++ [52] 7.1 0.32 99.6

RIGA [42] 13.5 0.45 99.1

Our 6.7 0.25 99.8

Fig. 6 Registration visualization of 3DMatch → Terracotta Warriors data. (a stands for head registration; b stands for arm registration; c stands 
for body registration); d stands for feet registration)
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Ablation study
To validate the impact of individual module selection 
within EPCRT model, we conducted ablation study using 
the 3DMatch and 3DLoMatch datasets.

From Table  6, it is evident that on top of the original 
encoder-decoder(Base) architecture, all four individual 

Fig. 7 Registration visualization of 3DMatch → Terracotta Warriors data

Table 5 Evaluation results on Terracotta Warriors dataset

The best results are in bold

Method RRE(◦) RTE(cm) RR(%)

Predator [29] 1.56 10.74 65.91

Our 0.97 7.35 88.64

Table 6 Ablation of different modules

The best results are in bold

Method 3DMatch 3DLoMatch

RR(%) RRE(◦) RTE(m) RR(%) RRE(◦) RTE(m)

Base 93.2 2.155 0.071 71.1 3.071 0.090

+LDI+C-TNet 93.8 1.854 0.063 73.3 2.878 0.078

+GAE+C-TNet 93.6 1.863 0.066 73.7 2.976 0.085

+LGP+Cross 94.0 1.610 0.059 74.9 1.869 0.0.74

+LGP+C-TNet 94.3 1.497 0.041 76.1 2.765 0.068
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modules(Local Density Information: LDI; Geomet-
ric Angle Encoding: GAE) exhibit certain performance 
improvements. Among these, the proposed Local Geo-
metric Perception Mechanism (LGP) and the Convolu-
tional-Transformer Network(C-TNet) show significant 
enhancements in performance. Furthermore, the com-
bined utilization of the proposed modules yields the best 
overall performance. 

Conclusion
This paper proposes a Transformer-based registration 
method, named Enhancing Point Cloud Registration 
(EPCRT), aiming to address challenges in cultural her-
itage protection, such as complex structural variations, 
sparsity, irregularity, and generalization across different 
datasets. By introducing dynamic adjustment mecha-
nisms and convolutional-Transformer hybrid modules, 
our approach can flexibly capture both local and global 
geometric features and achieve effective feature fusion 
and interactive learning. Through extensive experimen-
tal evaluations on multiple benchmark datasets, we 
showcase the effectiveness and superiority of EPCRT. 
Experimental results show that EPCRT exhibits sig-
nificant performance advantages in handling complex 
structural variations, sparse and irregular scenes, and 
generalization to different datasets. Compared to tra-
ditional methods, EPCRT can align point clouds more 
accurately and demonstrate better generalization across 
different datasets, which is crucial for the accuracy and 
reliability of cultural heritage protection. Future research 
directions include further optimizing the performance of 
the EPCRT method, particularly in enhancing its effec-
tiveness in handling the internal structure of complex 
cultural heritage data.
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