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Abstract 

Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular 
diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as 
the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully 
elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral 
hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review 
the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies 
for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology 
could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing 
preventive interventions instead of symptomatic treatments.
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Introduction
A key missing piece in dementia research is the elucida-
tion of the neurovascular basis of cognitive impairment 
[230, 258, 308]. The term vascular cognitive impairment 
(VCI) is used to describe a wide spectrum of conditions 
characterized by cerebrovascular disease ranging from 
subjective cognitive decline to vascular dementia (VaD) 
(Fig.  1). While VaD remains the second most common 
type of dementia worldwide after Alzheimer’s disease 
(AD), its prevalence may be underestimated—especially 
in populations with significant concomitant small vessel 
disease burden, such as those in Asia [42, 48, 49]. Vas-
cular factors may also exacerbate the pathology of AD 
[221], giving rise to the argument that vascular pathol-
ogy could even be the most common contributor to 
dementia in elderly populations [222]. Moreover, VaD is 
associated with a high mortality rate and rapid stepwise 
disease progression (Fig.  1) [4, 5, 116]. Therefore, the 
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identification of interventions to potentially benefit VCI 
patients and reduce its socioeconomic burden is of criti-
cal importance.

The pathophysiology and clinical characteristics of 
VCI have been extensively reviewed [99, 281, 283, 304]. 
Briefly, VCI is characterized by brain lesions that occur 
due to vascular pathology which leads to diverse cogni-
tive impairments. These lesions result in ischemic, hem-
orrhagic, and hypoperfusive states that can manifest as 
various clinical symptoms. Such vascular pathophysi-
ological states in turn lead to a range of downstream 
effects and structural changes on the brain, including 
infarcts, lacunes, microbleeds, white matter injury and 

parenchymal lesions [108, 139, 140, 147, 228, 247]. VCI 
thus exists as a heterogeneous group of diseases which 
can be divided into various subtypes, such as multi-
infarct dementia, post-stroke dementia and subcorti-
cal ischemic vascular dementia, each having unique 
features that may manifest clinically as dementia over 
time. While these disease subtypes provide an avenue 
to categorize the differing disease etiologies, they have a 
common set of risk factors, including demographic fac-
tors, lifestyle factors or presence of co-morbid condi-
tions (summarized in Table 1). Each of these risk factors 
is known to independently contribute to the progression 
of cerebrovascular disease and is therefore associated 

Fig. 1  Stepwise progression to VaD. The road from risk factors to disease manifestation in VCI is a complicated one, as the multiple demographics, 
lifestyle and comorbid disease risk and mitigating factors interact through the progression from asymptomatic vascular lesions, cognitive 
impairment, and finally to VaD. Furthermore, these complex interactions give rise to several distinct cerebrovascular diseases underlying different 
forms of vascular brain injuries, leading to the clinical heterogeneity of VaD. However, regardless of the specific nature of vascular injury (occlusive, 
thrombotic, etc.), a state of chronic cerebral hypoperfusion can be considered to be the common etiological link. *See Table 1 for details and 
summary of supporting research
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Table 1  Risk factors for vascular dementia (VaD)

Risk factors Description/findings

Demographic Advanced age Accounts for many unrecognized vascular changes in the brain. After the age of 65, the risk of 
developing dementia increases gradually [60]

Sex/gender Inconclusive findings

Some studies report that males are overall at a higher risk till the age of 85 and the overall preva‑
lence of VaD becomes higher in women than in men, especially at very old age (> 85)

Other studies argue that the protective effects of estrogen in women against coronary heart 
disease account for a lower risk of VaD in females [60, 94, 98, 251]

Education Data is inconclusive but there are studies that report an association between a low formal edu‑
cation with a greater risk of developing VaD [239, 246]

Social class Occupational classes such as professional/Intermediate, skilled non-manual, skilled manual and 
part-skilled/unskilled have shown to be associated with dementia risk. The higher the class, the 
lower the dementia risks [225, 253]

Genetic factors No robust genetic risk factors have been identified. However, APOE and NOTCH3 mutations can 
be associated with the formation of VCI as these individuals may be predisposed to strokes and 
other CVD that can potentially manifest as VaD [54, 98, 131, 262, 281]

Lifestyle Factors Smoking Smoking and tobacco addiction has been identified as significant risk factors for cardiovascular 
disease, cerebral vascular disease and cognitive decline. Particularly, smoking causes vascular 
endothelial dysfunction and atherosclerotic damage [8, 17, 97]

Cognitive reserve Cognitive reserve explains the theory that some individuals have a structurally and functionally 
more resilient brain against injury and disease. This risk factor may be associated with external 
influences such as education and occupation [69, 225]

Alcohol use Heavy drinking or chronic harmful use of alcohol is associated with other vascular risk factors 
such as high blood pressure, stroke, atrial fibrillation and CHD. Moderate drinking has mostly 
shown to have beneficial effects, although some studies report structural brain damage [236, 
270, 284]

Diet Effective individual nutrients such as vitamins E and B can provide for neuroprotective benefits 
in the brain. Some foods such as saturated fats and trans fats have been shown to increase 
cognitive decline and hence increase the risk for developing dementia [186–188]

Physical inactivity Intervention studies of physical activities on cognition have revealed that indeed the risk of 
dementia decreases with increased activity. However, there is still insufficient data to confirm 
this association because increased physical activities complement other risk factors such as risk 
of obesity and stroke [1, 58]

Homocysteine Hyperhomocysteinemia has been shown in studies to be associated with vascular disease. 
Homocysteine induces cellular damage via oxidative stress, excitotoxicity, and damage to the 
blood–brain barrier. Studies have also shown an association between high levels of Homocyst‑
eine and increased risk of atherosclerosis, atrophy and white matter diseases [3, 109, 211, 256, 
274]

Chronic disorders Stroke A person with the history of stroke becomes approximately three to nine times as likely to 
develop VaD as compared to a healthy individual. Furthermore, the risk of VaD increases further 
in patients who already are suffering from pre-stroke cognitive decline [61, 117, 153, 164, 208]

CAD/CHD/ischemic heart disease CAD/CHD/Ischemic Heart Disease has been identified to be a significant independent risk factor 
for vascular dementia and risk of cognitive decline. Atherosclerosis plays a major role in the 
development of CAD/CHD and has been observed clinically in many VaD patients [90, 101, 137, 
154, 193, 202, 219]

PAD/PVD Peripheral arterial disease (PAD) is a manifestation of systemic atherosclerosis in the body and 
has been reported to increase the risk of dementia types such as AD and VaD by double. This is 
especially apparent in patients with severe peripheral vascular disease (PVD) and ischemic heart 
disease. In fact, PAD was associated with a faster cognitive decline independently of previous 
CVD risk factors [205, 212, 267]

Atrial fibrillation This form of cardiac arrhythmia has been shown to be a significant independent risk factor for 
vascular dementia and AD. Moreover, patients with underlying microvascular dysfunction in 
addition to AF may manifest VaD earlier [36, 137]

Hypertension High blood pressure is not just a risk factor for dementia, but for other conditions such as stroke 
as well. In fact, many studies have reported that hypertension is an independent risk factor for 
VaD [137, 190, 303]

Diabetes mellitus Studies have reported associations between diabetes and developing early-stage cognitive 
impairment and also in VaD. Diabetes is also strongly associated with cerebral Vasculopathy. It 
has been reported that the risk of developing VaD is higher when diabetes occurs at the mid-life 
stage rather than the late-life stage as other environmental factors provide for a stronger link at 
the later life stage [111, 137, 204, 216, 302]
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with cognitive dysfunction and impact the progression 
to dementia. While there are several treatment options 
to manage VCI and their underlying risk factors as high-
lighted in Table 2, the root causes of the problem remain 
unclear. Hence, there remains several knowledge gaps 
in the understanding of VCI pathophysiology. Although 
several mechanisms have been reported to have roles in 
VCI progression, including neuroinflammation, oxida-
tive stress-induced brain damage, neurodegeneration and 
brain atrophy [254], we still lack a thorough understand-
ing of this complex disease, and even the aforementioned 
mechanisms have not been fully elucidated. Furthermore, 
the clinical signs and symptoms of VCI vary between 
patients given the heterogeneity of the severity and site 
of injury. Hence, a consensus on the underlying causes of 
VCI needs to be reached.

Chronic cerebral hypoperfusion (CCH) refers to 
chronically inadequate brain perfusion [56]. Given that 
CCH is intimately associated with various risk factors, 
pathophysiological processes and pathological lesions 
known to be involved in VCI (Fig. 1), we propose that 
CCH is the central underlying cause for the progression 
of VCI. We emphasize CCH as the underlying cause as 
it ties together some of the known mechanisms of VCI 
such as chronic inflammation, oxidative stress, neu-
rodegeneration and  brain atrophy. Age-related vascu-
lar changes lead to a state of global CCH and induce 
pathophysiological changes such as blood–brain barrier 
dysfunction, resulting in increased vulnerability to dis-
ease even in the absence of risk factors [278]. Recently, 
CCH was identified as the common feature observed 
in multiple subtypes of VCI [74, 283]. Furthermore, it 
was reported that global cerebral blood flow was sig-
nificantly lower in VaD than in age-matched controls 

[227, 231] but significantly higher than in AD [227]. 
The reductions in cerebral blood flow is one of the ear-
liest features observed from early VCI to VaD [130, 145, 
224], and is consistently observed in different brain 
regions, such as a reported 31% decrease in cerebral 
blood flow in the frontal cortex and a 39% decrease in 
the parietal cortex [234]. Compromised cerebral blood 
flow in the deep white matter of the brain is also asso-
ciated with hemodynamic ischemic injury, and there-
fore leads to a higher volume of white matter lesions 
(WMLs) [18, 286]. Moreover, cerebral hypoperfusion 
was shown to be a good predictor for WMLs in VCI 
patients [176, 198]. Given the above evidence, we pos-
tulate that CCH is a common driver of VCI pathologies 
such as WMLs, lacunes, infarcts, and subsequent cog-
nitive impairment.

CCH is strongly associated with stepwise cognitive 
decline in VCI, where much of what is known about 
its clinical manifestation along the spectrum from nor-
mal to end-stage VCI comes from multiple longitudinal 
studies involving recruited subjects [128, 135, 200, 224, 
268, 275, 286]. Neuropathological evidence, neuropsy-
chological assessments and imaging are important 
adjuncts in many of these studies to ensure accurate 
study recruitment. In this review, we explore the con-
cept that CCH is the main mediator of VCI pathol-
ogy and cognitive impairment. We highlight the links 
between mechanisms and the development of struc-
tural neuropathological changes during VCI and pro-
vide a landscape of how each of these changes lead to 
the development of cognitive impairment in patients. 
Understanding how CCH drives VCI progression from 
pre-clinical to severe dementia is essential for both 
researchers and clinicians in diagnosing and developing 
novel therapeutics for early intervention.

Table 1  (continued)

Risk factors Description/findings

Myocardial infarction Patients with MI have a higher risk of developing cognitive impairment due to brain hypoperfu‑
sion. It has been reported that women with MI are five times more likely to develop cognitive 
impairment as compared to men. An effect of MI is low cardiac output, promotes brain hypop‑
erfusion and hence is associated with cognitive decline and manifestation into dementia [13, 30, 
66, 137, 316]

Hypercholesterolemia High cholesterol is one of the risk factors for VaD. Hypercholesterolemia has been shows to be 
one of the dominant mechanisms in atherosclerosis and hence cognitive decline [9, 66, 75, 209]

Depression Although inconclusive, there are studies that report mid- and late- life depression is associated 
with a higher risk of VaD. Particularly, depression that only begins at the late- life stage is associ‑
ated with AD, but recurring depression is associated with VaD [21, 37]

Overweight/obese Obesity decreases blood supply to the brain and fat cells damage the cerebral white mat‑
ter leading to cognitive decline and hence VaD. Damaged white matter decreases neuronal 
functioning and eventual brain atrophy. The mechanism for obesity-induced damage is the 
obesity-induced release of adipocyte-secreted proteins and obesity-induced inflammatory 
cytokine release [7, 12, 148]
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Pathophysiology of chronic cerebral 
hypoperfusion (CCH)
In VCI, isolated instances of vascular injury may accu-
mulate into widespread damage that overcome intrin-
sic  repair mechanisms in areas critical for cognitive 
functions. There are several possible mechanisms that 
govern the transition from a physiological to a pathologi-
cal state in the brain during cerebral vascular disease. In 
order to understand how this transition occurs, animal 
studies employing CCH are commonly used to model 
the underlying pathology of VCI. Mouse CCH models 
are generally generated by manipulating the common 
carotid artery, for instance, via bilateral common carotid 
artery stenosis [242] or asymmetric common carotid 
artery surgery [114], both of which could lead to reduced 
cerebral blood flow, white matter rarefaction, glial acti-
vation, as well as subsequent cognitive impairment. A 
cascade of molecular and cellular events has been shown 
to be involved in the pathogenesis of CCH including 
energy imbalance, oxidative stress, endoplasmic reticu-
lum stress, mitochondrial dysfunction and inflammation 
(Fig. 2).

Pathogenic mechanisms
Energy imbalance
During VCI, blood vessels in the brain including arte-
rioles, veins and capillaries are partially occluded or 
hypoperfused [34, 145, 234]. Disruption to glucose and 
oxygen supply compromises the production of adeno-
sine triphosphate (ATP) [118, 119]. The resultant state of 
energy imbalance impairs the function of ATP-depend-
ent sodium–potassium pumps [82] which are critical 
for maintaining the resting membrane potential of neu-
rons. As such, neurons spontaneously depolarize and 
release the excitatory neurotransmitter glutamate into 
the synaptic cleft. The excess accumulation of glutamate 
in the synaptic cleft is exacerbated by other defective 
ion pumps that fail to recycle the glutamate, leading to 
persistent depolarization and overstimulation of neigh-
boring neurons [14, 38]. This excessive activation of glu-
tamate receptors (i.e. NMDA and AMPA receptors) due 
to energy imbalance that results in neuronal dysfunc-
tion and death is called excitotoxicity, which has been 
reported to occur in chronic diseases such as VCI [265]. 
In order to compensate for the lack of glucose, the brain 
will begin to undergo anaerobic glycolysis, which pro-
duces lactate. Accumulation of lactate in the brain in turn 
leads to acidosis and acidotoxicity [143, 301].

Oxidative stress
Oxidative stress is defined as an environment where 
pro-oxidant species dominates over anti-oxidant species 

[95]. It is one of the central drivers of pathology in many 
diseases and it is implicated in the cognitive decline in 
VCI [26, 53, 166, 172]. Correspondingly, a reduction of 
circulatory antioxidant enzyme levels (e.g., superox-
ide dismutase, catalase) and antioxidant capacity (e.g., 
glutathione, ergothioneine) have been observed in VCI 
patients [80, 241, 297, 298]. In the brain, CCH causes a 
disruption in calcium (Ca2+) homeostasis which leads to 
acute and chronic production of reactive oxygen species 
[82, 166] from various sources, including electron trans-
port chain, nicotinamide adenine dinucleotide phosphate 
oxidases (Nox) and nitric oxide synthase. In animal mod-
els of CCH, reduction of endothelial nitric oxide synthase 
expression [189] disrupts the vascular tone and exacer-
bates cerebral blood flow hypoperfusion [83]. CCH also 
increases Nox-1 expression in neurons, inducing apop-
tosis and contributing to cognitive impairment [53]. 
Oxidative stress also increases levels of circulating nitric 
oxide synthase inhibitor, reducing nitric oxide bioavail-
ability, leading to vasodilation impairment as evident in 
cognitive impairment [67]. As the stiffness and pulsatil-
ity of the vessels increase, higher sheer stress is generated 
which disrupts normal continuous blood flow [19]. These 
vascular changes have been reported to be associated 
with reduced blood supply to white matter regions, thus 
precipitating the formation of white matter lesions and 
lacunes [266, 293].

Endoplasmic reticulum stress
Endoplasmic reticulum stress is emerging as a path-
ological mechanism in the etiology of VCI [195]. 
The endoplasmic reticulum is involved in the syn-
thesis and post-translational modifications of 
molecules that are important in maintaining Ca2+ home-
ostasis [300]. Being the site of translation, protein fold-
ing and transport, disruptions to endoplasmic reticulum’s 
physiological function in the form of endoplasmic reticu-
lum-calcium depletion, hypoxic conditions and oxidative 
stress, are known to result in misfolding and accumula-
tion of unfolded integral proteins. Such stressors to endo-
plasmic reticulum activate an adaptive stress response 
pathway known as the unfolded protein response (UPR) 
[229]. This pathway involves three independent endo-
plasmic reticulum membrane-associated sensors which 
are protein kinase R-like endoplasmic reticulum kinase 
(PERK), inositol-requiring protein 1 (IRE1) and activat-
ing transcription factor 6 (ATF6) [300].

Under prolonged endoplasmic reticulum stress, cel-
lular proteostasis becomes unsustainable, resulting in 
accumulation of misfolded proteins and activation of 
terminal UPR [120]. Attenuation of endoplasmic reticu-
lum stress-induced apoptosis has been found to confer 
protection against ischemia and reperfusion injury [296]. 
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Fig. 2  Pathological drivers of CCH-associated VCI. Several CCH-induced pathological drivers have been long associated with the pathogenesis of 
VaD including energy imbalance, inflammation, endoplasmic reticulum (ER) stress, oxidative stress and mitochondrial dysfunction. Decreased ATP 
production impairs ATPase pumps, results in neuronal depolarization, and leads to a deregulation in the glutamate homeostasis at the synaptic 
cleft and excitotoxicity in the brain. Low cerebral blood flow triggers the brain to utilize anaerobic respiration to produce ATP and this results in 
the accumulation of lactate within the neurons, leading to acidosis. Neuronal death following CCH is primarily attributed to the increase in the 
pro-inflammatory cytokine release during the chronic inflammatory response. Danger associated molecular patterns (DAMPs) released by the brain 
cells can also trigger glial activation and leukocyte infiltration, both of which can also produce pro-inflammatory cytokines. At the cellular level, 
increase in the reactive oxidative species from various sources, including the mitochondria, induces the oxidative stress state. While the increase 
in reactive oxygen species can contribute to the redox dynamics and hemodynamics imbalance, it can also induce chronic ER stress. Persistent ER 
stress leads to an accumulation of misfolded proteins and can have fatal effects on neuronal survival and integrity via the terminal unfolded protein 
response (UPR) pathway, as well as contributing to Ca2+ homeostatic imbalance. Mitochondrial deterioration causes a further decrease in the ATP 
production, leading to proteosomal dysfunction, as well as contributing to the frequency of mutagenesis events at the mitochondrial DNA. In a 
chronic state of CCH, these drivers are pathological and ultimately pave the way for downstream disease mechanisms
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More specifically, studies using neuronal models of vas-
cular dementia have shown the contribution of zinc-
induced neurotoxicity to its pathogenesis, upregulating 
endoplasmic reticulum stress-related genes like CCAAT-
enhancer-binding protein homologous protein (CHOP) 
and growth-arrest- and DNA-damage-inducible gene 34 
(GADD34) [263]. The same group also found that the 
endoplasmic reticulum stress pathway is involved in zinc-
induced neurotoxicity thus implying its possible roles as 
both a cause and consequence in driving VaD [144].

Mitochondrial dysfunction
Given the high energy demands of the brain, mitochon-
dria, as the ‘powerhouse of the cell’, play a central role in 
producing energy in the form of ATP. Mitochondria are 
also vital in regulating brain cell survival and death by 
controlling the movement of calcium ions between the 
cells and the extracellular surroundings. Reactive oxygen 
species produced by the mitochondrial energy-redox axis 
can signal for apoptosis when the cells are damaged [104, 
159, 196, 218].

Mitochondrial dysfunction results in decreased energy 
production, thus altering cellular redox dynamics in the 
brain. Under these conditions, mitochondria begin pro-
ducing an excess of O·−

2
 and H2O2 molecules in response 

to increased oxidation of proteins, phospholipids and 
DNA that pushes the redox equilibrium towards a pro-
oxidative state [192]. There is also a global reduction in 
mitochondrial protein complexes over time [104, 159, 
161, 310]. Therefore, it is not surprising that mitochon-
drial dysfunction has been observed in VaD [162]. In 
particular, mitochondrial damage such as increased 
mitochondrial bioenergetic deficits in the hippocampus 
plays important roles in the spatial learning and mem-
ory decline in both human patients and in CCH rodent 
models [16, 72, 162, 172]. Defects in mitochondrial 
metabolism lead to altered patterns in the mitochondrial 
respiratory rate, altered membrane potential, decreased 
pyruvate hydrogenase levels, increased oxidative stress 
as manifested by increased hydrogen peroxidase lev-
els. However, mitochondrial dysfunction may not occur 
independently of other pathological processes but is 
commonly observed to overlap with other mechanisms 
such as oxidative stress and proteasome dysfunction [70].

Mitochondrial DNA contains genes that encode the 
cell’s mitochondrial energy production machinery, and 
defects or mutations in the mitochondrial DNA have 
been associated with age-related dementia and neuropa-
thology [29, 31, 68, 102, 287]. The m.3316G > A mutation 
has been identified in early-onset VaD patients who did 
not manifest typical vascular symptoms [155]. Rather, 
the mutation causes a reduction in the activity of the res-
piratory chain complex I, and hence is associated with 

the well-established link that cerebrovascular damage 
increases when mitochondrial energy chain complexes 
are compromised [125].

Neuroinflammation
Inflammation involves a complex range of responses that 
are known to play a role in disease conditions. While 
inflammation is important in tissue repair and recovery, 
under disease conditions, chronic activation of inflam-
matory responses results in a destructive phenotype that 
is observed during disease development and progression 
[62]. Both acute and chronic inflammation have been 
implicated in cellular injury associated with a hypoxic 
state of VCI [136, 174, 217]. Under CCH, reduced blood 
supply disturbs cellular integrity, activates glial cells and 
recruits peripheral immune cells to the brain [23, 141, 
309], causing death of neighboring cells and secondary 
tissue damage. Various molecular mechanisms such as 
activation of inflammatory pathways and inflammasome 
activation have been shown to play a role in inflamma-
tion during CCH.

Systemic inflammation serves as the initial signal of a 
stressed cell involving the release of damage associated 
molecular patterns (DAMPs), which are recognized by 
the pattern recognition receptors, namely Toll-like recep-
tors (TLR) and NOD-like receptors (NLR) on neighbor-
ing cells, initiating an inflammatory response [82, 260]. 
Further studies have established the association of NLR 
family pyrin domain containing 3 (NLRP3) and Absent 
in melanoma-2 (AIM2), both of which are involved in 
inflammasome activation, with VaD and CCH [81, 177, 
206, 207]. Regulatory pathways such as nuclear factor 
kappa B (NF-κB) and mitogen-activated protein kinase 
(MAPK) are subsequently activated to upregulate a wide 
range of inflammatory proteins [105, 146] including 
interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF) 
[24, 317]. These inflammatory cytokines can cause cell 
death, oligodendrocyte damage and demyelination [264, 
305]. Attenuation of IL-1β production was shown to 
ameliorate hypoperfusion-induced brain injury in mice 
[206]. Microglia and astrocytes also release adhesion 
molecules and chemokines, which activate and facilitate 
leukocyte infiltration [15, 20, 115]. In a mouse model 
of cerebral ischemia, genetic deletion of the chemokine 
CCL2 has been shown to reduce brain injury via modu-
lation of inflammation. Other proinflammatory proteins 
such as c-reactive protein are also upregulated to facili-
tate cerebral inflammation in VCI patients [77, 215, 232].

The complement system has also been implicated in 
stroke [168]. Complement proteins promote inflam-
mation via glial activation and induce neuronal injury 
through the C5 activating membrane attack complex 
(MAC). Formation and deposition of C5b-9/MAC 
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complexes damages the myelin sheath [175, 233], and 
abrogation of C5 protein reduces glial activation and 
white matter ischemia under CCH [167]. The cen-
tral effector protein in the system is the C3 convertase 
enzyme complex [28, 197, 240]. It has been demonstrated 
that under CCH, microglial cells aggravate white mat-
ter injury via the C3-C3aR pathway in rat brains [311]. 
Together, the entire inflammatory process facilitates 
astrogliosis and scar formation, oligodendrocyte and 
endothelial cell dysfunction and blood–brain barrier 
disruption [248, 282, 313], leading to neurodegenera-
tion, neurovascular dissociation and eventually structural 
damage to the brain. Therefore, inflammation serves 
as a critical mechanism that drives subsequent patho-
logical changes in CCH. In summary, the pathological 
mechanisms of CCH covered in the above section lay a 
foundation to comprehend the complex mechanistic 
underpinnings of the disease. The pathological mecha-
nisms of CCH include the involvement of multiple mol-
ecules and signaling pathways, especially those related to 
inflammation and oxidative stress.

Neuropathological features of CCH
In this section, we will examine how the pathogenic 
mechanisms described above contribute to the neuro-
pathological features that have been described in VCI.

Glial activation
The term neurovascular unit describes the structural 
and functional interactions between neurons, glial cells, 
pericytes, extracellular matrix components and endothe-
lial cells in the brain. The neurovascular unit maintains 
homeostasis within the brain microenvironment ensur-
ing optimal conditions for function of neurons and 
other cells. During CCH, the entire neurovascular unit 
is affected by the combined effects of the pathological 
mechanisms described above that can cause reduced 
integrity of the neurovascular unit [238]. This results in a 
homeostatic imbalance in the brain.

Glial cells, especially microglia, drive inflammatory 
responses by releasing proinflammatory molecules. 
Increased number of glial cells are commonly seen in VCI 
patients especially at the white matter regions [245, 269]. 
Mechanistic studies using animal models have shown 
that upon CCH, activated microglial cells participated in 
both systemic and complement-activated inflammation; 
whereas attenuation of microglial activity reduces proin-
flammatory cytokine levels, increases myelin density and 
eventually improves cognitive performance [138, 311].

Astrocytes are also involved in the process of inflam-
mation during CCH. Astrogliosis has direct influence on 
blood–brain barrier integrity and induces damage when 
constitutively activated astrocytes form glial scars or 

swelling at the end feet processes [88, 211]. With CCH, 
a study reported decreased astrocyte polarity and struc-
tural support to the endothelial cells eventually contrib-
uting to blood–brain barrier damage [127].

In the white matter, oligodendrocytes are the pre-
dominant glial cell type, and produce the myelin sheath 
around myelinated axons. As CCH damages oligoden-
drocytes and white matter, repair mechanisms are often 
impaired due to inflammation and loss of growth fac-
tors released by neurons, microglia and astrocytes. The 
myelin-independent axonal support from oligodendro-
cyte is also affected, causing significant axonal loss [93, 
181, 313]. Upon ischemia, oligodendrocytes also release 
inhibitory proteins Nogo-A and MMP-9, preventing neu-
ronal remodeling, and initiating a deleterious cascade 
within white matter to cause blood–brain barrier damage 
[93, 181].

Together, dysfunction in each of the components 
within the neurovascular unit can result in the disruption 
of brain homeostasis, which can eventually lead to neu-
ronal loss and white matter infarctions at the grey matter 
and the deep white matter territory [35, 252].

Activation of cell death
Programmed cell death is a critical role in animal devel-
opment and tissue homeostasis. Abnormal regulation 
of programmed cell death is associated with various 
human diseases including neurodegeneration. Differ-
ent forms of cell death such as apoptosis, pyroptosis and 
autophagy have been observed in cerebral ischemia and 
reperfusion injury [76, 84, 141]. Of these, there has been 
ample evidence in the literature implicating apoptosis in 
VCI. In postmortem studies of VCI patients, apoptotic 
vascular cells were identified in the basal ganglia and 
subcortical white matter regions [103]. Apoptotic neu-
ronal cells were also observed at cortical layers 3 and 5; 
and extensive ischemic lesions and axonal damage were 
observed in severe dementia [103]. Furthermore, pro-
tein expression and proteomics studies have revealed a 
decreasing anti-apoptotic proteins expression pattern 
in the cortex of VCI patients compared to controls [64]. 
Within regions of leukoaraiosis, significant increases in 
apoptotic oligodendrocytes were observed compared to 
adjacent white matter [33]. Mirroring the evidence seen 
in human patients, animal models of CCH present simi-
lar results, with increased markers of apoptosis observed. 
Specific changes observed in these animal studies include 
increased visualization of apoptotic bodies, increased 
expression of apoptotic proteins such as caspase 3, and 
reduced expression of anti-apoptotic proteins such as 
Bcl-2 [194, 243, 257, 272, 290].

More recently, other forms of cell death such as pyrop-
tosis have also been investigated in human patients [24] 
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as well as rodent models of CCH [206, 312]. Autophagy 
has gained interest as well, having been shown to be 
upregulated specifically in VaD [41] and in CCH rodent 
models [47, 51, 126, 306].

These findings, in relation to cell death mechanisms 
being implicated in the pathophysiology of CCH, rein-
force the concept of degeneration over the course of VCI 
progression, and may suggest that therapeutic interven-
tions in cell death pathways may prove effective in curb-
ing the pathological progression of VCI.

Blood–brain barrier dysfunction
The blood–brain barrier is a selectively permeable barrier 
that separates the circulating blood from the parenchy-
mal tissue. The endothelial cells of the BBB are charac-
terized by expression of tight junction proteins between 
adjacent cells, reduced rate of transcytosis and other 
transcellular movement across the barrier into or out of 
the brain. This property of blood–brain barrier estab-
lishes a finely tuned microenvironment for the brain by 
maintaining homeostasis and defending against patho-
genic infections. In CCH, increased blood–brain barrier 
permeability has been observed [40, 191, 214, 277, 292], 
and is associated with neuronal loss and white matter 
degeneration during disease progression [271]. Blood–
brain barrier damage can be induced through increased 
excitotoxicity, inflammation and oxidative stress, which 
can contribute to further brain injury via mechanisms 
such as increased leukocyte infiltration.

Excitotoxicity causes a persistent activation of endothe-
lial cells causing cell death and uncontrolled movement 
of substance across the blood–brain barrier [6, 59]. Sepa-
rately, high Ca2+ levels in the cytosol of the endothelial 
cells can also lead to activation of cell death mechanisms 
and the increased propagation of Ca2+ levels through the 
intracellular sources of Ca2+ such as mitochondria, and 
endoplasmic reticulum [92] can relocate the endothelial 
tight junction proteins [32]. Presence of proinflamma-
tory cytokines can directly damage the blood–brain bar-
rier, reducing its integrity by inducing endocytosis of the 
tight junction proteins thereby weakening the tight junc-
tion assembly [96, 307]. The internalised tight junction 
proteins are directed to lysosomal degradation, leading 
to long-term blood–brain barrier dysfunction [250, 279]. 
Reactive oxygen species have also been implicated in the 
progression of VaD and could possibly contribute to the 
breakdown of the blood–brain barrier [211]. Increased 
reactive oxygen species in endothelial cells downregu-
lates epithelial cadherin levels [2] and bioavailability of 
nitric oxide, leading to endothelial and blood–brain bar-
rier dysfunction [55, 89].

Blood–brain barrier dysfunction, oxidative stress [112] 
and inflammation induce matrix metalloproteinases 

(MMPs)-mediated proteolytic degradation of the extra-
cellular matrix [63, 223, 250]. In both VaD and experi-
mental CCH, increased levels of gelatinases (MMP-2 and 
MMP-9) have been reported [46, 223], which are associ-
ated with the degradation of basement membrane and 
tight junction proteins of the blood–brain barrier [160, 
276]. Blood–brain barrier damage also increased the size 
of the perivascular spaces leading to cellular damage of 
pericytes within, a common observation in VaD. Associa-
tion of pericyte damage with CCH, white matter damage, 
neuronal loss and cognitive impairment is evident [185] 
although a direct link between pericytes to VaD has yet 
to be demonstrated.

The blood–brain barrier regulates immune cell infiltra-
tion by maintaining low levels of leukocyte adhesion mol-
ecules on endothelial cells with inhibitory effects derived 
from pericytes [289]. In VaD, inflammation increases 
expression of adhesion molecules and chemokines such 
as intercellular adhesion molecule-1 (ICAM-1) and vas-
cular adhesion molecule (VCAM) in endothelial cells 
[259], facilitating leukocyte infiltration [165, 171]. Upon 
crossing the damaged blood–brain barrier, activated leu-
kocytes cause irreversible damage to the blood–brain 
barrier and contribute to further release of pro-inflam-
matory cytokines and reactive oxygen species, which 
forms a vicious feedback loop of activating endothe-
lia [50]. Although increased ICAM levels have been 
reported in post-mortem studies of VaD patients [180], 
evidence showing specific temporal dynamics of leuko-
cyte movement into the brain is still lacking. Overall, the 
establishment of endothelial cell activation upon CCH 
not just damages the blood–brain barrier, it also causes 
a reduction in the resting cerebral blood flow, and thus 
further contributes to a hypoperfused state within the 
brain. The biggest challenge here is the myriad aspects of 
blood–brain barrier damage and its downstream mecha-
nisms in the context of VCI and other neuropathologies 
that remain unknown.

White matter lesions
One of the major pathological hallmarks of VCI is the 
formation of white matter lesions (WMLs) [18, 286]. The 
white matter functions to connect and preserve neural 
circuit signaling, thus implying the clinical importance 
of WMLs as markers of brain dysfunction due to cerebral 
vessel disease. Pathologically WMLs represent processes 
ranging from demyelination, astrogliosis, axonal loss and 
venular damage. These are in turn a consequence of the 
combined effects of increased oxidative stress and inflam-
mation in the brain induced by CCH and blood–brain 
barrier breakdown [150, 163]. Our group has reported 
that disruption to the structural integrity of white matter 
can cause cognitive dysfunction [107, 123]. Anatomically, 
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the white matter region comprises of numerous nerve 
fiber tracts that are surrounded by myelin. During disease 
progression, demyelination may occur due to various rea-
sons. Excitotoxicity, oxidative stress and inflammation 
lead to oligodendrocyte damage through the loss of cellu-
lar function, mitochondrial dysfunction and production 
of pro-apoptotic signaling proteins, eventually contrib-
uting to their death and white matter injury [179, 255], 
and causing primary or secondary myelin destruction in 
white matter regions [178].

There is limited evidence regarding remyelination at 
the site of white matter injury following CCH. Remyeli-
nation is uncommon during CCH as the chronic hypoxic 
and pro-oxidative states block the ability of oligoden-
drocyte progenitor cells from being able to differentiate 
into newly matured oligodendrocytes [86, 91], a process 
further impeded by surrounding damaged endothelial 
cells and scar-formation during astrogliosis [10]. The 
age-dependent Wnt signaling pathway, which plays a 
role in the oligodendrocyte progenitor cells differentia-
tion, is also compromised in VCI disease states leading 
to further remyelination dysfunction [130]. Neverthe-
less, despite being vulnerable to vascular injury, evidence 
showed restoration of oligodendrocyte progenitor cells 
and oligodendrocytes after prolonged CCH (i.e. 1 month 
of bilateral common carotid artery stenosis), suggesting 
their potential regeneration ability [181]. Studies sug-
gested that oligodendrogenesis and regeneration are 
facilitated by reactive astrocytes, which secrete trophic 
factors such as brain-derived neurotrophic factor in 
response to white matter injury [169, 183, 184].

Epigenetic and genetic mechanisms
While VCI progression is mostly sporadic in nature, 
some forms of VCI are known to be influenced by the 
interplay of genetics and epigenetics. With technological 
advancements, researchers have improved access to diag-
nostic tools which carry out high throughput genomic-
based investigations. The following section highlights 
recent research in the genetic factors of VCI as well as 
emerging interest in the epigenetics of VCI progression.

Epigenetics
Epigenetics refers to the alteration of gene expres-
sion without altering corresponding DNA sequences 
[170]. Epigenetic mechanisms are driven primarily by 
environmental stimuli including stress, diet and other 
behavioural factors. Given that most of the risk factors 
of VaD are associated with lifestyle-associated condi-
tions such as hypertension and diabetes mellitus, the 
role of epigenetics seems to be critical in explaining 
the pathophysiology of the disease [203]. In fact, there 

are several lines of evidence for epigenetic contribu-
tion in the pathophysiology of dementia in general. 
These include studies where DNA methylation and 
hydroxymethylation were observed to be significantly 
reduced in the hippocampus, entorhinal cortex, cere-
bellum, and prefrontal cortex of AD patients compared 
to healthy controls [170]. Epigenetic modifications in 
AD neuropathology have been increasingly studied 
with the findings also implicated to other neurodegen-
erative diseases [79]. While there is limited evidence 
for the role of epigenetics specifically in VCI or CCH 
[203, 237, 299], this is likely due to the nascent nature 
of this topic, pointing to the need for further studies. 
Nevertheless, with epigenetic changes seen as drivers 
of pathological conditions, they may be regarded as 
biomarkers for early disease detection [199]. As such, 
further study of epigenetics would provide insights into 
VCI and perhaps aid in the stratification within VCI.

Genetic mutations
Certain forms of VCI onset and progression are known 
to have a familial component though the majority are 
sporadic cases [173]. Monogenic influences of tissue 
responses to VCI include NOTCH3 mutations causing 
cerebral autosomal dominant arteriopathy with subcorti-
cal infarcts and leukoencephalopathy (CADASIL), a rare 
form of cerebrovascular disease. The Notch pathway is 
important in the regulation of cell fate [121]. In particular, 
the Notch 3 receptor-mediated pathway is involved in the 
vascular smooth muscle survival [173]. In CADASIL, the 
mutation of the NOTCH3 gene occurs within the epider-
mal growth factor—like repeat domains in the N termi-
nal of the receptor. Brains of CADASIL patients manifest 
an aberrant oligomerization of mutant Notch 3 proteins, 
leading to altered protein–protein interactions [165]. The 
pathophysiology of CADASIL still remains unknown, but 
the NF-κB pathway has been reported to play an essen-
tial role in the inflammatory responses in the CADASIL-
associated angiopathy. NF-κB promotes the expression 
of genes coding for cytokines that leads to an amplified 
vascular inflammation level and hence vascular dysfunc-
tion [149]. Notch 3 misfolding phenomenon can cause an 
increase in free radical production in the brain, although 
the levels produced may not be directly pathogenic [39].

There are also overlapping genes with AD which are 
known to be involved in the VCI pathogenesis, namely 
the presenilins, the amyloid precursor protein (APP), 
and the apolipoprotein E (APOE) [158, 220]. It has 
been reported that the presence of even a single allele 
of the APOE4 variant could be a potential risk factor 
for progression of VCI [220], thus providing evidence 
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for a commensal interaction between AD and other 
CVD conditions.

Unravelling the potential of early detection 
and intervention strategies
Currently, the treatment options for VCI remain sparse. 
Understanding the underlying pathophysiology of VCI 
through CCH provides critical insights to the discov-
ery of biomarkers and targets for disease-modifying 
treatments.

The identification of specific biomarkers for VCI will be 
critical for more specific and sensitive diagnosis. These 
biomarkers may allow for early detection of VCI in at-risk 
patients. While the diagnostic criteria for VCI is based 
primarily on neuroimaging, blood-based biomarkers are 
nevertheless useful as surrogate disease indicators. Many 
blood and cerebrospinal fluid biomarkers have been iden-
tified over the years. Several proinflammatory molecule, 
such as C-reactive protein, IL-1α and IL-6, have been 
proposed as potential biomarkers [57, 133, 288]. Given 
that the increase in plasma level of inflammatory proteins 
precedes cognitive impairment in VCI, the identification 
of proinflammatory proteins in early stages of the disease 
not only offers prognostic advantage but also possible 
therapeutic intervention [77]. Other than inflammation, 
the classic marker for blood–brain barrier dysfunction, 
matrix metalloproteinases, has also been reported mul-
tiple times in VCI patients and found to be an early bio-
marker for cognitive dysfunction [73, 78, 191]. While 
evidence for oxidative stress in VCI patients are limited, 
it has been shown that oxidative stress is increased in 
mild cognitive impairment and AD [44, 210]. Our team 
has contributed to the field in establishing several pos-
sible blood biomarkers for white matter hyperintensities 
and microinfarcts in clinical cohorts of VCI patients such 
as serum hepatocyte growth factors, IL-8 and growth dif-
ferentiation factor-15 [45, 106, 122, 314, 315].

Beyond specific aspects of pathophysiology, several 
multi-purpose therapeutic interventions have been pro-
posed. The basis of these therapeutic interventions is 
built upon the evidence that cerebrovascular injury is 
not always progressive but may instead be reversible. For 
instance, white matter hyperintensities which are indica-
tive of white matter lesions may regress and be amend-
able to treatments [87]. Therefore, to the extent that 
cerebrovascular disease such as white matter hyperin-
tensities is related to CCH and can contribute to the risk 
of VCI development, markers which allow for the early 
identification of these lesions may enable early mitigation 
of cerebrovascular disease and in turn, VCI development. 
In a similar vein, a deep understanding of the molecular 
underpinnings of CCH which are relevant to cerebro-
vascular disease allows for the identification of potential 

treatment markers as well as drug targets. In the latter 
case, this then facilitates a potential for development of 
disease-modifying treatments.

Given that chronic diseases such as VCI are linked to 
diet and lifestyle factors, interventions at this stage are 
important for managing the disease. Recent studies have 
found association of VCI with dietary habits, shedding 
light on using intermittent fasting as a possible treat-
ment for VCI [201, 280]. Intermittent fasting has been 
shown to improve cognitive ability, neurotropic factor 
production, synaptic plasticity, mitochondrial biogenesis, 
and has also been shown to ameliorate vascular pathol-
ogy and cognitive impairment in rodent VCI models 
[11, 85, 110, 213, 237, 273]. Additional systemic benefi-
cial effects of intermittent fasting include attenuation of 
inflammation, oxidative stress, mitochondrial dysfunc-
tion and DNA damage [65]. Separately, in clinical studies 
on VaD, increasing physical activity has been suggested 
to reduce the risk of dementia manifestation, albeit not 
with entirely consistent results due to lack of standard-
ized methods [1, 71, 249, 285].

These approaches are not only potentially disease-
modifying at the pathophysiological level, but they 
also serve as a preventive strategy to mitigate an at-risk 
patient’s risk of disease. More studies are required for a 
more robust conclusion in order to delineate the role of 
intermittent fasting and exercise in VCI clearly [124, 156, 
157, 235]. Notably, our team have been investigating the 
effect of multiple lifestyle interventions on the prevention 
of cognitive decline under the Singapore Geriatric Inter-
vention Study to Reduce Cognitive Decline and Physical 
Frailty (SINGER) [52], which is an adaptation of the pio-
neering Finnish Geriatric Intervention Study to Prevent 
Cognitive Impairment and Disability (FINGER) [151]. 
Lifestyle interventions provide a promising potential in 
managing VCI and reframing the public health perspec-
tive of the disease.

Summary and future directions
VCI is now a widely accepted term introduced to embody 
the entire spectrum of vascular-related cognitive altera-
tions or cerebrovascular disease-related burdens that can 
manifest into cognitive impairments [100]. Cognitive 
deficits associated with VCI include slower mental pro-
cessing and impaired executive functioning such as poor 
planning, poor judgement and poor decision-making. 
Non-cognitive behavioural manifestations include apa-
thy, anxiety and even depression are also common. VCI 
has been gaining interest in the field as it is potentially 
preventable, prior to reaching the end-stage dementia 
[132, 294]. Given such emphasis on early detection and 
diagnosis in the field, there is a need to better understand 
the pathophysiology of VCI. As reviewed above, current 
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experimental evidence indicates that a chronic state of 
hypoperfusion in the brain drives the various pathophysi-
ological mechanisms and structural changes in the brain. 
CCH therefore holds promise in shedding some light on 
the molecular and mechanistic underpinnings of VCI.

As reviewed above, there are several common mecha-
nisms that occur during the progression of CCH-induced 
injury such as energy imbalance, oxidative stress, endo-
plasmic reticulum stress, mitochondrial dysfunction 
and inflammation (Fig.  2). These mechanisms drive the 
downstream structural neuropathological changes in 
the brain including glial activation, cell death activation, 
blood–brain barrier breakdown and white matter lesion 
formation. The pathological features begin from a hypop-
erfused state and can coexist and interact to adversely 
influence cognitive function as reported in animal mod-
els [25, 27, 43, 166]. This suggests that the effects of CCH 
on cognition are mediated by mechanistic drivers and 
structural changes in the brain. Indeed, CCH may be the 
earliest, insidious indicator of VCI, while brain atrophy 
and white matter lesions may occur downstream from 
CCH as more dynamic and detectable changes.

It is exciting to witness the field of VCI rapidly expand-
ing and moving towards sharper definitions and deeper 
insights into underlying mechanisms. The heterogene-
ity of the disease is widely recognized to be due to the 
complex interactions between vascular injuries and risk 
factors that are involved prior to, and during disease 
manifestation. Across these subtypes, variations also 
exist at the clinical, neuroimaging, and pathological lev-
els. Yet, a strong argument may be made that all subtypes 
of VCI include a CCH state, which we believe to be the 
main driver for subsequent pathological progression. 
Prolonged cerebral hypoperfusion may therefore serve 
as the transition from the at-risk state to the VCI state. 
The observational and experimental evidence from CCH 
models presented in this review help reinforce the impor-
tance of CCH as a critical feature in our efforts to unravel 
the underlying molecular mechanisms of VCI. Further 
identification of specific biomarkers of CCH may provide 
the rationale for the evaluation of these markers in the 
clinic which can bring us closer to detecting VCI at an 
early stage as well as introduce treatment options which 
may delay disease onset or slow disease progression.
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