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Abstract

Case-control studies are important and useful methods for studying health outcomes
and many methods have been developed for analyzing case-control data. Those
methods, however, are vulnerable to mismeasurement of variables; biased results are
often produced if such a feature is ignored. In this paper, we develop an inference
method for handling case-control data with interacting misclassified covariates. We use
the prospective logistic regression model to feature the development of the disease.
To characterize the misclassification process, we consider a practical situation where
replicated measurements of error-prone covariates are available. Our work is motivated
in part by a breast cancer case-control study where two binary covariates are subject to
misclassification. Extensions to other settings are outlined.

Keywords: Case-control study, Interaction term, Misclassification, Prospective logistic
regression, Replicated measurements

1 Introduction
Case-control studies are important and usefulmethods for studying rare health outcomes,
such as rare diseases. They do not require us to follow up a large number of subjects
over a long period of time. The primary purpose of a case-control study is to investi-
gate how risk factors are associated with the disease incidence, and the study typically
involves the comparison of cases (i.e., diseased individuals) with controls (i.e., disease-free
individuals).
Various statistical analysis methods for case-control data have been developed in the

literature (e.g., Prentice and Pyke 1979; Breslow and Cain 1988; Breslow and Day 1980;
Schlesselman 1982). Those methods are, however, vulnerable to mismeasurement of vari-
ables that commonly accompanies case-control studies. It has been well documented that
ignoring mismeasurement effects in the analysis often yields seriously biased results (e.g.,
Gustafson et al. 2001; Yi 2017). For instance, Bross (1954) examined misclassification
effects on hypothesis testing with 2× 2 tables. He commented that misclassification may
present a more serious problem in the case of estimates than in the case of significance
tests.
In the literature, manymethods have been proposed to addressmismeasurement effects

(e.g., Armstrong et al. 1989; Carroll et al. 1995; Forbes and Santner 1995; Roeder et al.
2005). In particular, with misclassifiction present in discrete covariates or exposure vari-
ables, various authors explored strategies for accommodating misclassification effects. To
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name a few, Marinos et al. (1995) studied case-control data with non-differential mis-
classification. Morrissey and Spiegelaman (1999) and Lyles (2002) discussed adjustment
methods for exposure misclassification in case-control studies where a validation sam-
ple is available. Chu et al. (2009) presented a likelihood-based approach for case-control
studies with multiple non-gold standard exposure assessments. Under the Bayesian
framework, Prescott and Garthwaite (2005) proposed methods for analyzing matched
case-control studies in which a binary exposure variable is subject to misclassification.
Tang et al. (2013) considered the case where both disease and exposure are subject to
misclassification and developed misclassification adjustment methods by utilizing valida-
tion data. Mak et al. (2015) studied sensitivity analysis in case-control studies subject to
exposure misclassification.
A common feature of those methods is that error-prone variables enter models sep-

arately and no interactions among error-contaminated covariates are considered. In
case-control studies, however, error-involved covariates may interactively influence the
development of diseases. Incorporating such a feature in the analysis is imperative.
Zhang et al. (2008) developed an inference method to account for interacting covariates
with misclassification. Their method is applicable only for the case where a validation
subsample is available for determining the misclassification probabilities.
Inmany circumstances, a validation sample is impossible to be collected for various rea-

sons. Some variables may be too expensive or time consuming to be measured precisely
(e.g., Carroll et al. 1993). Some variables can never bemeasured precisely due to its nature.
For instance, blood pressure entering a model usually refers to its long term average, and
there is no way to obtain this value precisely; exposure amount to a hazard condition, such
as radiation, is difficult to be measured accurately. In such situations, a validation sample
with precise measurements of the variables is not available. However, surrogate measure-
ments of those variables can sometimes be repeatedly collected in application. In this
paper, we consider such a setting where replicated measurements of error-prone covari-
ates are available and develop inference methods with interacting error-prone covariates
taken into account. Our development is particularly cast into the framework of the
prospective logistic regression model with misclassified binary covariates.
Our research is partially motivated by the case-control study on breast cancer discussed

by Duffy et al. (1989). In this study, 451 breast cancer cases were compared with the same
number of controls with respect to the error-prone risk factors: alcohol consumption and
smoking, where alcohol consumption is defined as a binary variable by a threshold of
9.3 g ethanol/day, and the smoking variable is dichotomized by comparing the product of
cigarettes smoked per day and years of smoking to 300. In addition, an independent study
on 100 women was available, where repeated measurements of alcohol consumption and
smoking were collected for those women on two occasions. It is interesting to study how
smoking and alcohol use may be associated with the risk of developing breast cancer and
whether or not those two factors may be interacting in explaining the development of
breast cancer. A detailed analysis of such data is presented in Section 5.
The remainder of this paper is organized as follows. Section 2 outlines the notation and

model setup. In Section 3 we explore themisclassification effects. In Section 4, we develop
inferential procedures to accommodate misclassification effects with the availability of
replicated measurements of error-contaminated covariates. Analysis of the motivating
data with the proposed method is reported in Section 5, together with simulation studies
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which demonstrate the performance of our method. The manuscript is concluded with
discussion and extensions.

2 Notation and framework
Let Y be the binary outcome variable, taking value 1 if a subject is a case and value 0
otherwise. Let Xa and Xs be two binary covariates taking value 0 or 1, such as alcohol and
smoking statuses in the motivating example. For i, j, k = 0, 1, let

pijk = P
(
Xa = j,Xs = k|Y = i

)

be the conditional probability for the case or control. Let ψjk be the odds ratio for cases
versus controls with

(
Xa = j,Xs = k

)
comparedwith the baseline category (Xa = 0,Xs = 0):

ψjk = p000p1jk
p100p0jk

for (j, k) �= (0, 0). Define

ψ = ψ11
ψ01ψ10

.

This measure can be used to indicate the association between the two binary covari-
ates, which is classified by the subpopulations of cases and controls. The measure ψ is
defined from the retrospective sampling viewpoint which directly reflects the feature of
case-control designs. Equivalently, this measure has an equally interpretive feature in a
prospective regression model.
Consider the prospective logistic regression model with an interaction term between

Xa and Xs:

log
{
P(Y = 1|Xa,Xs)

P(Y = 0|Xa,Xs)

}
= β0 + βaXa + βsXs + βasXaXs, (1)

where the β0, βa, βs and βas are the regression parameters. These parameters can be
expressed in terms of the odds ratios defined for the retrospective sampling framework:

βa = logψ10, βs = logψ01, and βas = logψ . (2)

As pointed out by Prentice and Pyke (1979), the baseline parameter β0 is not estimable
from retrospectively collected data unless the prevalence P(Y = 1) is known; the coef-
ficients (βa,βs,βas), or the odds ratios ψjk , however, is estimable from case-control data
that are collected retrospectively.
We now elaborate on estimation procedures. For i, j, k = 0, 1, letNijk represent the num-

ber of subjects with (Y = i,Xa = j,Xs = k), and let (ni00, ni10, ni01, ni11)T be a realization
of the random vector Ni = (Ni00,Ni10,Ni01,Ni11)T . Let n0 and n1 be the total number of
controls and cases in the study, respectively. With the retrospective sampling scheme for
case-control studies, these totals are treated as fixed, and it is often plausible to use multi-
nomial distributions to independently characterize the cell counts for the control and case
populations. Namely, N0 and N1 are assumed to be independent and marginally follow a
multinomial distribution with Ni ∼ Multinomial(ni, pi), where pi = (pi00, pi10, pi01, pi11)
and

∑1
j,k=0 pijk = 1 and ni = ∑1

j,k=0 nijk for i = 0, 1.
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These distributional assumptions immediately allow us to write out the likelihood
function for the cell probabilities pijk , ignoring the normalizing constant,

L =
1∏

i=0

1∏

j=0

1∏

k=0
pnijkijk . (3)

In combination with the constraint
∑

j,k pijk = 1 for a given i, maximizing (3) with
respect to the cell probabilities leads to the maximum likelihood estimator for the cell
probabilities:

p̂ijk = nijk
ni

for i, j, k = 0, 1.

Then the invariance of maximum likelihood estimators gives us an estimate of ψjk :

ψ̂jk = n000n1jk
n100n0jk

.

To calculate the asymptotic variance of the estimator ψ̂jk (as n1 and n0 both approach
infinity), we equivalently consider the asymptotic variance of log ψ̂jk . For i = 1, 0, the
multinomial distribution Ni ∼ Multinomial(ni, pi) yields the asymptotic distribution of
p̂i = (̂pi00, p̂i01, p̂i10, p̂i11)T (Serfling 1980, pp.108-109):

√
ni (̂pi − pi)

d→ N (0,�i) (4)

as ni → ∞, where

�i =

⎛

⎜
⎜
⎜
⎝

pi00(1 − pi00) −pi00pi01 −pi00pi10 −pi00pi11
−pi01pi00 pi01 (1 − pi01) −pi01pi10 −pi01pi11
−pi10pi00 −pi10pi01 pi10(1 − pi10) −pi10pi11
−pi11pi00 −pi11pi01 −pi11pi10 pi11(1 − pi11)

⎞

⎟
⎟
⎟
⎠

with the constraints
∑

j,k p̂ijk = 1 and
∑

j,k pijk = 1 imposed. The asymptotic variances
of the estimators ψ̂jk and ψ̂ , or their logarithms, can be obtained using the delta method.
Specifically, estimates of the asymptotic variances are

Âvar
(
log ψ̂jk

) = 1
n1jk

+ 1
n0jk

+ 1
n100

+ 1
n000

for j, k = 0, 1 and

Âvar
(
log ψ̂

) =
1∑

i=0

1∑

j=0

1∑

k=0

1
nijk

. (5)

3 Interacting covariates withmisclassification
In the presence of misclassification of the binary covariates, letX∗

a andX∗
s be the observed

values of Xa and Xs, respectively. Let

πia1 = P
(
X∗
a = 1|Xa = 1,Y = i

)
and πia0 = P

(
X∗
a = 0|Xa = 0,Y = i

)

be respectively the sensitivity and specificity of Xa for the subpopulation with Y = i, and

πis1 = P
(
X∗
s = 1|Xs = 1,Y = i

)
and πis0 = P

(
X∗
s = 0|Xs = 0,Y = i

)

be respectively the sensitivity and specificity of Xs for the subpopulation with Y = i.
Define

�ia =
(

πia0 1 − πia1
1 − πia0 πia1

)

and �is =
(

πis0 1 − πis0
1 − πis1 πis1

)

.
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For i, j, k = 0, 1, let

p∗
ijk = P

(
X∗
a = j,X∗

s = k|Y = i
)

be the probabilities for the observed covariate measurements corresponding to the case
or control subpopulation. Write p∗

i = (
p∗
i00, p∗

i10, p∗
i01, p∗

i11
)
for i = 0, 1.

We assume that

P
(
X∗
a = j,X∗

s = k|Xa,Xs,Y
)

= P
(
X∗
a = j|Xa,Xs,Y

)
P

(
X∗
s = k|Xa,Xs,Y

)
,

P
(
X∗
a = j|Xa,Xs,Y

) = P
(
X∗
a = j|Xa,Y

)
,

and

P
(
X∗
s = j|Xa,Xs,Y

) = P
(
X∗
s = j|Xs,Y

)
.

The first assumption says that the observed measurements X∗
a and X∗

a are conditionally
independent, given the true values Xa and Xs and the disease status. The second and third
conditions require that the misclassification probability of one variable does not depend
on the true value of the other variable, given the true value of the variable itself and the
disease status. Under these assumptions, we express the probabilities p∗

ijk using the true
probabilities pijk :

(
p∗
i00 p∗

i01
p∗
i10 p∗

i11

)

= �ia

(
pi00 pi01
pi10 pi11

)

�is. (6)

The identity (6) allows us to estimate the probability pijk using the estimates of p∗
ijk

which can be obtained from the observed counts (Barron 1977). Let n∗
ijk represent the

number of cases or controls with the observed measurement
(
X∗
a = j,X∗

s = k
)
for i, j, k =

0, 1, as displayed in Table 1.
Using the same reasoning as for (3), we obtain the likelihood based on the observed data

Lobs =
1∏

i=0

1∏

j=0

1∏

k=0

(
p∗
ijk

)n∗
ijk . (7)

Maximizing the likelihood (7) with respect to the cell probabilities p∗
ijk , under the

constraint
∑1

j=0
∑1

k=0 p∗
ijk = 1 for i = 0, 1, gives their estimators

p̂∗
ijk =

n∗
ijk

ni
for i, j, k = 0, 1.

Applying (6), we obtain the estimators for the true cell probabilities pijk :
(
p̂i00 p̂i01
p̂i10 p̂i11

)

= �−1
ia

(
p̂∗
i00 p̂∗

i01
p̂∗
i10 p̂∗

i11

)

�−1
is , (8)

where the matrices �ia and �is are assumed invertible.

Table 1 Observed counts for case-control data

X∗
s = 0 X∗

s = 1

X∗
a = 0 X∗

a = 1 X∗
a = 0 X∗

a = 1 Total

Case (Y = 1) n∗
100 n∗

110 n∗
101 n∗

111 n1
Control (Y = 0) n∗

000 n∗
010 n∗

001 n∗
011 n0
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To describe the asymptotic variance p̂ijk , we apply the delta method to the asymptotic
distribution of

(
p̂∗
i00, p̂∗

i01, p̂∗
i10, p̂∗

i11
)T in combination of (8), where the asymptotic distri-

bution of
(
p̂∗
i00, p̂∗

i01, p̂∗
i10, p̂∗

i11
)T is of the same form as (4) except for replacing pijk and p̂ijk

with p∗
ijk and p̂∗

ijk respectively, i, j, k = 0, 1.

4 Inferencemethod with replicates
The foregoingmethod assumes that themisclassification probabilities are known, and it is
useful for conducting sensitivity analyses where onemay specify a class of plausible values
of the sensitivity and specificity to evaluate the misclassification effects on estimation of
quantities such as odds ratios ψjk or cell probabilities pijk .
In practice, misclassification probabilities are usually unavailable andmust be estimated

from additional data sources. Here we consider a situation where an independent sample
with two repeated covariate measurements is available. In addition to the main study data
displayed in Table 1, a second independent sample is available as shown in Table 2. As
there is no information on the disease status for this independent sample, we assume
the nondifferential misclassification mechanism in order to estimate the sensitivities and
specificities. Namely, we assume that

πiaj = πaj and πisj = πsj,

where πaj and πsj are constants, i, j = 0, 1. Although no gold standard measurements
of Xa and Xs via a validation subsample are available for this circumstance, the discrep-
ancy between the two repeated measurements allows us to estimate the misclassification
probabilities under certain assumptions.
To see this, we consider an estimation method of the πaj and πsj which separately uses

the repeated measurements of Xa and Xs. We describe only estimation of the πaj here;
estimation of the πsj is similar.
Let X∗

a1 and X∗
a2 denote the first and second observed measurements for Xa, respec-

tively. Define

aajk = P
(
X∗
a1 = j,X∗

a2 = k
)

for j, k = 0, 1

and αa = P(Xa = 1). If assuming conditional independence between the first and second
observed measurements for Xa:

P
(
X∗
a1 = j,X∗

a2 = k|Xa = l
)

= P
(
X∗
a1 = j|Xa = l

)
P

(
X∗
a2 = k|Xa = l

)
for j, k, l = 0, 1,

Table 2 Two replicates of surrogate covariate measurements

First assessment Second assessment First assessment Second assessment

X∗
a2 = 1 X∗

a2 = 0 Total X∗
s2 = 1 X∗

s2 = 0 Total

X∗
a1 = 1 n∗

a11 n∗
a10 n∗

a1+ X∗
s1 = 1 n∗

s11 n∗
s10 n∗

s1+
X∗
a1 = 0 n∗

a01 n∗
a00 n∗

a0+ X∗
s1 = 0 n∗

s01 n∗
s00 n∗

s0+
Total n∗

a n∗
s
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then we obtain aa10 = aa01, and

aa11 = π2
a1αa + (1 − πa0)

2(1 − αa);

aa10 = πa1(1 − πa1)αa + πa0(1 − πa0)(1 − αa);

aa00 = (1 − πa1)
2αa + π2

a0(1 − αa). (9)

In (9), one equation is determined by the other two, implying that model parame-
ters are unidentifiable unless additional assumptions are imposed. To consider a reduced
parameter space, we take the prevalence αa as given.
Let N∗

ajk be the number of pairs
(
X∗
a1 = j,X∗

a2 = k
)
for j, k = 0, 1. Then we have a

multinomial distribution
(
N∗
a11,N∗

a10,N∗
a01,N∗

a00
) ∼ Multinomial

(
n∗
a, aa11, aa10, aa01, aa00

)
,

resulting in the likelihood,

L(πa1,πa0) = an
∗
a11

a11 · an∗
a10+n∗

a01
a10 · an∗

a00
a00

where the constant is omitted, n∗
a is the number of paired assessments, aa11, aa10 and aa00

are determined by (9) and constrained by aa11 + 2aa10 + aa00 = 1.
Estimation of parameters is carried out with the maximization of the likelihood

L(πa1,πa0). The associated variance estimates are obtained from the observed informa-
tion matrix, i.e., the negative of the second derivative matrix of log L(πa1,πa0) evaluated
at the estimates of parameters. To get rid of the constraints that the probabilities are
bounded by 0 and 1, we reparameterize πa0 and πa1 by using the logit transformation
when maximizing the likelihood.
To obtain estimates of regression parameters in model (1), we use the relationship (8)

and obtain that

p̂ijk = p̃ijk
(π̂a0 + π̂a1 − 1) (π̂s0 + π̂s1 − 1)

for j, k = 0, 1, where

p̃i00 = π̂a1π̂s1p̂∗
i00 − (1 − π̂a1) π̂s1p̂∗

i10 − π̂a1(1 − π̂s1)̂p∗
i01 + (1 − π̂a1)(1 − π̂s1)̂p∗

i11;

p̃i10 = −(1 − π̂a0)π̂s1p̂∗
i00 + π̂a0π̂s1p̂∗

i10 + (1 − π̂a0)(1 − π̂s1)̂p∗
i01 − π̂a0(1 − π̂s1)̂p∗

i11;

p̃i01 = −π̂a1(1 − π̂s0)̂p∗
i00 + (1 − π̂a1)(1 − π̂s0)̂p∗

i10 + π̂a1π̂s0p̂∗
i01 − (1 − π̂a1)π̂s0p̂∗

i11;

p̃i11 = (1 − π̂a0)(1 − π̂s0)̂p∗
i00 − π̂a0(1 − π̂s0)̂p∗

i10 − (1 − π̂a0)π̂s0p̂∗
i01 + π̂a0π̂s0p̂∗

i11. (10)

Consequently, the log odds ratios are estimated by

log
(
ψ̂jk

) = log
( p̂000 · p̂1jk
p̂100 · p̂0jk

)
= log

( p̃000 · p̃1jk
p̃100 · p̃0jk

)
(11)

for (j, k) �= (0, 0). The variance of log
(
ψ̂jk

)
can be obtained by applying the delta method

to the variance of
(
π̂a1, π̂a0, π̂s1, π̂s0, p̂∗T

0 , p̂∗T
1

)T which is a diagonal block matrix with vari-
ances of (π̂a1, π̂a0)

T , (π̂s1, π̂s0)T, p̂∗
0 and p̂∗

1 being the diagonal blocks. The derivatives of
log

(
ψ̂jk

) = log (̃p000) + log(̃p1jk) − log(̃p100) − log(̃p0jk) with respect to the parameters
can be easily obtained via (10).
Finally, as noted by a referee, certain constraints underlie the estimates of log odds ratios

(11), which are reflected by the positivity of the probabilities in (10). These constraints
essentially require the misclassification probabilities to be upper bounded properly to
ensure that the observed surrogate measurements are relevant and useful. In other words,
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misclassification effects can only be addressed when they are not arbitrarily substan-
tial, and this makes intuitive sense. For instance, when a misclassification probability, say
P

(
X∗
a = 0|Xa = 1

)
, is bigger than 1/2, then the observed measurements X∗

a carry useless
information of Xa; using such observations to estimate the model parameter, no matter
how an estimation method is developed, is even worse than using artificial data generated
from flipping a fair coin.

5 Numerical analysis
In this section, we analyze the motivating example to illustrate the usage of the proposed
method and conduct numerical studies to assess the performance of our method.

5.1 Data analysis

We analyze the case-control data discussed by Duffy et al. (1989) and described in
Section 1. For any subject, let Xa be a binary variable indicating whether or not the alco-
hol consumption is more than 9.3 g ethanol/day, and let Xs be a binary variable indicating
whether or not the lifetime cigarette-years of the subject is more than 300. Table 3 records
the data of the main study, where one breast cancer case has missing observations and we
ignore this in the analysis. In addition, there was an independent study available on 100
women who were neither cases nor controls. Repeated measurements of Xa and Xs were
collected for those women on two occasions, and the measurements are given in Table 4
where one subject has missing observations of Xs.
We analyze the data using the proposed method described in Section 4 and the naive

method with misclassification in Xa and Xs ignored, called Analysis 1 and Analysis 2,
respectively. To remove the constraints of the specificities and sensitivities, we consider
the reparameterization:

π̃ = exp(δ)
1 + exp(δ)

,

where π̃ represents πa1,πa0,πs1 or πs0, and δ is the corresponding parameter which takes
a value in (−∞,+∞).
As comparisons, a referee suggested to further conduct two analyses, called Analysis

3 and Analysis 4. In Analysis 3, we take the misclassification probabilities as known and
let their values be determined by the estimated specificities and sensitivities obtained
from Analysis 1. In Analysis 4, we pretend the second sample is a validation sample
where the measurements from the first assessment were taken as the true values and the
measurements from the second assessment were regarded as surrogate measurements;
sensitivities and specificities are then estimated from the relative frequencies using this
artificial validation sample.

Table 3 Breast cancer case-control study: main study data

X∗
s = 0 X∗

s = 1

X∗
a = 0 X∗

a = 1 X∗
a = 0 X∗

a = 1 Total

Y = 1 268 82 61 39 450

Y = 0 305 70 56 20 451

Total 573 152 117 59 901
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Table 4 Breast Cancer Case-Control Study: Replicates of Surrogate Measurements

First assessment Second assessment First assessment Second assessment

X∗
a = 1 X∗

a = 0 Total X∗
s = 1 X∗

s = 0 Total

X∗
a = 1 18 6 24 X∗

s = 1 11 2 13

X∗
a = 0 7 69 76 X∗

s = 0 2 84 86

Total 100 99

The analysis results are reported in Table 5, where EST, SEM and 95% CI represent
estimates, model-based standard errors and 95% confidence intervals for the parameters,
respectively. Relative to those produced by the method with misclassification incorpo-
rated (Analysis 1), the naive analysis (Analysis 2) yields attenuated point estimates for
βa and βas, and leads to an inflated estimate of βs. Analysis 1 produces larger standard
errors than Analysis 2, which is consistent with the typical patterns observed in the analy-
sis with measurement error models in the literature. The comparison between the results
of Analyses 1 and 3 confirms the theoretical property that Analysis 3 produces the same
point estimates of the response parameters as Analysis 1 does, but it yields smaller vari-
ance estimates than those produced from Analysis 1. While it is not possible to directly
compare Analysis 4 to Analysis 1 or Analysis 3, the comparison of Analysis 4 to Analysis
2 reveals the same pattern as the comparison between Analyses 1 and 2. All the analyses
suggest that none of smoking, alcohol consumption, and their interaction are statistically
significant.

5.2 Sensitivity analysis

In the previous subsection the misclassification probabilities are estimated based on a
small set of replicated surrogate measurements, whose accuracy may be questionable due
to the small size of the data. We now investigate the effect of misclassification of the
alcohol and smoking factors on the estimation of the odds ratios when misclassification
probabilities are set differently. Three scenarios are considered: there is misclassification
on alcohol factor only, on smoking factor only, and on both the alcohol and smoking
factors. The sensitivity and specificity are employed to specify the (correct) classification
rates; setting these quantities to be 1 corresponds to the case without misclassification.
To ensure the nonnegativity of the probabilities p∗, specification of the sensitivity and
specificity is subject to underlying constraints, as discussed in Section 4.

Table 5 Analysis results for the breast cancer case-control study

Analysis 1 Analysis 2

EST SEM 95% CI EST SEM 95% CI

βa 0.340 0.307 (-0.261, 0.941) 0.288 0.183 (-0.071, 0.646)

βs 0.175 0.293 (-0.400, 0.750) 0.215 0.203 (-0.183, 0.613)

βas 0.372 0.520 (-0.647, 1.391) 0.295 0.379 (-0.447, 1.037)

Analysis 3 Analysis 4

EST SEM 95% CI EST SEM 95% CI

βa 0.340 0.224 (-0.099, 0.778) 0.454 0.349 (-0.229, 1.138)

βs 0.175 0.259 (-0.334, 0.683) 0.153 0.291 (-0.418, 0.724)

βas 0.372 0.497 (-0.603, 1.346) 0.410 0.686 (-0.934, 1.754)
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Noting that estimates of the log odds ratios are determined by (11) which includes the
terms p̃ijk for i, j, k = 0, 1 and that, by (10), p̃ijk depends on the sensitivity and the speci-
ficity in the same manner, one might expect that the change of a log odds ratio relative
to the sensitivity would behave in the same manner as that to the specificity. However,
this speculation is not necessarily visualizable because the magnitude of the change can
be different due to the dependence of the log odds ratios on estimated probabilities p̂∗

ijk
obtained from the observed data. In other words, visual effects of the sensitivity and the
specificity on changes of log odds ratios can be noticeably different, which is driven by
the actual observed data in Table 1. This is reflected in our sensitivity analyses here.
Figure 1 shows the change of the log odds ratios according to the change of the sen-

sitivity and specificity for the alcohol factor while keeping the sensitivity and specificity
for the smoking factor to be 1. With a given specificity (i.e., πa0) or sensitivity (i.e., πa1),
the log odds ratio log(ψ10) tends to decrease as the sensitivity (i.e., πa1) or specificity (i.e.,
πa0) of alcohol factor increases; but the change rates for them are not the same. On the
other hand, the log odds ratio log(ψ01) increases as the sensitivity (i.e., πa1) of alcohol
increases when the specificity (i.e., πa0) is kept fixed; the log odds ratio log(ψ01) appears
less sensitive to the change of the specificity (i.e., πa0) when the sensitivity (i.e., πa1) is
given. Regarding the log odds ratio logψ , we notice that its value is affected the change in
the sensitivity and specificity of the alcohol.
Figure 2 presents the changes of the log odds ratios according to the change of the sen-

sitivity and specificity for the smoking factor while keeping the sensitivity and specificity
of the alcohol factor specified as 1. The log odds ratios log(ψ10) appears to increase as
the sensitivity (i.e., πs1) of the smoking factor increases with the specificity (i.e., πs0) kept
fixed; whereas when the the sensitivity (i.e., πs1) of the smoking factor is fixed, the log
odds ratios log(ψ10) tends to decrease as the specificity (i.e., πs0) of the smoking factor
increases; Again, the change in sensitivity and specificity of the smoking factor affects the
value of log(ψ).
Figure 3 shows how the log odds ratios may change relative to the change of the sensitiv-

ity and specificity for both the alcohol and smoking factors. While any circumstances can
be considered, here we confine our attention to the scenario where the sensitivity for the
alcohol and smoking factors is equal and the specificity for these two factors is common.
It is evident that the values of both the sensitivity and specificity of the alcohol and smok-
ing factors have the impact on estimation of the log odds ratios while the magnitudes can
be different from case to case.
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Fig. 1 Sensitivity analyses of the log odds ratios to the changes of πa0 and πa1 where πs0 and πs1 are set as
1. The left plot is for logψ10, the center plot is for logψ01, and the right plot is for logψ
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Fig. 2 Sensitivity analyses of the log odds ratios to the changes of πs0 and πs1 where πa0 and πa1 are set as 1.
The left plot is for logψ10, the center plot is for logψ01, and the right plot is for logψ

5.3 Simulation study

In this subsection, we conduct simulation studies to assess the performance of the pro-
posed method and to demonstrate the impact of ignoring the misclassification in the
analysis.
We consider a setting similar to one of Zhang et al. (2008). Let Xa be generated from

a binomial distribution BIN(1,0.5) and let Xs be generated from a binomial distribution
BIN(1,0.5). Response Y is generated from model (1) where we set βa = βs = βas =
log(2.0), and β0 = −3.0. For the sensitivity and specificity, we consider two settings: (I)
πa0 = πa1 = 0.8,πs0 = πs1 = 0.9, and (II) πa0 = πa1 = 0.9,πs0 = πs1 = 0.95.
First, we generate a large number of individuals, say, 200000 individuals, which are

treated as the underlying population. Then we randomly select n1 cases and n0 controls
from this population to form a main study sample. We consider three scenarios with dif-
ferent sizes of cases and controls. In the first scenario, we take n1 = n0 = 1000; in the
second scenario, we take n1 = n0 = 500; and in the third scenario, we take n1 = 200
and n0 = 600. To generate a second sample of replicates, we randomly select n∗ individ-
uals from the underlying population so that each individual has two repeated surrogate
measurements for each of Xa and Xs. We consider two scenarios, called Scenario R1 and
Scenario R2, where n∗ is set as 100 and 500, respectively.
For each parameter configuration, we simulate 500 data sets and analyze the data using

both the the proposed method and the naive method which disregards the misclassifica-
tion feature. We report the bias (Bias), the model-based standard error (SEM), and the
95% confidence interval coverage rate (CR%), and the results are reported in Tables 6, 7
and 8, each corresponding to a size scenario.
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Fig. 3 Sensitivity analyses of the log odds ratios to the changes of π0 and π1, where πs0 and πa0 are set to be
identical, and πs1 and πa1 are set to be identical. The left plot is for logψ10, the center plot is for logψ01, and
the right plot is for logψ
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Table 6 Simulation results for the main study data with 1000 cases and 1000 controls

βa βs βas

Setting Method Bias SEM CR% Bias SEM CR% Bias SEM CR%

R1 I Naive -0.211 0.139 68.0 0.039 0.142 93.6 -0.413 0.184 43.6

Proposed 0.054 0.438 99.2 -0.018 0.459 98.2 0.104 0.604 98.4

II Naive -0.079 0.145 92.0 0.046 0.140 94.4 -0.249 0.193 75.6

Proposed 0.042 0.256 98.0 -0.011 0.264 96.2 0.034 0.349 97.8

R2 I Naive -0.217 0.144 67.8 0.034 0.143 94.2 -0.411 0.191 39.4

Proposed 0.015 0.350 95.8 0.026 0.328 96.6 -0.003 0.475 96.6

II Naive -0.087 0.142 93.2 0.034 0.152 95.0 -0.236 0.197 77.4

Proposed 0.011 0.212 97.0 -0.005 0.223 96.0 0.008 0.301 94.8

It is clear that ignoring misclassification yields biased estimates of the parameters, and
the coverage rates for the 95% confidence intervals considerably deviate from the nomi-
nal level. On the contrary, the proposed method yields much improved estimation results
with a lot smaller biases. As a trade-off of improving point estimation, variances of the
proposed estimators are bigger than those of the naive estimators, which has also been
observed in other problems concerning measurement error or misclassification (e.g.,
Carroll et al. 2006; Yi 2017). However, jointly reporting point estimation and associ-
ated variability, the proposed method produces much better coverage rates for the 95%
confidence intervals. More specifically, with a given scenario of R1 or R2, the proposed
method tends to produce better results for Setting I than for Setting II, as expected. With
a given setting of I or II, standard errors obtained from Scenario R2 are smaller than those
obtained from Scenario R1.

6 Discussion and extensions
Dichotomized covariates are very common in medical studies and misclassification of
these covariates happens frequently in the data collection process. It is important to incor-
porate such a feature in the data analysis; otherwise, biased results are usually derived.
In this article, we investigate misclassification effects of error-prone binary covariates on
the estimation of risk measures for case-control studies and develop a valid inference
method for addressing misclassification effects. Our development is carried out under a
practical setting where a validation sample is impossible but repeated measurements of

Table 7 Simulation results for the main study data with 500 cases and 500 controls

βa βs βas

Setting Method Bias SEM CR% Bias SEM CR% Bias SEM CR%

R1 I Naive -0.218 0.205 82.4 0.017 0.208 94.8 -0.401 0.272 67.2

Proposed 0.045 0.618 99.4 -0.034 0.657 98.8 0.125 0.874 98.8

II Naive -0.093 0.214 92.4 0.046 0.199 96.0 -0.248 0.270 86.0

Proposed 0.010 0.336 96.2 -0.003 0.346 97.8 0.029 0.457 97.2

R2 I Naive -0.210 0.204 83.2 0.024 0.204 94.0 -0.399 0.274 71.0

Proposed 0.033 0.506 97.6 0.004 0.496 96.8 0.042 0.709 95.4

II Naive -0.090 0.204 94.2 0.029 0.201 95.6 -0.224 0.256 88.8

Proposed 0.012 0.303 97.4 -0.013 0.294 97.0 0.028 0.394 97.0
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Table 8 Simulation results for the main study data with 200 cases and 600 controls

βa βs βas

Setting Method Bias SEM CR% Bias SEM CR% Bias SEM CR%

R1 I Naive -0.216 0.273 89.6 0.037 0.258 96.4 -0.405 0.346 79.4

Proposed 0.069 0.801 99.6 0.017 0.757 100.0 0.093 1.044 99.0

II Naive -0.099 0.306 93.0 0.034 0.301 94.0 -0.231 0.365 92.0

Proposed 0.026 0.517 98.2 -0.022 0.562 97.2 0.053 0.671 98.2

R2 I Naive -0.220 0.282 86.6 0.039 0.281 95.6 -0.404 0.362 78.6

Proposed 0.056 0.760 98.4 0.037 0.791 99.2 0.022 1.047 99.0

II Naive 0.067 0.289 96.0 0.063 0.296 96.2 -0.257 0.371 88.8

Proposed 0.052 0.452 98.4 0.043 0.461 98.2 -0.021 0.597 96.8

error-contaminated variables are available. Numerical studies demonstrate satisfactory
performance of our method.
Our method is motivated by the breast cancer case-control data discussed by Duffy et

al. (1989) which contain two error-prone binary covariates and each has two replicates
of surrogate measurements. It is possible to extend our method to more general settings
where error-prone binary covariates may bemore than two, or/and replicates of surrogate
measurements can be arbitrary, or/and error-free covariates are also present. Here we
outline three extensions.

6.1 Extension 1: replicates are more than 2

If there are m repeated measurements of each of covariate in model (1), then the devel-
opment in Section 4 can be generalized as follows with the discussion on one of the two
covariates.
Let X∗

aj denote the jth observed measurement of Xa for j = 1, . . . ,m where m is an
integer greater than 2. Let αa = P(Xa = 1) be the prevalence which is assumed known.
Define

aaj1...jm = P
(
X∗
a1 = j1, . . . ,X∗

am = jm
)

for jk = 0, 1 and k = 1, . . . ,m.

Without loss of generality, we assume that thesem replicates are independently collected,
thus yielding

aaj1...jm = P
(
X∗
a1 = j1, . . . ,X∗

am = jm,Xa = 1
) + P

(
X∗
a1 = j1, . . . ,X∗

am = jm,Xa = 0
)

=
m∏

k=1
P

(
X∗
ak = jk|Xa = 1

)
P (Xa = 1) +

m∏

k=1
P

(
X∗
ak = jk|Xa = 0

)
P(Xa = 0)

=
m∏

k=1
π
jk
a1(1 − πa1)

1−jkαa +
m∏

k=1
(1 − πa0)

jkπ
1−jk
a0 (1 − αa).

Suppose there are n∗
a measurements in total for covariate Xa. Let N∗

aj1...jm be the num-
ber of outcome

(
X∗
a1 = j1, . . . ,X∗

am = jm
)
for jk = 0, 1 and k = 1, . . . ,m, and let N∗

a =
(
N∗
aj1...jm : jk = 0, 1; k = 1, . . . ,m

)T
. Then we have a multinomial distribution

N∗
a ∼ Multinomial

(
n∗
a, aa

)
,
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where aa = (
aaj1...jm : jk = 0, 1; k = 1, . . . ,m

)T with
∑

jk=0,1;k=1,...,m aaj1...jm = 1, resulting
in the likelihood

L(πa1,πa0) =
∏

jk=0,1;k=1,...,m
(aaj1...jm)

n∗
aj1 ...jm

where the constant is omitted. Estimation of parameters πa1 and πa0 is carried out with
the maximization of the likelihood L(πa1,πa0), and the associated variance estimates are
obtained from the negative of the second derivative matrix of log L(πa1,πa0) evaluated at
the estimates of parameters. Other development in the preceding sections can then carry
through.

6.2 Extension 2: covariates are more than 2

When the number of binary covariates is greater than 2, model (1) can be generalized. To
be specific, let Xl denote the jth binary covariate for j = 1, . . . , p where p is an integer
greater than 2. Then model (1) can be generalized as

log
{
P

(
Y = 1|X1, . . . ,Xp

)

P
(
Y = 0|X1, . . . ,Xp

)

}

= β0 +
p∑

l=1
βlXl +

∑

j<k
βjkXjXk , (12)

where the β0, βl and βjk are the regression parameters for l = 1, . . . , p and 1 ≤ j < k ≤ p.
These parameters can be interpreted in terms of the odds ratios defined for the

retrospective sampling framework. Specifically, let

qi = P
(
X1 = 0, . . . ,Xp = 0|Y = i

)

and

pi(k) = P
(
X1 = 0, . . . ,Xk−1 = 0,Xk = 1,Xk+1 = 0, . . . ,Xp = 0|Y = i

)

for i = 0 or 1 and k = 1, . . . , p. Let ψk be the odds ratio for cases versus controls
with

(
X1 = 0, . . . ,Xk−1 = 0,Xk = 1,Xk+1 = 0, . . . ,Xp = 0

)
compared with the baseline

category
(
X1 = 0, . . . ,Xp = 0

)
:

ψk = q0p1(k)
q1p0(k)

for k = 1, . . . , p.
For i = 0 or 1 and 1 ≤ j < k ≤ p, let

pi(jk) = P
(
Xj = Xk = 1;Xl = 0 : l �= j, l �= k|Y = i

)
.

Define

ψjk = q0p1(jk)
q1p0(jk)

and φjk = ψjk

ψjψk
.

Then

βl = logψl and βjk = logφjk

for l = 1, . . . , p and 1 ≤ j < k ≤ p. Other development in the preceding sections can then
carry through with a more complex exposition.
We note that model (12) reflects the main effects as well as all pairwise interactions

among the covariates. The three-way or higher order interactions among the covariates
are not included, which are virtually assumed to be zero. In problems for which such



Yi and He Journal of Statistical Distributions and Applications  (2017) 4:16 Page 15 of 16

interactions are of interest, one may modify model (12) by adding those terms with addi-
tional parameters introduced. In principle, any order of interactions among the covariates
may be included in the model until a saturated model is formed. The interpretation of the
associated parameters would be modified accordingly.

6.3 Extension 3: error-free covariates are also present

Model (1) can be modified to accommodate settings with error-prone covariates as well.
Let Z denote the vector of error-free risk factors of a disease. The prospective logistic
regression model is then written as

log
{
P(Y = 1|Xa,Xs,Z)

P(Y = 0|Xa,Xs,Z)

}
= β0 + βaXa + βsXs + βasXaXs + βT

z Z, (13)

where β0,βa,βs,βas and βz are the regression parameters. The parameters β0,βa,βs, and
βas can be interpreted in the same manner as (2) except that the associated conditional
probabilities pijk need to be modified as

pijk = P
(
Xa = j,Xs = k|Y = i,Z

)

with error-free covariates Z being controlled. Estimation of the model parameters may
then be carried out using the likelihood method.
To conclude, we comment that the development of Section 4 is based on the assumption

of the nondifferential misclassificationmechanism. This assumption allows us to estimate
the sensitivities and specificities using a separate sample from the main study which has
repeated surrogate measurements of covariates only but not measurements of the disease
status. Such an assumption, however, may be too restrictive for some applications, espe-
cially for retrospective studies. In such instances, conducting sensitivity analyses can be a
viable way to allow us not to impose the nondifferential misclassification mechanism but
enable us to explore the impact of misclassification on inference results. Finally, our work
here focuses on estimation of the model parameters. It is also interesting to develop pro-
cedures for hypothesis testing to incorporate misclassification effects along the lines of
Bross (1954).
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