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Abstract 

Control of temperature and relative humidity in storage areas and exhibitions is crucial for long-term preservation of 
cultural heritage objects. This paper explores the possibilities for developing a proactive system, based on a machine-
learning model (XGBoost), for predicting the occurrence of unwanted indoor environmental conditions: either a too 
high or a too low relative humidity, within the forthcoming 24 h. The features used in the model were hourly indoor 
and outdoor climate recordings, and it was applied to two indoor heritage environments; a storage facility and a 
church building. The test accuracy (f1-score) of the model was good (0.93 for high RH; 0.93 for low RH) when applied 
to the storage building, but only 0.78; 0.62 (high RH; low RH) for the church building test. Challenges encountered 
include difficulties in obtaining good historical climate data sets for training and testing the model, and the depend‑
ency of external IT systems, which, if they fail, inactivates the model without a warning. Several issues call for more 
research: A desirable improvement of the model would be predictions for periods longer than 24 h ahead, still main‑
taining a high test accuracy. Further perspectives of using machine learning for indoor environmental forecasting 
could be for indoor air pollution, or energy consumption due to climate control.
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Introduction
Heritage institutions, such as galleries, libraries, archives, 
and museums (GLAM) strive to safeguard and prolong 
the useful lifetime of the cultural artefacts in their 
collections. Typically, the main part of the collections is 
in storage, and heritage preservation in large depends 
on the environmental control in those facilities. As early 
as 1979, it was stated by UNESCO that “probably more 
harm has been done to museum collections through 
improper storage than by any other means” [1].

Thus, inappropriate temperature and humidity levels 
speed up the deterioration of physical materials and 
may cause irreparable damage to cultural artefacts. 
Chemical decay of organic objects is accelerated by warm 
and humid conditions, while a too dry atmosphere may 
cause mechanical damage such as shrinkage, warping, 
or cracks. Climate also influences the living conditions 
of insects, pests and microorganisms, and high humidity 
may accelerate such attacks. Different materials have 
different optimal storage conditions; however, most 
collections are well preserved at a cool temperature 
(below 20  °C) and a moderate (around 40–60%) relative 
humidity (RH). Additional damaging factors of the 
environment are light and UV, which fades colour 
and decomposes material’s surfaces, and air pollution, 
which initiates several deterioration processes, ranging 
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from metal and stone corrosion to discolouration and 
brittleness of organic materials such as paper and textile 
[2]. In summary, management of heritage storage as well 
as exhibition environments is a fundamental collection 
care task, typically realised by more or less advanced 
heating, ventilation, and air conditioning (HVAC) 
systems.

To control climate set points and optimise the 
environment in buildings used for cultural heritage 
preservation, managers need to assess and understand 
the environmental conditions. Therefore, it is best 
practice to regularly  monitor the indoor environment, 
of which temperature and relative humidity are the main 
factors. There are international standards and guidelines 
directed at different types of heritage collections [3–5].

Traditionally, indoor air quality is monitored by 
measuring important features of the environment, 
such as temperature, relative humidity, sometimes air 
pollutants and light levels, and manually analysing the 
collected data (climate curves, exceedance of set limits, 
observations of minima and maxima, etc.,) to discover 
problematic behaviours. Modern HVAC systems can 
automatically monitor and control the environment and 
based on pre-setting, e.g., of humidity, they can provide 
alerts in case the specifications are exceeded.

Thus, facility managers usually control the building 
environment by analysing data in a retrospective way. 
They monitor the environment and act when they get 
indications of unwanted environmental conditions, such 
as too high or too low levels of relative humidity or highly 
fluctuating humidity levels. In other words, mitigation 
actions are triggered by environmental events that have 
already occurred and they may therefore be initiated too 
late, when risk is imminent or damage to cultural heritage 
has already taken place. Ideally, managers should be able 
to execute actions and adjust the environment before any 
adverse conditions occur, thereby preventing the risk of 
harming the cultural heritage collections.

In many fields, scientists are increasingly using machine 
learning (ML) to improve data analysis. ML is a subfield 
of computer science and artificial intelligence, based on 
mathematics and statistics [6]. It encompasses widely 
used technologies, such as systems that recommend 
goods based on data about users’ past preferences and 
behaviour, or systems that support weather forecasts 
based on analysis of previously measured meteorological 
data. Due to the ability to solve complex non-linear 
problems, ML techniques are often used in prediction 
models.

The term machine learning stems from the way 
the computer programs, also known as algorithms, 
are developed. Instead of directly programming the 

algorithms to do a task, they automatically adjust the 
way they carry out a task by processing data and finding 
patterns within it. In this sense, we say that the algorithms 
learn from data. This analogy between how humans learn 
and how the algorithms are developed is widely used in 
ML jargon. For example, it is common to refer to data as 
‘experience’ or ‘observations’ that algorithms are ‘trained’ 
on to solve a problem. ML tasks can further be divided 
according to whether they perform a classification or 
a regression, whether they are based on decision trees, 
clustering, deep learning, or the like.

In this study, we made use of Time series machine 
learning models, which are based on continuous or 
repeated measurement data and used this historical data, 
e.g., from a thermo-hygrometer, to predict future values 
(in this case temperature and relative humidity).

Numerous studies within the cultural heritage field 
use ML, typically for tasks around automatic text 
recognition, annotation and classification of images, and 
recommendations based on user preferences. In the field 
of conservation science and heritage preservation studies 
are more limited. Typically, they focus on identification 
and classification of materials e.g., pigments [7], or 
structures e.g., wood types [8]. Other studies use ML 
to monitor cultural heritage collections or sites for 
abnormalities. Thus, Zou et al. used ML (deep learning) 
on image data to support inspection of historical 
buildings in the Forbidden City in China and locate 
missing or impaired heritage components [9], while 
Kejser et al. used ML for classifying the acidity of historic 
paper samples [10]. Pei et al. [11] used machine learning 
to predict household mite infestation based on indoor 
climate conditions and found that the extreme gradient 
boosting (XGBoost) model was the most suitable method 
when compared to other methods such as logistic 
regression and support vector machine (SVM).

For non-cultural heritage buildings, ML algorithms 
have been used in modern ‘smart buildings’, often with 
the aim of energy savings. The development here is 
mainly on forecasting indoor temperature, and in that 
regard balancing ventilation and heating/cooling units for 
as high a thermal comfort as possible while consuming 
a minimum of energy [12, 13]. Fan et al. [14] used deep 
learning based methods to predict the cooling load of a 
building 24 h ahead.

However, the special demand for prediction of indoor 
humidity and air pollution levels, which is central for 
GLAM institutions, is less explored. Pernia et  al. [15] 
used ML (k-means clustering) to support the analysis of 
the indoor air quality of a Belgian church and identify 
periods of elevated risks for heritage conservation. The 
authors concluded that the ML method found patterns 
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in the data that could help select the best mitigation 
action and alert guardians about potential environmental 
risks. Based on an analogy between a human being and a 
building, La Russa [16] envisions that new methodologies, 
including wireless sensor networks, artificial intelligence, 
machine learning and visual programming language, can 
be used to collect and analyse building data and propose 
solutions based on decision-making models. This 
concept was further developed by La Russa & Santagati 
[17] in relation to museum collections stored in historic 
buildings, with the goal to improve the conservation of 
the collections as well as the architecture.

The aim of the present study was to use ML for early 
warning of unwanted environmental conditions by 
processing environmental data as it is recorded daily, 
and by combining indoor and outdoor environmental 
datasets. Our hypothesis was that based on 
patterns within the data, probabilities for upcoming 
environmental events or periods of incorrect levels can 
be forecasted so that preventive actions can be initiated 
before it affects the preservation of cultural heritage 
collections. We used a modern museum storage hall, 
and a historic church building, as examples for testing a 
ML model, built on past indoor climate data collected at 
the two sites. The objective of this work was also to give 
conservators and conservation scientists an idea of how 
machine learning can improve data analysis, and advance 
cultural heritage preservation.

Methods
Test sites
Two indoor heritage sites were selected for the prediction 
of incidents where the relative humidity varied beyond 

conservation set points. Both were located in Zealand, 
Denmark; one being a museum storage hall, and the 
other a rural church. Denmark has a temperate climate 
(Köppen classification Dfb), where the annual average 
temperature is 8 °C and the relative humidity is 82% RH.

The storage hall is a 1500  m2 (11,000  m3) purpose-
built museum storage facility from 1990 belonging to 
the National Museum of Denmark (Fig.  1). It is located 
in the suburban area Ørholm north of Copenhagen 
(coordinates: 55.800855, 12.506972). The facility houses 
a mixed collection of larger cultural history objects, 
such as vehicles, boats, furniture, and sculptures, made 
of wood, metal and stone. The hall, which consists of 
three interconnected sections, is climatically controlled 
by semi-passive means, i.e., it has a thermally well-insu-
lated building envelope with a low natural ventilation 
rate at 0.1 per hour, which minimises the influence of 
weather, aided by a mechanical humidity control sys-
tem. For conservation reasons the indoor climate is set 
to be controlled within the interval of 40–60% RH, while 
temperature is allowed to vary with the seasons. How-
ever, the relative humidity in summer and autumn often 
exceeds the limit of 60%. The storage building was pre-
viously described in detail by Padfield [18], and Ryhl-
Svendsen et al. [19].

The other site was a mediaeval church located in the 
village of Annisse (coordinates: 55.982406, 12.170868) 
(Fig.  2). The original church building dates from the 
twelfth century, with vaults added around 1400, and a 
new roof from 1967. It is a typical Danish country-side 
church with massive stone, brick and lime mortar walls 
and vaults, of about 120 m2 (500 m3). The air exchange 
rate was not measured, but based on previous experience 

Fig. 1  Storage Hall P at the National Museum of Denmark, Ørholm facility—outdoor (left) and indoor (right). The indoor climate sensors are located 
in the middle of each of the three sections of the building, near the mezzanine
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it is estimated to be less than 0.5 per hour. The vaults 
have been thermally insulated in the attic by a perlite-
based mortar, and the church room is heated by electric 
elements to maintain about 20  °C in the cold seasons 
[20]. Although the heating of the church indirectly con-
trols the relative humidity, there is no strict climate con-
trol. We chose an upper and lower relative humidity limit 
of 75% and 45% RH, respectively, as the conservation 
limits for the Annisse Church ML model. Acknowledging 
the concept of historical climate defined in EN 15757 [21] 
the limits are typical for Danish country-side churches 
without strict climate control. RH levels above 45% pre-
vents desiccation of materials and levels below 75% RH 
prevents mould growth. A climate within this interval is 
not uncommon in such historical buildings with little cli-
mate control, on the other hand, exceeding beyond this is 
still expected several times a year.

Historical data sets
The temperature and relative humidity of the Ørholm 
storage hall have been monitored since it was put in 
use in 1990, however by different monitoring set-ups 
and instruments over time. We chose to focus on the 
data set recorded by the current building management 
control (BMS) sensors, which were installed in 2008, 
in order to avoid instrumental bias from recordings 
by different sensors over time. At the time of training 
our ML algorithm in 2021, the data set consisted of 
about 12.5 years of continuous temperature and relative 
humidity recording, with measurements time-stamped 
at 1-h intervals (almost 110,000 readings). The histori-
cal climate data for the  Ørholm storage facility used 

for building and testing the machine learning model is 
shown in Fig. 3. The store is not heated, so the tempera-
ture is allowed to drift slowly over the seasons, within 
the interval 10–23  °C (average 16  °C). The relative 
humidity is controlled mechanically to remain within 
40–60% RH, which it was during the monitoring period 
for more than 90% of the time (average 51% RH). How-
ever, exceedances occur, and extreme single episodes 
over the 12.5 year monitoring period were 30 and 72% 
RH.

The indoor climate of Annisse Church is normally not 
monitored, however, a recent data set from a 4.2  year 
monitoring period (March 2014–May 2018) was avail-
able from a previous research project [20]. During 
this period temperature and relative humidity were 
recorded inside the nave at 1-h intervals (about 36,800 
readings). Although there was almost a four-year gap 
up to the current application of our ML algorithm at 
the site, there had been no alterations to the building 
or the heating regime, so we considered the data  set 
still representative of the present indoor climate. The 
church is heated for comfort, and for 90% of the time 
the temperature was between 16 and 22  °C (average 
19 °C), while the average relative humidity was 60% RH. 
Relative humidity varies considerably between seasons; 
lowest in late winter and highest in late summer/early 
fall. However, for more than 90% of the time it remains 
within the chosen conservation limits of 45–75% RH. 
The annual magnitude was about 35–80% RH, with 
extreme single episodes over the 4.2  year monitoring 
period of 31 and 84% RH. The extreme low RH episodes 
occurred during winter, when outside dry air enters 
the heated church reducing RH further; while the high 

Fig. 2  Annisse Church—outdoor (left) and indoor (right). The indoor climate sensor is located in the nave at the pulpit
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RH episodes occurred late summer when very humid 
outdoor air (possibly due to rain), enters the colder 
church, cooling the air and thus increasing RH further. 
The Annisse Church indoor climate data sets used for 
building and training the ML model is shown in Fig. 4. 
The dataset contains measured temperature and rela-
tive humidity, and the calculated absolute humidity, for 
indoors and outdoors.

Outdoor climate data were acquired for the same 
periods as the indoor data sets, from nearby weather 
stations of the national Danish Meteorological Institute 
(DMI). Data was collected in the same format as for 
the indoor data sets; time-stamped air temperature 
and relative humidity records at 1-h intervals. For the 
Ørholm storage building the nearest DMI weather 
station was Jægersborg (4  km), and for Annisse Church 

Fig. 3  The historical climate data for Ørholm storage facility. Units: Temperature (°C); Relative humidity RH (%), Absolute humidity AH (g/m3) 
calculated from T and RH [see footnote 1]

Fig. 4  The historical climate data for Annisse Church. Units: Temperature (°C); Relative humidity RH (%), Absolute humidity AH (g/m3) calculated 
from T and RH [see footnote 1]



Page 6 of 12Boesgaard et al. Heritage Science          (2022) 10:176 

it was Sjælsmark (19 km). Even though small short-term 
differences between the outdoor measurements at the 
weather stations and the sites may occur, for example 
due to a very local rainstorm, these are considered 
insignificant on a 24-h and longer basis. This is also 
supported by the fact that the climate data from the 
two weather stations we used are largely uniform, even 
though there is also a certain distance between them 
(approx. 15 km).

Climate monitoring
At the Ørholm site data was acquired through the 
BMS connected climate sensors, used for the humidity 
control system (Hygromaxx S Transmitters, Novasina, 
Lacerna, Switzerland). Climate readings were accessible 
at a central BMS server, which could be accessed in real-
time via an application programming interface (API). 
Historical data was archived by The National Museum in 
a library at eclimatenotebook.com (Image Permanence 
Institute, Rochester, USA).

In Annisse the historical data was recorded by battery-
driven climate sensors with data loggers (TinyTag 2 Plus, 
Gemini Dataloggers, Chichester, UK), and at present by 
a narrow-band IoT (SIM card) connected climate sensor, 
which is accessed in real-time by API (Roomalyzer, IoT 
fabrikken Aps, Roskilde, Denmark).

All sensors are electronic, including thermistor 
temperature sensors and polymer-based chips humidity 
sensors. HygroMaxx S has an accuracy of ± 0.5  °C and 
± 1.5% RH, and TinyTag2 Plus an accuracy of ± 0.5  °C 
and ± 3.0% RH. The loggers were placed in the middle of 
the rooms shielded from heat radiation and ventilation 
and away from surfaces with a temperature different 
from the air (EN 16242) [22].

The DMI weather station data (historical and real-time) 
was accessed through the DMI Open Data web portal 
(https://​www.​dmi.​dk/​frie-​data/).

All the historical climate data from both sites, as well as 
the climate data harvested from DMI were time stamped 
at 1-h intervals. For consistency this measurement 
frequency was maintained in the current ongoing climate 
monitoring.

Machine learning model
A prototype model was developed for predicting the 
indoor air quality (in this case the relative humidity). The 
model was based on data from the Ørholm facility:

•	 Outdoor humidity, hourly observations;
•	 Outdoor temperature, hourly observations;
•	 Indoor humidity, hourly observations; and
•	 Indoor temperature, hourly observations.

Since there are three climate sensors in the Ørholm 
facility, the indoor observations were converted to their 
medians to eliminate any outliers from drifting sensors. 
In order to possibly enhance the precision of the model 
the calculated absolute humidity was also added to 
the data (for outdoor and indoor median value).1 The 
resulting data  set for Ørholm consisted of 105,797 
observations from 2009-01-01 to 2021–03-02.

The aim of the model was to predict whether the 
relative humidity would be outside the acceptable interval 
(40–60% RH) during the following 24  h from a given 
point in time. The 24 h forecast window was selected as 
the minimum amount of time to be useful in practice, 
and provide sufficient time for a facility manager to take 
action (e.g., engage extra humidity control equipment), 
while still being short enough that it could be expected to 
be an achievable goal modelling-wise.

As the primary data are time series (data points 
ordered in time), we used time series analysis to extract 
statistical information [23]. We started by doing time 
series specific exploratory data analysis and combined 
this with domain knowledge to assess what was possible. 
The Python programming language package tsfresh [24] 
was used to calculate and test a large number of time 
series characteristics against the prediction targets, based 
on the available data. The dataset was extended with the 
following features found significant by tsfresh:

•	 24 h mean of the indoor median humidity;
•	 24  h exponential moving average of the indoor 

median humidity;
•	 24 h median of the indoor median humidity; and
•	 24 h minimum and maximum of the indoor median 

humidity.

The features produced by tsfresh are based on the 
provided data, which means that no new data is added, 
but the features provided by tsfresh can enhance the 
signal and reduce noise by focusing on different aspects 
of the original data.

We only selected some of the features produced by 
tsfresh, namely the simplest features with the best 
signal so as to produce an explainable model that still 
performed well. Based on this dataset the model was 
built. As it turned out that the outdoor climate data 
did not improve the model performance in the Ørholm 
case it was excluded. We worked with two standard 
ways of building models for time series analysis, namely 

1  The absolute humidity of air (AH) was calculated from the meas-
ured temperature and relative humidity by using the formulae [31]: 
AH = (1322.9 ∗ (RH/100) ∗ EXP(T/(T+ 238.3) ∗ 17.2694)/(T+ 273.16))   , 
where T is the air temperature in degree C; RH is the relative humidity of air 
in percent; and AH is the absolute humidity of air in g/m3.

https://www.dmi.dk/frie-data/
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RandomForest [25] and XGBoost [26]. RandomForest is 
relatively easy to comprehend, compared to XGBoost, 
but sometimes the latter yields slightly better results.

It is standard practice to build ML models in the 
following manner: First, “hold off” some data from the 
model building, in order to be able to evaluate the model’s 
performance—a standard split is to use 80% of the data 
set for training, and the remaining 20% for evaluation 
(this is done to ensure the model is able to perform on 
unseen data, corresponding to how the model would be 
used for prediction in a system). The newest (last) 20% 
of data is used for testing to ensure the model is trained 
on historical data only. Then feed the training data into 
the model, and train it on that. This results in a model, 
which then can be evaluated using the evaluation data (or 
test data, which it is often called in literature). For each of 
the template models (RandomForest/XGBoost), there are 
some “hyperparameters” that should be decided upon. 
We used a tool, GridSearchCV from sklearn [27], to test 
a number of combinations of these hyperparameters, 
and reported the combination that gave the best model 
performance. In the same way, a model (XGBoost) was 
trained on historic climate data from Annisse Church. 
Results of the models’ performance are reported in the 
“Results and discussion” Section below.

Early warning pipeline
The ML model engages in a system consisting of a num-
ber of subsequent steps, from which the prediction based 
on climate monitoring may issue an early warning on an 
upcoming incorrect humidity. This is done in a pipeline 
of tools which are initiated to ensure that the system 
actively monitors and harvest the climate data from the 
sites (Fig.  5). There are a number of practical decisions 
involved here, but in short; the model is stored and is 
running the predictions on an internal server (at DBC 
Digital’s infrastructure).

Climate data is fetched daily from the local servers 
or data cloud solutions at the museum, church or 

meteorological institute according to the following steps 
(exemplified below by the Ørholm site at The National 
Museum of Denmark):

•	 At a specified time in the morning, a job is initiated 
automatically, to start the process.

•	 A program logs on to the required virtual private 
network (VPN) to fetch daily measurements from the 
Ørholm facilities, stored on the National Museum of 
Denmark’s BMS. If, for some reason, this procedure 
fails, a notification is sent to the relevant developers 
who then need to act on this, because this is critical 
to the system.

•	 Another program is started, which initially loads the 
model (XGBoost), and feeds it the previous day’s 
measurements from Ørholm. The result of this is a 
prediction of whether there will be too high (or low) 
humidity in the coming 24-h period.

•	 If an extreme humidity level is predicted, an email 
is sent to the relevant facility manager who can then 
act proactively. If no extreme levels are predicted, a 
notification about this is sent to a developer, who is 
thus informed that the pipeline has been executed 
successfully.

Results and discussion
ML model testing and evaluation
The models were evaluated on the ability to predict for 
the coming 24  h if the indoor relative humidity would 
be too high or too low (humidity episodes), as compared 
with the defined thresholds. The evaluation factors for 
the prediction were the precision (the fraction of relevant 
episodes among the retrieved episodes), the recall (the 
fraction of relevant episodes that were retrieved), and 
the f1-score, which expresses the test accuracy in a single 
metric (the harmonic mean of the precision and recall). 
The data used for testing the models is described in the 
Section “Historical data sets”.

Fig. 5  The system of subsequent steps forms the model’s early warning pipeline
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As mentioned above (Machine learning model) a model 
was first built based on RandomForest from sklearn, fol-
lowed by one based on XGBoost. For completeness, 
in the example of Ørholm (including AH) we show the 
evaluation numbers for both, to demonstrate that in our 
case XGBoost performed better, and by how much (see 
Tables 1 and 2). Note that since the outdoor climate data 
did not influence the model’s performance it was omit-
ted in the Ørholm case.  As can be seen, the numbers 
for XGBoost are better for the Recall, meaning that this 
model more often detects a situation where humidity will 
be too high or low in the coming 24 h period.

Table  3 shows the results of XGBoost excluding AH. 
Comparing the results in Tables 2 and 3 reveals that the 
model’s overall accuracy is not improved by AH.

For the example of Annisse Church two XGBoost 
models were tested; one based on all six input parameters 
(indoor and outdoor temperature, relative and absolute 
humidity: Table  4), and another one only on humidity 
parameters (excluding temperature: Table 5).

XGBoost results in a lower performance in the Annisse 
Church case compared to Ørholm (see Tables 2 and 4). 
This may be due to the larger volume of data from the 
Ørholm facility compared to Annisse Church. However, 
there can be other environmental related reasons that 
can explain the better performance such as the building’s 
construction, the surrounding conditions, and the 
different conservation limits.

In the case of the Annisse Church we have not yet had 
the chance to evaluate thoroughly the significance of 
including/excluding the outdoor temperature and RH 
on the performance of the model, but excluding outdoor 
temperature seems to improve the overall accuracy.

Evaluation of the early warning system
Regarding the model used for the Ørholm data, the 
model was built and applied to real-time data monitor-
ing starting from November 4th, 2021, and for Annisse 
Church the model was built and applied on April 17th, 
2022. Since then, the models have retrieved data once a 
day, performed the analysis, and, if the relative humid-
ity has been predicted to exceed the set limits within the 
next 24 h, a warning message has been sent by email.

For Ørholm two warnings have been issued, on 
November 11th and November 19th (Fig.  6). From 
Annisse Church, no warnings have been issued yet (as of 
June 2022).

When analysing the indoor climate of the Ørholm 
building since the model was applied, we found that 
besides the two issued warnings in November 2021, a 
third episode also in November was not identified, nor 
was an episode in January 2022 (although very brief, and 
just above 60% RH). This is shown in Fig. 6, with green 
arrows pointing out retrieved episodes, and red arrows 
pointing to the missed ones. This 50/50 success rate is 
poor compared to the rather good f1-score of 0.92. How-
ever, as the statistical basis is very small (four episodes) 

Table 1  Evaluation for the model based on RandomForest, 
Ørholm storage hall

The model predicted episodes of indoor relative humidity outside 40–60% RH

Prediction for next 24 h Precision Recall F1-score

Humidity too high (> 60% RH) 0.84 0.80 0.82

Humidity too low (< 40% RH) 0.87 0.90 0.88

Table 2  Evaluation for the model based on XGBoost, including 
AH, Ørholm storage hall

The model predicted episodes of indoor relative humidity outside 40–60% RH

Prediction for next 24 h Precision Recall F1-score

Humidity too high (> 60% RH) 0.93 0.92 0.93

Humidity too low (< 40% RH) 0.92 0.93 0.93

Table 3  Evaluation for the model based on XGBoost, excluding 
AH, Ørholm storage hall

The model predicted episodes of indoor relative humidity outside 40–60% RH

Prediction for next 24 h Precision Recall F1-score

Humidity too high (> 60% RH) 0.95 0.91 0.93

Humidity too low (< 40% RH) 0.96 0.95 0.95

Table 4  XGBoost model evaluation for Annisse Church, for 
prediction of episodes of indoor relative humidity outside 
45–75% RH

This model was based on all input parameters (temperature, relative humidity, 
absolute humidity, indoors and outdoors)

Prediction for next 24 h Precision Recall F1-score

Humidity too high (> 75% RH) 0.74 0.83 0.78

Humidity too low
(< 45% RH)

0.96 0.29 0.45

Table 5  XGBoost model evaluation for Annisse Church, for 
prediction of episodes of indoor relative humidity outside 
45–75% RH

In this model temperature was excluded, so the results are based only on 
relative humidity, absolute humidity, indoors and outdoors

Prediction for next 24 h Precision Recall F1-score

Humidity too high (> 75% RH) 0.73 0.83 0.78

Humidity too low (< 45% RH) 0.98 0.45 0.62
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it is too early to conclude anything from this yet. It will 
be interesting to follow the predictions of the model over 
the next years’ time. The system could be modified to use 
a lower threshold for warnings. This would be expected 
to improve the recall, but also result in false warnings 
(lower precision).

Based on the historical climate data from the Annisse 
Church and the short period the early warning system 
has been running (from Spring to early Summer), it was 
expected that no alarms would be sent out. The relative 
humidity will typically only become too high during the 
fall (Fig. 4), which will be tested as we continue to run the 
model for Annisse for at least another year.

Two immediate problems arose during the test runs. 
The warning system for Ørholm failed at some point due 
to an update of an adjacent system which was not taken 
into account in the email notification routine. This failure 
might explain why no email was sent out for the too high 
relative humidity episode in January 2022 (Fig.  6) and 
if not found out, could be misinterpreted as having no 
current risk. The current problem was solved, and the 
system works, however, it emphasized that errors related 
to software communicating automatically is a potential 
risk.

The other issue is that the model is currently set up to 
harvest, analyse and send out warnings every morning 
for the following 24 h. Therefore, any alarming humidity 
levels that the model predicts may be given less than 24 h 

ahead and could even be almost simultaneously with the 
unwanted rise in humidity, as seen in Fig. 6.

Challenges and future perspectives
It is desirable that a future version of the model is able 
to predict a longer time period ahead; e.g., 2  days, or 
more. This requires, however, good historical data sets 
containing many episodes of the type of unwanted 
humidity event which the model can learn to predict 
from (e.g., too high relative humidity). The Annisse 
Church case is a good example of this. It had an f1-score 
of 0.78 for predictings variations outside 45–75%RH; an 
interval chosen for conservation reasons. However, if for 
the sake of example, this interval was narrowed down to 
50–70% RH, the f1-score became much better; namely 
0.95. This is obviously due to the many more episodes of 
relative humidity outside the 50–70% RH band, which 
optimises the training of the model.

Domain knowledge about the input parameters is 
an important factor in choosing the basis for building 
a ML model. Our model is based on the most common 
climate parameters, which routinely are measured and 
therefore readily available in most heritage institutions; 
temperature and relative humidity. But in addition to 
this, the absolute humidity was added to the model [see 
footnote 1], as the algorithm might not by itself discover 
this rather complex relation, when analysing patterns 
in the indoor climate variations. This was a decision we 

Fig. 6  The climate at Ørholm storage hall, since the launch of the model monitoring in early November 2021. The green arrows show episodes 
of a too high relative humidity, which were predicted by the model, whereas the red arrows show episodes which were not predicted. Units: 
Temperature (°C); Relative humidity RH (%), Absolute humidity AH (g/m3)
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took as conservation professionals, knowing that taking 
the absolute humidity of air into account might reinforce 
the validity of the analysis. However, as described in the 
“Results and discussion” Section the addition of AH did 
not improve the performance of the model.

During the project it became quite clear that, 
although, as already mentioned, climatic parameters 
are quite commonly measured indoors, it can be hard 
to find historical data sets for long and persistent 
periods, which are required for building good quality 
models. Data formats, measurement resolution, and 
lack of data  storage routines may be a challenge [28]. 
Outdoor historical and real-time weather data may be 
accessible by local weather stations, or even by national 
meteorological services, but that is not a matter of course. 
On a future perspective it could be interesting to include 
forward-looking weather prognosis as a parameter for 
indoor climate prediction, given the prognosis could be 
expressed in a numerical way.

Another challenge is to find good data on other 
parameters, for example, on energy consumption, or 
air pollution. At the beginning of this project, we had a 
vision of including several air quality parameters to the 
model. However, as no historical data could be identified 
for the buildings in question, we are only now in the 
beginning of establishing a proper data set, after one 
first year of continuous air pollution monitoring (PM2.5 
measured outside and inside the Ørholm building). How 
this develops will be reported in a future publication.

From early on an “use best technology available” 
approach provided the standard for environmental 
control in heritage institutions [29], however, today’s 
guidelines are to a higher degree based on a cost–
benefit approach balancing preservation and the 
resources involved [30]. The current climate and 
energy crisis has increasingly put emphasis on 
sustainability in preservation, and managers are also 
aware of the importance of measuring the facility’s 
energy consumption. Another perspective of using 
ML for indoor environmental conditions is the 
potential to predict the energy consumption for climate 
control in advance. There is a need to investigate 
these issues further, which is yet another area where 
ML programmers, museum facility managers, and 
conservators could unite on developing energy-saving 
and conservationally feasible indoor climate control 
solutions.

Conclusions
In this research, we investigated the usability of 
supervised machine learning methods for predicting the 
occurrence of harmful environmental conditions inside 

buildings used for preservation of cultural heritage. 
More specifically, we conducted a case study based on 
historical environmental data from two heritage facilities 
and tested the ability of two different machine-learning 
algorithms, namely RandomForest classifier (RFC) and 
extreme gradient boosting algorithm (XGBoost) to 
forecast incidents of too low or too high levels of relative 
humidity inside the facility.

The model had a quite good f1-score of 0.93/0.95 (RH 
too high/RH too low) in predicting the humidity in the 
humidity-regulated storage facility (Ørholm), but only 
0.78/0.62 in the temperature regulated church (Annisse).

Machine learning technologies can reveal new 
knowledge and insights from data collected over 
decades in heritage institutions, and we believe that the 
technology can be used to develop effective data driven 
control of the indoor environment. In the described 
cases it revealed for the Ørholm facility that the outdoor 
weather conditions in general did not have much 
influence on predicting the indoor relative humidity 
level, and in the Annisse case it seems that the outdoor 
temperature did not. This indicates that the significance 
of the different parameters depends on the conditions at 
the actual location.

The main limitation of the study is that we have only 
been able to train the prototype on data  sets from 
two cases where the indoor climate is relatively well 
regulated. This is due to a lack of long-period data sets in 
good quality, including a sufficient number of unwanted 
incidents for the model to train on.

Future work includes applying the prototype with the 
use of weather forecasts to spaces with more instant 
impact from the climate outside the building and less 
climatically regulated historical buildings. Likewise, we 
plan to investigate the use of an adjusted prototype to 
predict other environmental risks such as inappropriate 
temperature or pollutant levels, the effect of initiated 
climate control methods, and the energy consumption 
involved.
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