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Abstract

Many systems experience gradual degradation while simultaneously being exposed to
a stream of random shocks of varying magnitudes that eventually cause failure when a
shock exceeds the residual strength of the system. In this paper, we present a family of
stochastic processes, called shock-degradation processes, that describe this failure
mechanism. In our failure model, system strength follows a geometric degradation
process. The degradation process itself is any Lévy process, that is, any stochastic
process with stationary independent increments. The shock stream is a Fréchet
stochastic process, a process derived from the Fréchet extreme-value distribution.
Finally, the shock-degradation process is a convolution of the Fréchet shock process
and any one of the candidate degradation processes. The system fails at the first
occasion when a shock takes system strength across a threshold at zero. The paper
presents results for Wiener diffusion processes and gamma processes as examples of
Lévy degradation processes. The paper develops key statistical properties of the
process model and its survival distribution, including several that are important for its
practical application. As the failure mechanism is a first hitting time event, applications
that require regression structures fall within the domain of threshold regression
methodology.

Keywords: Degradation process, Extreme value, First hitting time, Fréchet process,
Lévy process, Shock stream, Stationary independent increments, System strength,
Threshold regression

Introduction

Shock processes have been studied extensively to explain such diverse phenomena as
device failures, insurance claims, earth quakes and business bankruptcies, to name but
a few. Early work considered shocks arriving according to a stochastic counting process,
combined with a probability of surviving the incident shock (Esary and Marshall 1973;
Block and Savits 1978). The latter probability might increase or decrease as a function of
the cumulative number of shocks. Later studies considered systems governed by bivari-
ate stochastic processes consisting of one process that generated inter-arrival times for
shocks and the other that generated the magnitudes of the shocks. The system is assumed
to fail when the arriving shock exceeds some critical level (Shanthikumar and Sumita
1983; Gut and Hiisler 1999). The current literature continues to propose many extensions
and refinements of shock models. In (Mercier and Hai Ha 2017), for example, a bivariate
failure model is proposed for which some shocks may be fatal while others are damaging
but not fatal.
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Stochastic processes as models for system degradation have also been studied in
depth. The fields of application and types of systems studied range widely over busi-
ness, economics, engineering, health, material science, and many more. To cite a few of
the numerous publications on the subject that have appeared in the last two decades,
we mention that a Wiener diffusion process and a Gaussian process with drift are
used in (Doksum and Normand 1995) to model a key biomarker for patients infected
with human immunodeficiency virus (HIV). A Wiener diffusion process is a model for
degradation of a self-regulating heating cable in (Whitmore and Schenkelberg 1997).
Geometric Brownian motion and gamma processes are models of degradation investi-
gated in (Park and Padgett 2005), with case demonstrations given for electrical resistors
and metal fatigue. A good review of degradation models for systems reliability was
given in (Ye and Xie 2015).

Many types of systems fail when they receive a shock that is sufficient to break them.
For example, optical fiber may break under a momentary strain. On the other hand, in
modeling human health, a hip may fracture in a fall, and an acute exacerbation may cause
the death of a patient with cystic fibrosis (Castilone et al. 2000; Aaron et al. 2015; He et
al. 2015). In this article, we are interested in the convolution of two processes that each
contribute to failure. First, an underlying degradation process describes the slow weak-
ening or deterioration of the system through time. Second, a shock process describes a
random stream of irregular adverse impacts that are superimposed on the degrading sys-
tem. Failure occurs when the strength of the system is reduced to the breaking point by
the combination of degradation and a shock. We propose a general model which com-
bines stochastic processes for both shocks and degradation to create a doubly stochastic
process. We model the degradation process as a Lévy stochastic process (a process having
stationary independent increments) and the shock stream by a Fréchet stochastic pro-
cess (a classical extreme-value generating process). We refer to the convolution of these
two processes as a shock-degradation process. The system fails in this model at the first
moment that the system strength reaches zero. As this failure time is a first hitting time
(FHT) of a threshold by the shock-degradation process, real-world applications of the
model can use threshold regression methods to take account of regression covariates (Lee
and Whitmore 2006; 2010; Lee et al. 2010).

In the following sections we define the component degradation and shock processes,
describe their statistical properties, explain how they are integrated into a single compos-
ite process, and explore the nature and form of the survival distribution produced by the

composite process.

Composite shock-degradation process

Degradation and system strength processes

The system strength process is denoted by {Y(¢),£ > 0}. Our model assumes that the
initial system strength is Y(0) = yo > 0. Strength Y(¢) tends to decline over time in
physical systems but in other kinds of systems, such as social, economic and biologi-
cal systems, strength can fluctuate or even increase over time. The measurement units
of strength are those of the application context, such as lung capacity in liters, battery
power in watt-hours, or financial reserves in millions of dollars. We refer to ‘degradation
of strength’ in our general discussion but the possibility of strengthening through time
must be contemplated in some contexts.
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The degradation process itself is denoted by {W (¢), ¢ > 0} with initial value W (0) = 0.
The system strength process Y () and degradation process W (¢) are connected as follows:

Y(t) = yoexp[ W(B)]. 1

Thus, W (t) is the logarithm of the ratio of system strength at time ¢ to initial sys-
tem strength and therefore is a measure without physical units. We assume {W(¢)}
is a stochastic process with stationary independent increments. We also assume that
the degradation process has a cumulant generating function (c.g.f.) defined on an open
interval Z. We denote this function for the process level W (1) at time £ = 1 by

In E{exp[uW (1)] } = k(). 2)

With stationary independent increments, the c.g.f. of W(¢) for any ¢ > 0 equals t« ().

The connection between system strength and degradation defined in (1) implies that
system strength changes in increments that are proportional to the residual strength at
any moment. As a result, the system strength Y (¢) never reaches a point of zero strength
but may approach it asymptotically. Consequently, the system cannot fail through degra-
dation alone. As we show shortly, the failure occurs when shocks exceed the residual
strength.

We have assumed that the degradation process {W(£),¢ > 0, W(0) = 0} has station-
ary independent increments and possesses a c.g.f. k (u). We are therefore restricting our
attention to a subclass of Lévy stochastic processes. This subclass is a large one that
includes many processes widely encountered in practical applications. The restriction to
Lévy processes that have a c.g.f. eliminates Lévy families whose generating distributions
do not possess a c.g.f., such as 1/2-stable processes of Brownian hitting times and Cauchy
processes. Our subclass retains most of the important Lévy families such as Wiener
processes, gamma processes, inverse Gaussian processes, compound Poisson processes,
and additive combinations of these processes. Next, we present a couple of important
examples to illustrate the range of types covered by our degradation model:

Wiener diffusion process. Consider a Wiener diffusion process { W (¢),t > 0}, with

W (0) = 0, having mean parameter x and variance parameter o> > 0. A Wiener
process consists of independent normally distributed increments. Its sample paths
are continuous but tend to meander up and down randomly through time. The c.g.f.
of a Wiener process has the form:

k() = up + u?c2/2  for — 0o < u < 0. (3)

When W () is a Wiener process, the strength process Y (¢£) = yo exp[ W(¢)] is a
geometric Wiener process.

In most applications of the Wiener degradation process, the mean parameter p is
negative, indicating that system strength tends to decline. This situation is usual in
physical and engineering systems but applications where u is positive are
encountered in social, economic and health systems. In our general mathematical
development, we leave the sign of x unrestricted.

Gamma process. Consider a gamma process {X(t), ¢ > 0}, with X(0) = 0, having
scale parameter 7 > 0 and shape parameter { > 0. A gamma process consists of
independent gamma-distributed increments. It has monotonically increasing sample
paths that consist of random steps of random size. For our model here, we take
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W (t) = —X(¢). The negative sign assures that the sample paths of the degradation
process {W(¢)} are monotonically decreasing. The negative-gamma process finds
applications in physical and engineering systems that degrade monotonically and
undergo irregular wear and tear through time. A gamma model with monotone
increasing sample paths can also be accommodated mathematically but is
encountered less frequently in real-world applications. The c.g.f. of W(¢) as a
negative-gamma process has the form:

k(u)=1¢In (77) forn+u > 0. (4)
n+u

The corresponding strength process has the following geometric negative-gamma
form: Y () = yo exp[ W ()] = yo exp[ —X(#)].

A special family of strength processes that is important later as a limiting case is one
that has deterministic exponential trajectories, as follows:

Deterministic exponential process. In this family, system strength follows a

deterministic exponential time path of the form Y (¢) = yo exp(At) where A denotes
the degradation rate parameter. The c.g.f. for this deterministic process has the
degenerate form « (1) = Au. Note that this exponential function describes actual
time decay if . < 0, no decay if . = 0 and system strengthening with time if A > 0.

This deterministic degradation process is obtained as a special instance of the Wiener
model if we set 0> = 0, in which case A = u, the Wiener mean parameter. Likewise,
the process is also a limiting case of the negative-gamma degradation process if the ratio
—¢/n is fixed at A and 7 is increased without limit.

Fréchet shock process

We look at shock streams through a different lens than previous investigators. In partic-
ular, we assume that shocks are generated according to a Fréchet process. This process is
a family in the class of max-stable processes. For relevant mathematical background and
properties, see (de Haan 1978; 1984; Stoev and Taqqu 2005). By adopting this process,
we are not modeling the arrival pattern and magnitudes of individual shocks in an explicit
fashion. Instead, the time scale is partitioned into intervals rather than viewed as a contin-
uum of time points. The observed process is the sequence of maximum shocks occurring
in the consecutive intervals of the partition. The underlying flow of shocks within each
time interval remains latent and uncharacterized - only the maximum shock is potentially
observable in each interval.

In mathematical terms, let s > 0 be any specified time point and #, any natural number.
Consider any partition of the time interval (0, s] into # subintervals (0, #1], ..., (t;,—1, tul,
where 0 = ) < 4 < -+ < t, = s. We assume that the maximum shock V(0,1)
experienced in the process during a unit time interval (0, 1] has the cumulative distribu-
tion function (c.d.f) P[V(0,1) < v)]= G(v), where we refer to G(v) as the generating
distribution for the shock process. Let V(¢j_1,¢) > 0 be the maximum shock expe-
rienced in subinterval (#j_1,¢]. We use V; as a shorthand notation for V(tj_1,t). The
sequence of maxima V7,..., V, across the partition of (0, s] are mutually independent,
with V; = V(¢j_1, t;) having the following c.d.f.:

P(V;<v)=GWii,j=12,...,n (5)



Lee and Whitmore Journal of Statistical Distributions and Applications (2019) 6:8 Page 5 of 24

It follows from (5) that the maximum shock over interval (0,s], namely, V(0,s) =
max{V1,..., Vy}, has the same form of c.d.f. as each of the component terms, namely,
P[V(0,s) <v]= G®U)°.

In our shock model, the generating distribution G(v) is a Fréchet distribution, which
has the following c.d.f.:

G(v) = exp [— (oz/v)ﬂ] forv>0,a>0,8>0, (6)

where « is a scale parameter and f is a shape parameter. We define a Fréchet shock process
as any sequence {V1,..., V}} for a specified partition, as just described, where the V; are
generated from (5) using the Fréchet distribution in (6) as the generating distribution.

As already noted, the Fréchet distribution in (6) refers to the maximum shock that will
be experienced in one unit of time. The measurement unit of a shock is the same as the
measurement unit for system strength. Scale parameter « is the e~! fractile or 37th per-
centile of the distribution, irrespective of the value of 8. Shape parameter 8 controls the
uniformity of shock magnitudes about this fixed percentile. A distribution with a larger
value of 8 has shocks of more uniform intensity and, thus, a smaller probability of extreme
shocks in a given interval. The Fréchet distribution only has finite moments of order
smaller than B. Figure 1 shows illustrative plots of the probability density function and
cumulative distribution function for the Fréchet shock distribution in (6) when parameter
« is set to 1 and B takes the three values 0.5, 1 and 1.5. Observe the long right tail of these
distributions, which implies that occasional large shocks will occur. The crossing point of
the curves in panel (b) represents the 37th percentile of the distribution, which is fixed at
o = 1in the figure.

The Fréchet distribution is one of the classical extreme value distributions. It is the
asymptotic distribution of sample maxima generated from any population distribution
that is unbounded to the right and only has finite moments of order k > 0 or less. Such
populations are said to be of the Cauchy type (Gumbel 1953). A Fréchet distribution of
order f is the asymptotic distribution for any Cauchy-type distribution with k = 8. The
role of the Fréchet distribution as an extreme-value distribution gives a rationale for its
use as a shock process. We might imagine a large random sample of shocks being drawn

3 2
Shock Shock

Probability density  ——-—- 92 Cumulative probability ——-—-- G2
i ———G3

Fig. 1 a Probability density functions and b cumulative distribution functions for the maximum shock in unit
time when « is set to 1 and B is set to values of 0.5 (solid curve), 1 (short-dash curve) and 1.5 (long-dash
curve). A larger B is associated with a smaller probability of an extreme shock
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from a given Cauchy-type population in each time interval of the process. The maxi-
mum values of such samples will be approximately distributed as a Fréchet distribution.
As Cauchy-type distribution families form a large and diverse collection (including the
Fréchet distribution itself), this rationale suggests that this kind of shock process has
potentially wide application.

Survival distributions of the shock-degradation process

We now combine the shock and degradation processes into a single model. We assume
that the shock and degradation processes are independent. With this assumption and
the mathematical forms we have chosen for the two component processes, we obtain a
conjugate pairing that is mathematically tractable and allows us to generate a wide array
of useful mathematical results.

The survival function

In this section we derive an expression for the survival function of our shock-degradation
process. We denote the system survival time by S and the sample path of the degradation
process W () over interval (0,s] by C = {W(¢) : 0 <t <5, W(0) = 0}.

We start the mathematical development by considering a time partition # = {0 =
p <t <--- <ty = s} of time interval (0,s] and denote the norm of this partition by
A = max;(tj —tj_1). The Fréchet shock process is described by {V1, V>, ..., V};}, where V;
is the maximum shock experienced in subinterval (¢,_1,%],j = 1,. .., n, of time partition
7. Next, consider the following local extrema of the degradation process for subintervals
of time partition x:

{(WLj; WLI]):] =1, 2; ce ,Vl}, (7)

where W; = infiW(¢) : t € (tj—1,t]} and Wy; = sup{W () : t € (¢j-1,4]} forj =
1,2,...,n. The pair (Wf;, W) are the minimum and maximum degradation levels of the
system during subinterval (¢_1, £;]. The corresponding pairs of extrema for the strength
process are (Yz;, Y1) forj=1,2,...,n where Y1; = yo exp(Wp;) and Yy = yo exp(Wyy).
These pairs of strength extrema provide the following upper and lower bounds on the
conditional probability of system survival through subinterval (¢_1, ], given the system
has survived to time #;_1:

P(V; < Y1) < P(S > tj|S > tj_1,C) < P(V; < Yyj) for time partition 7. (8)

The lower bound in (8) holds because inequality V; < Yj; is a sufficient condition for sur-
vival. This inequality assures that the maximum shock does not exceed system strength
during the jth subinterval even if it occurs at the moment of least strength. The upper
bound holds because the complementary inequality V; > Yy assures failure of the system
at some moment during the jth subinterval. Thus, the inequality V; < Yy is a necessary
condition for survival.

The probability bounds in (8) yield the following bound for system survival beyond time
interval (0, s]:

n
[ [PV < Y] < P(S > sC) < ]_[ P(V; < Yy)] fortime partitionm.  (9)
j=1 j=1
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As P(V; < Y1j) = G(Y7) %1 and P(V; < Yy5) = G(Yy;)% %', we can take logarithms
of the two bounds in (9) to obtain the following sums:

n

Le(s) =Y InP(V; < Yp) = ) (5 — 45-1) In G(Yy)),

j=1 j=1
Ur(s) =Y InP(V; < Yi5) = Y (4 — 1) In G(Yyy). (10)
j=1 j=1

Taking the difference Uy (s) — Ly (s) gives:

Un (s) = Lz (5)

> (4 — t-)[In G(Yyy) — In G(¥7))]
j=1

n
= ¢ ) (G — ti-D[exp(—=BW) — exp(—BWy)] (11)
j=1
where ¢ = (a/y0)? > 0.

As shown in Appendix A.1, the sum on the righthand side of (11) converges to zero
when we consider a sequence of time partitions 7 having norms A that converge to zero.
Therefore, upper bound U (s) and lower bound Ly (s) converge in the limit to the same
definite integral. This integral equals the conditional log-survival function In P(S > s|C)
for interval (0, s], as follows:

InP(S > s|C) = iii?o Uy (s) = iiinoL” (s) = /OS InG[Y(®)] dt = —cQ(s), (12)

where
o\ s
c= () and Q(s) =/ e PVO g4z, (13)
Yo 0
The expression In P(S > s|C) in (12) denotes the logarithm of the conditional proba-
bility of no failure in interval (0,s], where C = {W(¢) : 0 < t < s, W(0) = 0} is the
realized sample path for system degradation. To obtain the survival function itself, which
we denote by F(s), we take the expectation of P(S > s|C) over all possible degradation
sample paths C as follows:

F(s) = Ec [P(S > 5|C)] = Ec {exp [-cQ(s)]} . (14)

We note for future reference that the right-hand expression in (14) is the Laplace
transform of the stochastic integral Q(s) defined in (13), evaluated at c.

The reasoning that leads to survival function (14) shows that the survival time S in our
shock-degradation model can be stated compactly in stochastic differential notation as
follows:

S=inf{t: V(t,t +dt) > Y(O)}. (15)

The notation V (¢, t+dt) represents the maximum shock occurring in the differential time
increment (¢, t 4 dt]. Expression (15) states that survival time S is the first moment that
the shock exceeds system strength. The conditional log-survival probability in (12) and
the survival function in (14) represent a two-step probabilistic evaluation of the stochastic
differential expression in (15).

Before proceeding further with the mathematical development, it may be helpful to
visualize these shock-degradation processes and the associated failure events when they
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occur. Figure 2 illustrates sample paths for several types of shock-degradation models.
The figure shows simulated paths of system strength Y (£) when a Fréchet shock process
is superimposed on several alternative degradation processes W (). Each illustration has
the same simulated shock stream, generated with « = 1 and 8 = 1.2. All simulated
sample paths have an initial system strength of yo = 20. The panels show, respectively,
a system with: (a) constant intrinsic strength (no degradation); (b) deterministic expo-
nential degradation (A = —0.1), (c) Wiener degradation (v = —0.02, ¢ = 0.1); and (d)
gamma degradation (¢ = 2, n = 20). In all panels except panel (a), the system happens to
fail at a moment between points 15 and 20 on the time scale when a shock first reduces

the system strength to zero.

Lower bound for the survival function
A further result of considerable value is a lower bound for the entire class of survival

functions. To derive the lower bound, we have from (14) that:
InF(s) = InEc [P(S > 5|C)] > Ec [—cQ(s)] = —cEc [Q(s)]. (16)

The result follows from Jensen’s inequality because a logarithmic function is concave
downward. Evaluating the right-hand expectation in (16) for any degradation process with
stationary independent increments gives the following survival function Fy(s) as a lower

bound for all survival functions in the family:

InFy(s) = —cEe [Q®)] = —¢ / e[ O] ar
0

s ks _ 1
—c/ etdt = —c [e :| . (17)
0 K

Here « is short-hand for « (—p), the c.g.f. of the degradation process W (¢) evaluated at

—pB. Parameter « must be defined for this lower bound to exist. Its existence is not always
assured. For example, for a gamma degradation process, we see from (4) that 8 < 7 is

[
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15 20
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0
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o 5 1o s 20 o 5 10 15 20
Time Time

Fig. 2 Simulated paths of system strength Y (t) when a Fréchet shock process is superimposed on several
alternative degradation processes W/(t). Each illustration has the same simulated shock stream, generated
with o = 1 and 8 = 1.2, and the same initial strength yy = 20. The panels show, respectively,a system with: a
constant intrinsic strength (no degradation); b deterministic exponential degradation (A = —0.1), ¢ Wiener
degradation (u = —0.02, 0 = 0.1); and d gamma degradation ({ = 2, n = 20)
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required for k = k(—p) to be defined. In other words, the shape parameter of the shock
process cannot be too large relative to the scale parameter of the gamma process.

We find that this lower bound is quite tight for shock-degradation processes where the
degradation process is lightly to moderately stochastic. Because the lower bound is often a
good approximation and has a tractable closed form, we use it extensively later to explore
features of the shock-degradation model.

Numerical evaluation of the survival function

We have not derived a general closed-form expression for the survival function F(s)
for the shock-degradation family of models. The survival function, however, can usually
be evaluated to an adequate approximation for practical applications. The key quan-
tities needed for this evaluation are the expected moments my;(s) = Ec [Q(s)e] for
£ =1,2,... of the stochastic integral Q(s). The exact formula for these moments is a new
mathematical result. The formula is derived in Appendix A.2 and is given by:

¢ Kis
me() = Ee[Q@'] =1y S - (18)

j=1 Lm0, (& — ki)

Here «, is shorthand for the value of c.g.f. k(1) at u = —rpB, for r = 0,1,2,.... By def-
inition, ko = 0. Notice that the lower bound for the survival function given in (17) is
obtained directly from the first expected moment m1;(s) = E¢ [Q(s)], which comes from
(18) by setting £ = 1 and equating «; with « in (17).

By calculating successive expected moments 1, (s) from (18), the survival function F(s)
in (14) can be approximated by finite expansions, as we sketch below and describe in more
detail in Appendix A.3. But caution is required because the larger expected moments of
integral Q(s) may grow without limit or even be undefined so the evaluations must be
done with care and judgment as we will show. Again, the gamma degradation process
offers an example of the difficulty. For the gamma case, quantities «, are required to eval-
uate expected moments of order r or larger from (18) and yet these quantities are only
defined if r < 5. Higher-order expected moments of Q(s) for a Wiener diffusion process
also grow without limit.

In the following numerical approximations for the survival function F(s) in (14),
we temporarily suppress the functional dependence of the random quantities on sur-
vival time s to simplify our notation. The approximations are presented in terms of
expected central moments of Q which are more accurate. We note that exp(—cQ) =
exp(—cmi) exp[ —c(Q — my)], where m; = Ec(Q) is the first expected moment of Q. Now
we replace Q by Q. = Q—m; and obtain approximations that are based on expected cen-
tral moments mj; = Ec (Q?) that may be derived from (18) using the usual correspondence
of uncentered and centered moments. Observe that 7§ = 1 and m} = Ec(Q4) = 0.

We have found that the following two finite expansions for the survival function F(s)

are of practical value.

Taylor series expansion. This approximation is based on expanding the expression

for the survival function in a kth order Taylor series and then taking its expectation
over C, as described in Appendix A.3. This expansion results in the following



Lee and Whitmore Journal of Statistical Distributions and Applications (2019) 6:8
approximation:
k ¢
F DS 19
k(s) = exp(—cm) | Y (—1) am | (19)

£=0

Euler product-limit expansion. This approximation is based on the Euler product

limit expansion for exp[ —cQ] for which details are given in Appendix A.3. The
kth-order approximation is as follows:

k (f)z m | (20)

k
o ek
Fi(s) = exp(—cm1) g Voo (x

Because exp(—cmy) = Ec {exp [—cQ(s)]} is a lower bound for survival function F(s), it
can be seen that the central-moment approximations are basically adjusting the lower
bound multiplicatively to improve the approximation. The lower bound itself is the 1st-
order approximation corresponding to k = 1 in (19) and (20). As we have shown, the
expected moments of Q can diverge or become undefined for larger k but we are free
to choose k so this condition is avoided and the error of approximation is kept within
acceptable limits.

Panels (a) and (b) of Fig. 3 illustrate survival curves for shock-degradation models hav-
ing Wiener and gamma degradation processes, respectively. The survival curves have the
same parameter values as the simulated sample paths displayed in panels (c) and (d) of
Fig. 2. Each panel in Fig. 3 shows a curve for the lower bound in (17), an approximate sur-
vival curve calculated from the Taylor series expansion in (19) of order k = 4 and, finally,
a Kaplan-Meier empirical estimate of the survival curve derived from 1000 simulated sur-
vival times. All curves are truncated at survival time s = 30. The lower bound curve is
quite tight in these cases, especially below the median survival time. We do not show sur-
vival curves derived from the Euler product-limit expansion in the figure because these
are similar to the Taylor series expansion in these cases for the range of survival times

shown.

Simulated survival
function (n=1000)

Survival function
(4th order approx.)

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time

Fig. 3 Survival curves for two shock-degradation processes. Each illustration has the same shock stream
parameters ¢ = 1 and 8 = 1.2, and the same initial strength yp = 20. The degradation processes are: a a
Wiener degradation process (u = —0.02, 0 = 0.1) and b a gamma degradation process (¢ = 2, n = 20). Each
panel shows survival curves corresponding to a lower bound, a 4th order approximation to the true curve
based on a Taylor series expansion, and an empirical estimate based on a sample of 1000 simulated cases

Page 10 of 24
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Hazard and probability density functions
The hazard function and probability density function are companions of the survival
function of a shock-degradation model. Approximations for these functions can be
derived mathematically from the corresponding approximations for the survival func-
tion. Rather than presenting mathematical forms for these approximations, we find it
more convenient to calculate them from the survival function itself using numerical
approximations to the differential forms —d In F(s) /ds and —dF(s)/ds, respectively.
Because the lower-bound survival function (17) is quite accurate when the degradation
process has modest variability, it is instructive to present the mathematical forms of the
hazard and probability density functions for this lower bound. The hazard function for
the lower bound is:

hy(s) = cexp(ks) (21)

The hazard is increasing, constant or decreasing exponentially according to whether « is
positive, zero, or negative, respectively. Thus, a roughly exponential shape for the empir-
ical hazard function in a particular application would suggest that the shock-degradation
model might be appropriate. Substituting s = 0 into (21) gives 7(0) = ¢ = (a/y0)”,
which shows quite reasonably that the initial risk of failure depends on «/yy, the ratio of
the 37th percentile of shocks to the initial strength of the system, modulated by the shock
shape parameter .

The probability density function of the lower-bound survival function follows immedi-
ately from (17) and hazard function (21). In logarithmic form, it is:

Inf;(s) = Inh(s) +InFr(s) = In(c) + ks — ¢ [eKsK_ 1] (22)

The density function has a positive density of ¢ at the origin and steadily declines as s
increases if k < ¢. If k > ¢, the density function has a single mode at In(x /c) /«.

Special cases of the survival function

Several special cases of the survival function follow immediately from (14).

Constant deterministic degradation rate. An immediate result of some interest is

obtained in the case where system strength follows a deterministic exponential time
path of the form Y (t) = yg exp(A£). In this case, the log-survival function can be

obtained directly from (14) as:
—BAs _ 1
- (23)
BA
This form of the survival function has already found application in two medical
contexts (Aaron et al. 2015; He et al. 2015). By comparing (23) and (17), we see that

the lower-bound survival function presented previously is mathematically identical to

InF(s) = —cQ(s) = —c/s e Pt = ¢ [
0

the survival function for this model with a constant deterministic degradation rate if
k = —pBA in the lower bound formula.

Pure shock process. A special case of (23) is a pure shock process. For some systems,

such as ceramic devices, degradation makes an insignificant contribution to the risk
of failure in comparison to the impact of shocks. For this case, the initial strength yg
is a constant and the log-survival function takes the following form:

InF(s) = —cs = —(a/y0)Ps (24)
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The survival function here is a pure exponential distribution. Although a simple
model, its failure rate has a variety of stochastic behaviors depending on the
parameters of the shock process and the system strength yo. To take some limiting
cases, for very small 8 (approaching 0), the survival time is approximately
exponentially distributed with a unit rate of decay. For very large 8 (approaching oo),
failure is almost immediate if yo < «, is exponentially distributed with a unit rate of
decay if yo = «, and is long delayed if yg > «.

Joint observation of survival and degradation

Estimation of the shock-degradation model in a practical setting will often involve data
that represent longitudinal records on a sample of systems. Each data record consists of
periodic readings on the underlying degradation process and ends with either censor-
ing of the record or system failure. This kind of application requires new mathematical
results, some of which we now present.

Longitudinal readings on the degradation process

Let us consider more closely the issue of longitudinal readings on the degradation process.
We discover that when a degradation process with Fréchet shocks is observed over a brief
moment of time, the reading is unlikely to be disturbed significantly by the shock process.
Put differently, large shocks occur so infrequently in the time continuum that they are
rarely encountered when making one or a few momentary observations on the strength
process during a fixed time interval. To see the point mathematically, equation (5) gives
the following c.d.f. for the maximum shock V observed in n non-overlapping times
intervals, each of length At > 0:

P(V <v) = Gn)"™ = exp |:—nAt (i)ﬂ:| . (25)

For fixed values of « > 0, 8 > 0, v > 0 and #, this formula gives a probability that
approaches 1 as At approaches zero. Thus, in this limiting sense, the maximum shocks
observed in # observation intervals can be made arbitrarily small by shrinking the widths
of the n observation intervals. Expressed in more practical terms, the theoretical result
implies that no material shocks are likely to be present in any finite number of observation
intervals if each interval is sufficiently short. The lesson we learn is that material shocks
in this kind of process occur sparingly and are rarely discovered at random moments of
observation.

Markov decomposition of longitudinal data records

Given the preceding result, we now consider the data elements found in a longitudinal
record consisting of periodic readings on system degradation. Our line of development
follows the method of Markov decomposition proposed in (Lee and Whitmore 2006). We
limit our study now to the lower-bound survival function in (17).

The likelihood function for a longitudinal record will be a product of conditionally inde-
pendent events of two types. The first type is a failure event. In this event, the system has
an initial strength, say yo, and then fails at time s later. The log-likelihood of this event
is given by a log-probability density like that found in (22). The second type is a survival
event; more precisely, an event in which the system has an initial strength, say yo, survives
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beyond a censoring time s (that is, S > s) and has a recorded strength at time s of, say,
y > 0. Note that y = Y (s) = yp exp[ W(s)] = yo exp(w), where w denotes the amount of
degradation corresponding to strength y. In mathematical notation, the likelihood of this
second type of event is:

PS> s, W(s) e[w,w+dw]}. (26)

This probability requires derivation of a new result. Its derivation for our shock-
degradation process follows the previous line of reasoning. Now, however, the condition
previously denoted by set C is replaced by the following more restrictive set for the
degradation sample path W (¢):

C*={W():0<t<s W(O) =0,W(s) =w). (27)

Set C* represents any sample path of the degradation path that starts at the origin W (0) =
0 and ends at level w at time s or, equivalently, any strength sample path that starts at level
yo at time 0 and ends at level y = yo exp(w) at time s. The condition describes a sample
path that is pinned down at two end points but is otherwise free to vary.

We note that probability P {S > s, W(s) €[ w,w + dw] } in (26) can be factored into the
product of a conditional probability and the p.d.f. g(w) for degradation level w at time s,
as follows:

P{S > s, W(s) e[w,w+dw]} = P{S > slw}gw)dw (28)

P.d.f. g(w) is known from the specified form of the degradation process. The conditional
survival function P {S > s|w}, which we denote by F(s|w), is less straightforward and has
yet to be derived in a general form for our shock-degradation model. Here we present a
more limited mathematical result.

Survival, conditional on a closing degradation level

For a degradation process with modest variability, we know that a lower bound on the
survival function is quite tight. For a pinned degradation process defined by condition C*,
we have:

InF(s|w) = In Ec+ {exp [-cQ(s)]} = —cEe+ [Q(s)] = InFr(s|w). (29)

The inequality follows from Jensen’s inequality when the expectation and logarith-
mic operators are interchanged. Expectation E¢+ [Q(s)] does not have a general closed
form for the family of degradation processes with stationary independent increments;
the quantity requires an evaluation of the conditional cumulant generating function
Ec+ {exp [-BW (D)]}.

We have derived a closed form for the right-hand side of (29) in the important case
where the degradation process is a Wiener process. The derivation builds on properties
of a Brownian bridge process. The mathematical details of the derivation are given in
Appendix A.4. Here we simply present the main results. The formula for the lower bound
of the survival function for a pinned Wiener process is as follows:

— 2
InFp(s|lw) = —c¢ /132—7::2 exp (z%/Z) [D(z2) — P(z1)], (30)
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where

w— B(0?/2)s w+ B(0?/2)s
2= =)
o2s o2s
®(-) denotes the standard normal c.d.f.. The p.d.f. of the degradation level W (s) at time s
in the Wiener case is given by
exp[—(w — us)?/202%s]. (31)

1
V2mols

Thus, (30) and (31) are the two components we require for evaluating a tight lower bound

gw) =

for the joint probability in (28), namely, the probability of a system surviving beyond a
censoring time s and having the degradation level w at that time.

Other application properties
Practical applications necessarily direct attention to other important properties of shock-
degradation processes. We now discuss a couple of these properties.

Probability of no eventual failure (cure rate)

Some versions of shock-degradation processes offer a positive probability that the real-
world system that is being modelled will never fail. In medical applications, this probabil-
ity is often referred to as a cure rate. The cure rate is evident in the lower-bound survival
function (17) if parameter ¥ < 0. In this case:

Pr(S =00) =exp(c/k) ifx <O. (32)

To illustrate two contrasting instances of (32), a look at the c.g.f. for a geometric Wiener
strength process in (3) shows that k < 0if u — Bo2/2 > 0. Thus, the degradation process
in this situation must have  both positive and large enough to override the variance offset
Bo?/2. In this situation, even if the Wiener process has no drift (so 1 = 0), the survival
function will act as if there is a degradation trend toward failure. The tilt towards failure
depends on parameter f of the shock distribution as well as the variance parameter o2 of
the Wiener process. In contrast, for a gamma degradation process with the c.g.f. defined
in (4), we have parameter « > 0 and the degradation sample path decays monotonically

and eventual failure is certain so P(S = 00) = 0.

Power-transformed time scale
Frequently, an application calls for a power transformation of the survival time scale. For
example, with transform s = £, an immediate substitution into (17) gives the following
survival distribution on time scale ¢:

exp(kt®) — 1
]

InFp(t) = InFL(t%) = —c|: (33)

This family of survival distributions has already appeared in the distribution theory lit-
erature. A survival function with this mathematical form is referred to as an XTGG
distribution in (Cordeiro et al. 2016), page 14, for the case where « > 0. Also, (Xie et al.
2002) refers to this type of distribution as a ‘modified Weibull extension’ The latter arti-
cle presents some properties, estimation methods, and engineering applications of this
type of distribution. What is new here is its connection with the lower bound for survival

functions of shock-degradation processes.
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Concluding discussion

Our derivation of a family of shock-degradation processes is motivated by the ubiquity
of real-world applications in which the strength of a system is degrading stochastically
through time and is subjected simultaneously to random shocks of varying size. The sys-
tem fails when a shock arrives that exceeds its remaining strength. The stochastic process
involves a superposition of an intrinsic strength process and an independent shock pro-
cess. We postulate that system strength decays geometrically according to a degradation
process that possesses stationary independent increments and, further, that the shock
stream follows a Fréchet process. The combination yields a realistic, tractable and flexible
family of processes.

We have derived a number of properties for the shock-degradation process, includ-
ing a series representation of the survival function and a lower bound for the function
that is quite tight in many practical settings. The important situation where survival and
the strength of a survivor are jointly observed is considered. For the important case of a
Wiener degradation process, we have derived an elegant closed form for the probability
of this joint event, which is a new and useful finding. Several additional mathemati-
cal results are derived that are important, including an expression for the probability of
no eventual failure (which may occur if the system happens to be gradually strength-
ening rather than degrading). An expression is also obtained for the survival function
if the time scale is subject to a power transformation. It is then discovered that the
lower-bound survival function, with the transformed time scale, is a modified Weibull
extension.

The special case of our shock-degradation model in which the strength process is a
deterministic exponential function has been applied already in several studies. This ver-
sion of the model was used in a study of osteoporotic hip fractures (He et al. 2015). The
underlying strength process in the model represented skeletal health. The shock pro-
cess represented external traumas, such as falls and stumbles, which taken together with
chronic osteoporosis might trigger a fracture event. Threshold regression was used to
associate time to fracture with baseline covariates of study participants. The same model
was considered by (Aaron et al. 2015) to study mortality risks of cystic fibrosis patients.
The model was estimated using patient data from a national cystic fibrosis registry. In this
setting, acute exacerbations of the disease act as shocks. An exacerbation leads to death
on the first occasion when its severity exceeds the respiratory strength of the patient.
Practical issues around modelling and estimation for these two studies, as well as for a
third study that investigated Norwegian divorces using the same model, were reviewed in
the survey paper (Lee and Whitmore 2017).

All of these published applications that employed the simple deterministic-exponential
version of the model have used asymptotic maximum likelihood methods for parameter
estimation and inferences. The data sets available in these applications were conventional
censored survival data. There are important potential applications of the general model,
however, that will have more complex types of data than plain censored survival data. For
example, in some applications, measurements of both degradation and shock magnitudes
prior to failure may be available for model estimation. As an illustration, for patients with
chronic obstructive pulmonary disease (COPD), measurements of both lung function
and severity levels of acute exacerbations may be gathered through time for each patient.
Development of inference methods for the general shock-degradation model based on
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different data scenarios is a pressing need that we anticipate will be addressed in future
research.

Although the shock-degradation model is conceptually clear and well-behaved when
the degradation process has only moderate variability, its stochastic behavior becomes
chaotic and unpredictable when the degradation process is highly variable. In this situa-
tion, the right tail of the survival function becomes heavy and numerical calculation of tail
probabilities becomes challenging. Our approximating series expansions are sensitive to
this instability in the tails when the degradation process is volatile. An extremely volatile
degradation process is not expected in designed or fabricated systems (such as technical
devices, engineering structures, or economic and social organizations) but natural physi-
cal systems and phenomena frequently have chaotic failure processes. Examples of chaotic
natural processes with event times that are extremely unpredictable include, for instance,
the time for a cumulus cloud to disperse, an iceberg to collide with a stationary marine
structure, or a soap bubble to burst in turbulent air.

A field of application that is the scene of intense current research on stochastic-
process models is financial engineering. It seems possible (indeed, likely) that research
breakthroughs in stochastic financial models may very well further the development of
our shock-degradation model. Business, economic and financial systems are character-
ized by both stochastic degradation and growth scenarios and these systems are also
subject to a wide array of random shocks exactly as in our model. The mathematical
advances described in (Hackmann 2015; Hackmann and Kuznetsov 2016) , for example,
are indicative of this rich source of development potential. Important extensions that will
come from future research by these and other investigators might include more efficient
numerical methods for calculating tail probabilities of the survival function and other
probabilistic quantities for shock-degradation processes.

Appendix
A.1 Survival function for a Fréchet shock-degradation process
A.1.1 Definite integral representation of the conditional log-survival function
Theorem 1 The conditional survival function (s.f.) for a specified degradation sample
pathC = {W(¢) : 0 <t < s, W(0) = 0} is given by

P(S > s|C) = exp [—cQ(s)] (34)

where ¢ = (ot/yo)ﬁ > 0 and

Qls) = / eV (35)
0

Proof We pick up the mathematical development from the main text at expression (11)
for the difference Uy (s) — Ly (s):

Ur (s) = Lz (5)

> (4 — t-D[In G(Yy) — In G(¥7))]
j=1

¢ (4 — 1) exp(—BWr;) — exp(—BWiy)]. (36)
j=1

It is useful to review briefly the nature of sample paths of our degradation processes,
which are Lévy processes. Every Lévy process can be represented as a superposition of
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processes that may include a Wiener process and independent Poisson processes hav-

ing varying jump magnitudes. A pure Wiener process (including pure drift) is the only

Lévy process with a continuous sample path. All others have discontinuous sample paths

because of the Poisson jump component. Jumps of any specified size arrive according to a

Poisson process with a size-dependent rate; a rate given by the Lévy measure of the pro-

cess. For any fixed jump size, say € > 0, the process will experience (almost surely) only a

finite number of jumps per unit time that exceed € but may experience an infinite number

of jumps per unit time that are all smaller than €.

We now examine the limiting value of the difference Uy (s) — Ly (s) when we consider a

sequence of time partitions & having norms A that converge to zero.

1.

If our degradation process is a pure Wiener process then difference Uy (s) — Ly (s)
will converge to 0 as norm A tends to zero because a Wiener process has
continuous sample paths. Thus, degradation extremes W7; and Wy; approach each
other in each time interval (¢_1, ] as the interval shrinks to zero in the limit.

If the degradation process has a jump component, we know the largest degradation
jump experienced in interval (¢;_1, £;] of the time partition & cannot exceed

Wu; — Wi, Thus, for any given € > 0, we can divide the time intervals of the time
partition & into the following two sets:

]O:{jZWLI/—WLj<6}, ]lz{j:WU/_WLjZG}

We can then express the difference Uy (s) — Ly (s) as the sum Aoz (s) + A1 (s),

where:

Aor(s) = ¢ Y (4 — 1) exp(—=BWL;) — exp(—BWip)],
Jo

Aix(s) = ¢y (4 — -1 exp(—B W) — exp(—B W] .
-1
Sum A1z (s) has a finite number of terms and thus will clearly converge to zero as
norm A tends to zero. On the other hand, sum Aoy (s) may have an infinite
number of terms. We note, however, that:

Agr(s) < c[1—exp(—Be)] Y (4 — t-1) exp(—BWi))
Jo

because Wy, — Wi, <€ and, therefore:
exp(—BWi,) — exp(—BWyj) <[1— exp(—Be)] exp(—pW;) forallj € Jo.

The sum ) Jo (& — ti—1) exp(— B W) approaches the definite integral Q(s), defined
in (35), as norm A approaches 0. This result is evident because time intervals in set
Jo have aggregate measure (0, s] in the limit and W7; approaches W (¢t;_1) as ¢;
approaches ¢;_1 in the limit, for each interval in Jo. Definite integral Q(s) exists
because we have required that c.g.f. k () exist for degradation process {W(¢)}.
Thus, we have shown that Aoy (s) < c[1 — exp(—B€)] Q(s) in the limit. Finally, as
threshold € > 0 can be chosen arbitrarily, we can make it as small as we wish and
so drive Agx (s) to 0 in the limit. In conclusion, therefore, we have shown for a
degradation process with a jump component that:

lim Uy (s) — Ly (s) = lim Aoz (s) + A1z (s) = 0.
A—0 A—0
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With this last step, the proof is complete. O

A.1.2 Representation of the survival function as an infinite series
The conditional s.f. in (34) can be expanded in an infinite alternating series in successive
moments of integral Q(s) as follows:

00 1
C
P(S > 5|C) = exp [-cQ(s)] = Ego(—l)"EQ(S)[. (37)

The unconditional survival function is obtained by taking the expectation of P(S > s|C)
over all sample paths C, that is, F(s) = E¢ {exp [—cQ(s)]}.

If the expectation operator E¢ is applied to the infinite alternating series in (37) one
is concerned with whether the expectation and summation operations can be inter-
changed; an issue which invokes the Fubini Theorem or, more precisely, the Fubini-Tonelli
Theorem. The interchange would be permitted if either of the following quantities is

finite:
o0 Ce
Eclexp[cQ®)) or Y =Ee[Q®)']. (38)
=0 "

The first quantity in (38) is the expected value of the reciprocal conditional s.f. in (34),
thatis, E¢ [1/P(S > s|C)]. Additionally, from Jensen’s inequality, we have:

F(s) = Ec {exp [-cQ(s)]} = 1/Ec {exp [cQ(®)]} = 1/Ec [1/P(S > 5|C)] .

Neither of the quantities in (38) is guaranteed to be finite in our model setting (as our
case examples show) so we must proceed to two finite approximations for the survival
function F(s) = Ec {exp [—cQ(s)]}. Both approximations involve evaluations of expected
moments of Q(s) for which we derive exact expressions in the next section.

A.2 Exact expressions for expected moments of Q(s)

We have the following expansion for the £th expected moment of Q(s) for given survival

time s:

¢ S
EC I:Q(S)(] — EC l_[/ e*ﬁW(l’/‘)dt],
- 2Jo
j=1
S S ¢
=/ .../Ec [Te ™ | de--de
0 0 il
j=1
s ty to ¢
=z1// / Ec|[]e?V® |dty---dt. (39)
o Jo 0 =1

In the last step, the multiple integrals are evaluated over the ordered time points ¢; <
ty < --- < ty. Because the degradation process W (¢) has stationary independent incre-
ments over any set of ordered time points, the successive increments W (¢;) — W (¢j_1) for

j = 1,...,¢ are independent, where £y = 0. The expectation E¢ []—[le e_ﬁW(tf)] can be
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evaluated as follows:

4 l
Ec ne—ﬁW(tj) = Ec l—[e—(z—i-‘rl)ﬂ[W(t/‘)—W(tj—l)]
j=1 j=1

|
:IN

Ec { e—(£—/‘+1)/3[W(t;)—W(tH)]}
1

S~.
Il

¢
— l—[ e<e-i+1G=5-1) (40)
j=1
where «, is shorthand for the value of c.g.f. x(u) at u = —rp, forr = 0,1,2,.... By

definition, kg = 0. The derivation requires that the quantities «, exist. Their existence is
assured if —rf € Z for all natural numbers r of interest. Here Z is the open set on which
the c.g.f. k (1) of our degradation process {Y'(¢)} is defined.

Substituting (40) into (39) allows the multiple integrals to be evaluated explicitly, giving:

¢ ¢ — 1
Ec [Q(s)e] ) D —— (41)
=1 L Lizo,iz (G — ki)
The following are expressions for the first four moments:
ens —1
Ec Q)] = ) (42)
K1
k1S _ 1 e 1
Ec[Q(s)?] = 2! [ ¢ ] , 43
c[Qw’] K1k —k2) | ka(ka — K1) 43
eas — 1
Ec[Q(s)?] = 3! [
c[QW] K1 (k1 — Kk2) (K1 — K3)
ens —1 ens —1
; ] (44)
oy — k1) (k2 — Kk3)  K3(k3 — K1) (K3 — K2)
ens — 1
Ec[Q(s)*] = 4 [
e [QV] 1 (k1 — k2) (k1 — K3) (k1 — Ka)
e’ —1 enss — 1
_|_
koo — k1) (K — k3) (k2 — k4) — K3(k3 — k1) (k3 — K2) (K3 — K4)
eas — 1
:|. (45)
K (kg — K1) (g — K2) (kg — K3)

A.3 Numerical approximations for the survival function

In developing numerical approximations for the survival function F(s) =
Ec {exp [—cQ(s)]}, we use notation my, for Ec (Q‘f), the ¢th expected moment of Q. We
also suppress the functional dependence of random quantity Q on survival time s to
simplify our notation.

Taylor series expansion
The first approximation to F(s) is based on expanding the expression for the survival

function in a kth-order Taylor series about zero, followed by taking its expectation over C:

k 0
Ec [exp (—cQ)] = Y (=1 T + Ee [R Q] (46)
£=0 )
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The term R]((T) (Q) is the following Lagrange remainder of the Taylor series expansion:

k+1 rQ
RP@Q = (—1)“167 /0 (Q— wyke “du. (47)

Euler product-limit expansion
The second approximation to F(s) is based on the expectation of the kth-order Euler
product-limit expansion for exp[ —cQ)], as follows:

k
c
Ec [exp (—cQ)] = Ec [(1 - /?) } +Ec [Rff)(Q)], (48)
where Rl(<E) (Q) denotes the remainder term. By construction, this remainder is:
k
c
RP(Q) = exp(—cQ) — [(1 - f) } : (49)

We note that the first term on the right side of equation (48) can be expanded as the
following linear combination of expected moments of Q:

Q1" . L . K c\*¢
Ee {[1 - k] } = ;0(—1) aE— o (%) my. (50)

Comparing the counterpart terms in (46) and (50) shows that the two approximations
differ only in their weights for the first k expected moments of Q.

As both the Taylor series expansion and Euler product-limit expansion equal the same
survival function F(s) = E¢ [exp (—cQ)], it follows by equating (46) and (48) that the
expected remainder term E¢ [R,((E) (Q) | in (49) and the one for the Taylor series expansion

in (47) are connected mathematically as follows, after some algebraic simplification:

k

ct k!
Ee [RiE)(Q)] = g(_l)eﬁ [1 T k= 5)!/%] e
+ Ec[RP(Q] fork=2. (51)

Approximations based on expected central moments
Re-expression of the preceding approximations in terms of expected central moments of
Q sharpens the approximations. We note that

Eclexp(—cQ)] = e “™Ec{exp[ —c(Q — m1)] }
= e “MEc[exp(—cQy)]. (52)

Here m; denotes the first expected moment of Q, that is, m; = E¢(Q) and Q, = Q — m;
is the centered Q quantity.

Now we employ the preceding Taylor series expansion and Euler product-limit expan-
sion to expand E¢[ exp(—cQy)] in (52). We use notation w1} for E¢ (Qf;), the £th expected
central moment of Q. We therefore have:

k 0
Ec [exp (—cQ)] = =™ Z(—l)‘%m}: +eMEe [R,((T)(Q*)] (53)
=0 ’
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k

k! ¢
Ec [exp (—CQ)] =e M Z(_l)lm (%) "
=0 ’ ’
. 5

By definition, we have m} = E¢(Q) = 0. Also, because exp(—cm1) = exp {—cEc [Q(s)]}
is a lower bound for survival function F(s), it can be seen that the central-moment
approximations in (53) and (54) are basically adjusting the lower bound multiplicatively to
improve the approximation. In fact, the lower bound itself is the starting approximation
with k = 1 in the expansion for E¢ [exp (—cQ*)].

Approximation bounds for the survival function

The remainder in the Taylor series expansion in (53) has the form:

k+1

Qs
K@) = 10 e [T Qe (55)

As the quantity Q, € (—m, 00), the term e~ in (55) is bounded above by e for any
u > —m and bounded below by 1—cu for any u. Therefore, we have the following bounds

on the remainder term:

T k+1
(D[R (@] = M Ty e (56)
k+1 Qx
(DEe [RPQ0] = S [ @ -t - andu
Ky
k+1 k+2
= i - (57)

G DU T Gp e
As k proceeds through odd and even numbers, the bounds in (56) and (57) become alter-
nately upper and lower bounds and then lower and upper bounds for the remainder term.
These bounds on the remainder can be tightened but we will not pursue this line of
analysis further.

As anticipated earlier when we discussed the conditions for Fubini’s Theorem to apply,
the expected moments of Q can diverge or become undefined for large k and there-
fore the expected central moments are similarly affected. Fortunately, we are free to
choose the finite order of the approximation k as we please and it can be selected so the
approximation error is minimized.

We next present a numerical illustration of the approximating Taylor and Euler expan-
sions for the survival function of different orders k to give a concrete sense of how they
behave in a typical application. Consider the shock-degradation model for which the
shock stream is generated with « = 1 and § = 1.2 and the degradation process is a
Wiener process with © = —0.02 and 0 = 0.1. A simulated sample path for this case
appears in panel (c) of Fig. 2 and the survival function is approximated in panel (a) of
Fig. 3 for survival times up to 30. Table 1 gives selected computational results in this case
for F(30), the survival probability for s = 30. The approximations are stable up to order
k = 5 but then become unstable. The table shows the Taylor and Euler estimates for the
survival probability as well as bounds on these estimates at each order calculated from
the bounds for the Taylor remainder term presented earlier. The first line of the table (for
order k = 1) corresponds to the lower bound F; (30) for the survival function at s = 30.
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Table 1 Approximations for the survival probability of an illustrative shock-degradation model for
survival time s = 30

Order k Lower Bound Taylor S. F. Estimate Upper Bound Euler S. F. Estimate

Lower Bound on Survival Probability

1 0.2867 0.2556 0.4449 0.2556

Higher-order Approximations for the Survival Probability

2 0.2364 0.3040 0.3005 0.2798

3 0.2908 0.2867 0.3407 0.2840

4 0.2627 0.3005 0.2989 0.2867

5 0.2913 0.2908 03223 0.2883
The Fréchet shock stream is generated with « = 1 and B = 1.2 and the degradation process is a Wiener diffusion process with
u = —002and o = 0.1. The table shows the Taylor and Euler estimates for the survival probability as well as bounds on these

estimates for orders of approximation ranging from k = 1 to k = 5. The first line is the lower bound approximation for the survival
function. The bold entries are discussed in the text

The table shows this value is 0.2556. As the lower and upper bounds computed at each
order k apply to the true probability F(30), we know that the largest lower bound across
all orders k and the smallest upper bound across all orders k must bound this true prob-
ability. The bold entries in the table identify these global lower and upper bounds. The
bounds show that 0.2913 < F(30) < 0.2989.

Derivation of the survival function conditional on a closing degradation level
Consider a set of sample paths for system degradation W(¢) that are pinned down at
W (0) = 0 and W (s) = w. In other words, consider the following set C*:

C'={W®:0<t=<s W0 =0 W) =w (58)

We now derive the following lower-bound survival function for the shock-degradation
family, conditional on the closing degradation level W (s) = w:

InFr(sjw) = —cEe+ [Q(s)]. (59)

Here Q(s) is defined as in (13). Expectation E¢» [Q(s)] requires an evaluation of the

conditional cumulant generating function:
kt(—=Blw) = InEc« {exp [-BW ()]} .

Consider the case where the degradation process is a Wiener process {W(¢)} with
W (0) = 0, as defined in the main text. The derivation builds on properties of a Brownian
bridge process. We adapt known results for a standard Brownian bridge to a correspond-
ing pinned Wiener process (see, for example, page 359 of (Ross 1996)). We start with the
probability density function for the conditional random variable w;|w, where W (t) = w;
and W(s) =w,forany0 <t < s:

_ s —s[wi — (t/s)w]?
PO =\ ot — o) eXp{ 20%4(s — 1) ] (60)

As (60) is a normal probability density function, it follows that the corresponding

conditional c.g.f. is given by:

Kke(—Blw) = —B(t/s)w + B*o>t(s — t)/2s. (61)
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The lower bound of the survival function for a pinned Wiener process is therefore derived

as follows:

InFi(s|lw) = —C/SGXP[K(—ﬂ|W)]dl’
0

- —C/S exp [—B(t/s)w + po’t(s — t)/2s] dt (62)
0

The integral in (62) can be evaluated explicitly (see, for example, formula (7.4.32),
page 303, of (Abramowitz and Stegun 1964)). After some manipulations, we obtain the
following final result:

= 2
InFL(s1w) = ¢ [ 5 (e} /2) [#(z2) — @(a1) (63)
where
w— B(o?/2)s W+ B(0?/2)s
21 = Y z = =
ag°s g-s

and ®(-) denotes the standard normal c.d.f..
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