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Abstract

The discovery of mutations associated with familial forms of Alzheimer’s disease (AD), has brought imperative insights into
basic mechanisms of disease pathogenesis and progression and has allowed researchers to create animal models that
assist in the elucidation of the molecular pathways and development of therapeutic interventions. Position 717 in the
amyloid precursor protein (APP) is a hotspot for mutations associated with autosomal dominant AD (ADAD) and the
valine to isoleucine amino acid substitution (V717I) at this position was among the first ADAD mutations identified,
spearheading the formulation of the amyloid cascade hypothesis of AD pathogenesis. While this mutation is well
described in multiple kindreds and has served as the basis for the generation of widely used animal models of disease,
neuropathologic data on patients carrying this mutation are scarce. Here we present the detailed clinical and
neuropathologic characterization of an APP V717I carrier, which reveals important novel insights into the phenotypic
variability of ADAD cases. While age at onset, clinical presentation and widespread parenchymal beta-amyloid (Aβ)
deposition are in line with previous reports, our case also shows widespread and severe cerebral amyloid angiopathy
(CAA). This patient also presented with TDP-43 pathology in the hippocampus and amygdala, consistent with limbic
predominant age-related TDP-43 proteinopathy (LATE). The APOE ε2/ε3 genotype may have been a major driver of the
prominent vascular pathology seen in our case. These findings highlight the importance of neuropathologic examinations
of genetically determined AD cases and demonstrate striking phenotypic variability in ADAD cases.
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Introduction
Alzheimer’s disease (AD) is the most common form of
dementia, currently affecting more than 5 million people in
the United States [6]. Neuropathological hallmarks of AD
include extracellular deposits of beta-Amyloid (Aβ), intra-
cellular deposits of neurofibrillary tangles (NFT) and
neuron loss [35]. The majority of cases occurs as sporadic
disease (sporadic AD, SAD), modified by genetic, behavioral

and environmental risk factors, while a subset of cases is
caused by autosomal-dominant mutations [14, 21, 35].
These mutations in autosomal dominant forms of AD
(ADAD) are clustered in genes associated with the metabol-
ism of Aβ-peptides, which are generated from Amyloid
Precursor Protein (APP) in sequential cleavage events medi-
ated by β- and γ-secretase [9]. ADAD associated mutations
in APP mainly cluster around these secretase cleavage sites,
while codon 717 is a mutational hotspot at the γ-secretase
cleavage site [27]. To date, four different pathogenic amino
acid changes for APP on codon 717 have been described:
Valine to Phenylalanine (V717F, Indiana [37]), Valine to
Glycine (V717G [10]), Valine to Isoleucine (V717I, London
[18, 63]) and Valine to Leucine (V717L [38]). All of these
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mutations shift the ratio of Aβ1–42 /Aβ1–40 towards
increased production of Aβ1–42 [27], which is more aggre-
gation prone and can drive pathological protein accumula-
tion. The V717I (London) mutation, was among the first
mutations described to cause ADAD and this discovery
has put Aβ center stage in AD pathogenesis. Animal
models overexpressing mutant human APP are a staple of
AD research [17, 24, 46, 47, 49, 52, 54] and the APP
V717I mutation was used to generate some widely used
models [34, 43, 54]. Despite the numerous and detailed
descriptions of pathological findings in these animal
models, neuropathological characterization of patients
carrying the APP V717I mutation is scarce. The brain of
the original case from England was reported to show AD
neuropathological changes with mild cerebral amyloid
angiopathy (CAA) as well as Lewy body (LB) pathology in
cortical and brainstem regions, while findings from an
American family with this mutation showed AD pathology
but no CAA or LB [8, 22, 36].

Case presentation
The patient was a sixty-six (66) year-old right-handed
Caucasian female with a past medical history of thyroid
disease. Her family history was notable for extensive AD,
involving her mother (deceased from disease at age 62),
two aunts (deceased from disease at ages 66 and 68),
and a grandfather (also deceased from disease). Add-
itionally, she had a brother diagnosed with AD, still liv-
ing in a nursing facility.
She was first noted to develop neurologic symptoms in

her mid-fifties, manifesting primarily as progressive mem-
ory loss. She presented for formal neurologic evaluation at
age 60, at which time her husband described significant
memory difficulty, confusion, and occasional difficulty in
finishing sentences. While she had discontinued working
five years prior to evaluation due to difficulty with complet-
ing occupational tasks, she maintained her ability to finish
routine housework. On initial evaluation, she was oriented
to person, place, and time but not year, with a Mini Mental
Status Exam (MMSE) score of 17. Physical exam findings
included the presence of a tremor of her head and bilateral
hands, with a negative Romberg’s test. These findings were
assessed to be consistent with AD of moderate intensity,
and she was started on donepezil and memantine therapy.
Concurrent computed tomography (CT) imaging of her
brain demonstrated subtle areas of low-attenuation in the
periventricular white matter of the parietal lobe, suggestive
of microvascular ischemic change.
Two years after initial diagnosis, she was noted to dem-

onstrate significant clinical deterioration during a follow-
up clinical visit. Her husband described a loss of her ability
to maintain independent activities of daily living, becom-
ing dependent on him for bathing and dressing on a daily
basis, and that she had additionally developed urinary

incontinence. Her recent medical history was notable for a
hospital admission due to dehydration and severe
hypothyroidism secondary to thyroid medication non-
compliance. On evaluation, she exhibited depression, anx-
iety, confusion, and an MMSE score of 8. These findings
were assessed to be consistent with a progression to severe
AD. CT imaging at this time revealed mild global brain
parenchymal loss, with no evidence of focal lesions or
asymmetric atrophy.
Her symptoms continued to progress, whereupon at a

follow-up visit four years after initial diagnosis, her hus-
band described the development of intermittent jerking
movements by the patient, occurring a few times per week
and lasting approximately 15min in duration. At this visit,
she was oriented only to person, and her MMSE score was
0, because she was unable to follow commands. A subse-
quent electroencephalogram revealed no focal abnormal-
ities or epileptiform activity, noting only the presence of
diffuse slowing activity, consistent with moderate
encephalopathy.
By the time of her final follow-up visit approximately,

six years after initial diagnosis, she had developed a
wide-based gait with frequent falls, aphasia, personality
changes, poor insight, and complete lack of orientation
to time, place, and person. She ultimately passed away
within six months of her last visit, at age 66. Her family
consented to neuropathologic evaluation of her brain by
the Center for Translational Research in Neurodegenera-
tive Disease (CTRND) at the University of Florida.

Molecular studies
A directed Sanger Sequencing screening panel for auto-
somal dominant mutations of APP, PSEN1, and PSEN2
identified a guanine-to-adenine single nucleotide substitu-
tion at codon 717, resulting in a Valine to Isoleucine
amino acid change (APP NM_000484.3 c2149G >A pVa-
l717Ile, Fig. 1a). A PCR-based molecular assay for the
APOE gene revealed the patient’s genotype to be ε2/
ε3 (for details see Additional file 1).

Neuropathological evaluation
The post-mortem interval prior to brain procurement was
eight hours, with a fresh brain weight of 1080 g (for details
see Additional file 1). Diffuse cerebral atrophy, with relative
preservation of the cerebellum (Fig. 1b, c) was noted. Min-
imal to no atherosclerotic changes associated with the basal
vasculature were identified. Serial coronal sections of cere-
bral hemispheres confirmed a mild to moderate degree of
atrophy, with blunting of the lateral angles of the ventricles
and sulcal widening most appreciable along the Sylvian
fissure. No focal lesions were otherwise observed in the re-
mainder of the cerebrum, brain stem, or cerebellum.
Microscopic examination demonstrated extensive neur-

onal loss and associated gliosis in the hippocampus and
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neocortical areas, with numerous pyramidal neurons not-
able for flame-shaped neurofibrillary tangles. Multiple areas
demonstrated prominent neuritic plaques (Fig. 1d, insert)
with associated areas of neuronal loss, gliosis, and variable
vacuolization and spongiosis of superficial cortical layers
(Fig. 1e). In addition, extensive cerebral amyloid angiopathy
(CAA) was apparent throughout parts of cerebrum and
cerebellum, concentrating on superficial cortical and lepto-
meningeal blood vessels (Fig. 1f). In contrast, only mild

small vessel hyalinization of the basal ganglia and white
matter were identified, with focal calcification of globus pal-
lidus blood vessels. A remote microhemorrhage was identi-
fied in the primary sensory cortex. The brainstem and
cerebellum demonstrated no major neuropathologic
changes, with no significant neuronal loss, gliosis, or Lewy
bodies identified in the substantia nigra or locus coeruleus.
Immunohistochemistry (for details see Additional files

1 and 2) with a pan-Aβ antibody (4G8) demonstrated a

Fig. 1 (a) Representative chromatogram of Sanger-sequencing revealed a guanine-to-adenine single nucleotide substitution at codon 717 of APP,
resulting in a Valine to Isoleucine amino acid change in the ADAD patient (APP NM_000484.3 c2149G > A pVal717Ile). (b, c) Representative gross
images of formalin-fixed left hemibrain. (d - f) Representative overview (scale bar = 2000 μm) and high magnification (insert, scale bar = 50 μm)
images of H&E stained sections reveal neuron loss, astrogliosis and numerous neuritic plaques (d), superficial spongiosis (e), as well as substantial
amyloid angiopathy of superficial cortical and leptomeningeal vessels (f)

Fig. 2 Representative images of 4G8-stained sections of mid-frontal cortex (a), superior temporal gyrus (b), visual cortex (c), cingulate gyrus (d),
amygdala (e) and cerebellum (f) reveal widespread parenchymal and vascular (inserts) Aβ-pathology throughout the neuroaxis. Cerebral amyloid
angiopathy was more prominent in cortical and leptomeningeal vasculature with no substantial involvement of cortical capillaries. Overview
images (scale bar = 1000 μm) and high magnification insert (scale bar = 50 μm)
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very high Aβ plaque burden throughout the cerebral
neocortex (Fig. 2a-d), the amygdala (Fig. 2e), basal gan-
glia, and tegmentum of the midbrain and pontine brain-
stem. Aβ deposition was also identified in the
cerebellum, presenting as scattered fleecy diffuse plaques
and neuritic plaques in the molecular layer of the cere-
bellar cortex (Fig. 2f). These findings translated to Thal
phase 5 of Aβ deposition, corresponding to an “A3”
plaque score according to the 2012 NIA-AA criteria
[35]. The majority of Aβ plaques were surrounded by
dystrophic neurites (Fig. 3d), with the frequency of neur-
itic plaques throughout the neuroaxis corresponding to
a CERAD semiquantitative score of “frequent” (C3) [35].
Immunostaining for tau demonstrated a concordant

pattern of severe, widespread inclusion pathology, mani-
festing as a heavy burden of intraneuronal neurofibrillary
tangles (NFT) and dystrophic neurites associated with
amyloid plaques (Fig. 3a-d). Disease topography extended
from the entorhinal cortex and adjacent mesial temporal
lobe cortex, deep cerebral gray matter structures, to sev-
eral areas of neocortex including primary visual cortex
(Fig. 3a-c). These findings correspond to an advanced
Braak stage (VI), translating to a “B3” NFT score [35].
In addition, intracytoplasmic neuronal inclusions were

highlighted in the hippocampal subiculum and amygdala
by immunohistochemistry for TDP-43 (Fig. 3e-f), while
neocortical areas were devoid of TDP-43 pathology, cor-
responding to stage 2 of the recently defined limbic-
predominant age-related TDP-43 encephalopathy neuro-
pathologic change (LATE-NC [41]). No α-synuclein

immunoreactive pathology was identified in the exam-
ined sections of cerebrum, brainstem, or cerebellum
(data not shown).
Aβ pathology was additionally noted to manifest as se-

vere, widespread cerebral amyloid angiopathy (CAA),
with a predilection for the superficial cortical and lepto-
meningeal vasculature and relative sparing of cortical ca-
pillaries (CAA type 2, [58]). Prominent vascular Aβ-
deposits were detected in multiple neocortical areas (Fig.
2a-c), limbic areas (Fig. 2d-e) and the cerebellum (Fig.
2f), while sections from thalamus, basal ganglia, pons
and medulla did not show vascular Aβ-deposits. This
corresponds to CAA stage 2 according to Thal et al.
[57]. Focal double barreling (Fig. 2b) and disruption of
vessel wall integrity was noted, corresponding to severe
CAA [61] or grade 4 CAA [44]. Vascular Aβ deposits
showed strong immunoreactivity with pan-Aβ antibodies
(4G8, Fig. 4a), and were labelled with Aβ1–42 specific
antibodies (12F4, Fig. 4b), as well as Aβ1–40 specific anti-
bodies (13.1.1 [31], Fig. 4c). In contrast, parenchymal Aβ
plaques were labelled strongly with pan-Aβ (Fig. 4a) and
Aβ1–42 specific (Fig. 4b) antibodies, while Aβ1–40 specific
antibodies only stained a minority of Aβ-plaques (Fig.
4c). We contrasted these results with staining in two
cases of SAD with different APOE genotype (APOE ε3/ε3
and APOE ε4/ε4, for details see Additional file 3: Table S2).
While CAA in both SAD cases showed a similar pattern of
immunoreactivity with pan-Aβ antibodies (Fig. 4d, g), as
well as Aβ1–42 (Fig. 4e, h) and Aβ1–40 specific antibodies
(Fig. 4f, i) compared to our ADAD case (Fig. 4 A-C),

Fig. 3 Representative overview (scale bar = 2000 μm) and high magnification (insert, scale bar = 50 μm) images of AT8 staining in APP V717I
mutation carrier for the hippocampus (a), superior temporal gyrus (b) and visual cortex (c) reveal substantial NFT pathology in all regions
examined. (d) AT8 staining also reveals “frequent” neuritic plaques in the inferior temporal cortex (scale bar = 1000 μm, insert scale bar = 50 μm).
Representative overview (scale bar = 2000 μm) and high magnification (insert, scale bar = 50 μm) images of TDP-43 staining demonstrate TDP-43
positive inclusions in hippocampus (e) and amygdala (f)
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parenchymal deposits were highlighted to a much greater
extent with Aβ1–40 antibodies (Fig. 4F, I) than in our ADAD
case (Fig. 4c).

Discussion and conclusions
The identification of missense mutations in APP underlying
familial forms of AD has paved the way for the formulation
of the “amyloid cascade hypothesis” [16, 22] by placing the
generation of Aβ peptides as central to disease pathophysi-
ology. To date, more than 50 mutations in APP associated
with early onset AD have been described [9, 16, 29, 50, 55];
rare APP variants associated with protective properties have
also been reported [28]. Several different substitutions of the
intramembranous Valine residue at position 717 of APP have
been described to be associated with familial forms of AD
[10, 18, 37, 38]. This position is near the γ-secretase cleavage
site of APP, such that amino acid substitutions at this func-
tional locus lead to an increased ratio of Aβ1–42/Aβ1–40 with
a trend towards increased production of Aβ1–42 [15, 27, 49].
The patient described here carrying the APP V717I mu-

tation presented with extensive AD neuropathological

changes, including abundant and widespread Aβ-pathology
in cerebrum, subcortical nuclei, and cerebellum. Multiple
different types of plaques were noted, including core-
plaques, diffuse plaques and subpial band-like Aβ deposits.
All of the deposits showed a uniformly strong staining pat-
tern with Aβ1–42 specific antibodies and relative scarcity of
Aβ1–40 positivity compared to SAD cases, in line with the
reported increase in Aβ1–42 with this mutation in cell cul-
ture studies [27]. The majority of Aβ-deposits were associ-
ated with dystrophic neurites containing phosphorylated
tau species. In addition, widespread neuronal tau pathology
in the form of NFT, as well as neuropil thread pathology
were noted. While no concomitant α-synuclein pathology
was detected, TDP-43 positive inclusions were observed in
the amygdala and hippocampus. Co-occurring TDP-43
pathology in carriers of APP mutations is not as common
as in sporadic (late-onset) AD but has been reported [11].
This is in line with a contribution of age to the preponder-
ance of TDP-43 positive pathology and ties in with the re-
cently proposed entity of limbic-predominant TDP-43
neuropathological changes (LATE-NC) [41]. In addition,

Fig. 4 (a - c) Representative images of superior temporal cortex sections of APP V717I mutation carrier labelled with pan-Aβ (4G8, a) antibodies,
demonstrate strong labeling of parenchymal and vascular amyloid deposits. Vascular deposits also showed strong staining with Aβ1–42 specific
antibodies (12F4, b) and Aβ1–40 specific antibodies (13.1.1, c). Parenchymal amyloid deposits demonstrated strong Aβ1–42 positivity (12F4, b),
while being scarcely labelled with Aβ1–40 specific antibodies (13.1.1, c). Vascular amyloid in two SAD cases with different APOE genotype (ɛ3/ɛ3
(d-f) and ɛ4/ɛ4 (g-i)), showed a similar staining pattern with strong positivity for pan-Aβ antibodies (4G8, d, g), as well as Aβ1–42 (e, h) and Aβ1−
40 specific antibodies (f, i). Parenchymal amyloid in SAD cases were highlighted with pan-Aβ (d, g) and Aβ1–42 specific antibodies (e, h), and
showed some reactivity with Aβ1–40 specific antibodies (f, i). Overview images (scale bar = 100 μm)
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severe and widespread CAA was noted, affecting leptomen-
ingeal and cortical blood vessels, but sparing fine capillaries.
Systematic studies on CAA in ADAD cases are scarce, but
a recent report from the National Alzheimer Coordinating
Center (NACC) showed an increased CAA score in ADAD
compared to SAD [48]. The number of APP mutation car-
riers in this study were limited, but phenotypic variability
with respect to CAA severity was observed. Vascular amyl-
oid in our ADAD case was strongly labelled with pan-Aβ,
as well as Aβ1–42 and Aβ1–40 specific antibodies in a similar
pattern as observed in two SAD cases with different APOE
genotype. The relative abundance of Aβ species in paren-
chymal and vascular deposits has been a matter of intense
debate. Initial reports suggested that the majority of vascu-
lar Aβ is Aβ1–40 [1, 19, 25, 26, 45], but subsequently a sub-
stantial contribution of Aβ1–42 to vascular Aβ-deposition
was acknowledged [1, 19, 40, 51, 60], with some reports
suggesting Aβ1–42 deposition driving more severe CAA [4,
20]. Mechanistic studies in murine models indicate that ini-
tial deposition of Aβ1–42 may be necessary to drive subse-
quent Aβ1–40 deposition in blood vessels [33, 42], but the
impact of different APOE genotypes has not been analyzed
systematically in this context. The relative sparing of capil-
lary vessels by pathologic Aβ deposits, referred to as type 2
CAA [58] was previously reported to be associated with the
presence of at least one APOE ε2 allele [2, 32, 59]. APOE is
currently the strongest known genetic risk factor of AD,
with the ε4 isoform correlating to an increased incidence of
AD in people of European descent [56]. The ε3 allele is
associated with preservation of synaptic integrity in
old human APP (hAPP) mice [7], and mediation of
amyloid clearance in comparison to ε4 [5], but it
was also correlated to an earlier age of onset than ε4
in this model [7, 30]. The ε2 genotype was studied
in several Italian families with the APP V717I muta-
tion. It was discovered that this allele was associated
with a delayed age of onset compared to individuals
with the same APP mutation but APOE ε3 homozy-
gotes or ε4 carriers [23, 39, 53]. Furthermore, a re-
cent report demonstrated protective effects of the
Christchurch APOE variant in a carrier of the Prese-
nilin (PSEN) E280A mutation [3]. These disease-
modifying effects of the APOE genotype may provide
one possible explanation for the divergent pheno-
types seen in the clinical and neuropathological pres-
entation of ADAD.
The case presented herein underscores the importance

of neuropathological characterization of genetically
determined cases of AD. Such examinations serve to
identify phenotypic diversity within the disease, clarify
potential modifiers of disease progression (such as, but
no limited to, APOE genotype), explore the complex in-
terrelations between disease mechanisms, and ultimately
aid in elucidating potential therapeutic targets.
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