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Genetic perspective on the synergistic
connection between vesicular transport,
lysosomal and mitochondrial pathways
associated with Parkinson’s disease
pathogenesis
Stefanie Smolders1,2 and Christine Van Broeckhoven1,2*

Abstract

Parkinson’s disease (PD) and atypical parkinsonian syndromes (APS) are symptomatically characterized by
parkinsonism, with the latter presenting additionally a distinctive range of atypical features. Although the majority
of patients with PD and APS appear to be sporadic, genetic causes of several rare monogenic disease variants were
identified. The knowledge acquired from these genetic factors indicated that defects in vesicular transport
pathways, endo-lysosomal dysfunction, impaired autophagy-lysosomal protein and organelle degradation pathways,
α-synuclein aggregation and mitochondrial dysfunction play key roles in PD pathogenesis. Moreover, membrane
dynamics are increasingly recognized as a key player in the disease pathogenesis due lipid homeostasis alterations,
associated with lysosomal dysfunction, caused by mutations in several PD and APS genes. The importance of
lysosomal dysfunction and lipid homeostasis is strengthened by both genetic discoveries and clinical epidemiology
of the association between parkinsonism and lysosomal storage disorders (LSDs), caused by the disruption of
lysosomal biogenesis or function. A synergistic coordination between vesicular trafficking, lysosomal and
mitochondria defects exist whereby mutations in PD and APS genes encoding proteins primarily involved one PD
pathway are frequently associated with defects in other PD pathways as a secondary effect. Moreover,
accumulating clinical and genetic observations suggest more complex inheritance patters of familial PD exist,
including oligogenic and polygenic inheritance of genes in the same or interconnected PD pathways, further
strengthening their synergistic connection.
Here, we provide a comprehensive overview of PD and APS genes with functions in vesicular transport, lysosomal
and mitochondrial pathways, and highlight functional and genetic evidence of the synergistic connection between
these PD associated pathways.
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Introduction
Approximately 1–2% of the worldwide population aged
over 65 years is affected with PD, and up to 4–5% people
aged over 85 years [71]. The mean age at onset is 70
years, although 5–10% of patients develop PD before the
age of 50, referred to as early-onset PD (EOPD) [298].
Clinically, PD patients present with bradykinesia, muscle
rigidity, resting tremor and gait instability [270]. Various
non-motor symptoms may occur as well, including cog-
nitive impairment and dementia, depression and apathy,
excessive daytime sleepiness and insomnia, impulse con-
trol disorder, and autonomic dysfunctions [267]. PD
symptoms manifests when approximately 30% of dopa-
minergic neurons in the substantia nigra have been
degenerated [96, 120]. The most effective symptomatic
treatment of PD consists of replenishing dopamine levels
by administering the dopamine precursor levodopa
though prolonged use could result in the development
of adverse effects such as dyskinesias or wearing off [14].
Parkinsonian syndromes, of which PD is the most com-
mon one, are symptomatically defined by parkinsonism,
comprising the four core motor symptoms of PD, in
addition to a distinctive range of atypical features. Under
this category are numerous heterogeneous syndromes
that are often misdiagnosed as PD due to considerable
overlap in symptoms especially early in the disease
course [219].
Although the majority of patients with PD and APS

appear to be sporadic, genetic causes of several rare
monogenic disease variants were identified. The know-
ledge acquired from the protein products of identified
causal genes and risk factors of PD and APS indicates
that defects in vesicular transport pathways, endo-
lysosomal dysfunction, impaired autophagy-lysosomal
protein and organelle degradation pathways, α-synuclein
aggregation and mitochondrial dysfunction play key
roles in PD pathogenesis [2, 29, 121, 236, 371]. More re-
cent advances have revealed that several parkinsonism
associated genes regulate membrane dynamics wherein
mutations cause lipid pathway alterations associated
with lysosomal dysfunction [82, 93, 201, 213]. Addition-
ally, associations between parkinsonism and lysosomal
storage disorders (LSDs), caused by disruption of lyso-
somal biogenesis or function, are emerging from genetic
discoveries and clinical epidemiology [82, 169].
This review focusses on these molecular pathways af-

fected in PD and their increasingly recognized synergis-
tic relationship in PD pathogenesis, which emerged from
the identification of causal genes and risk factors con-
tributing to the development of PD and related APS.
Emerging observation suggest complex inheritance pat-
terns of PD, including oligogenic and polygenic inherit-
ance of gene variants of interconnected PD pathways,
suggesting crosstalk between PD associated pathways.

Vesicular transport pathways regulated by PD and APS
genes
Intracellular vesicular transport pathways, which enables
traffic of molecules between specific membrane-enclosed
compartments, are especially vulnerable in neurons due
to their highly complex organization of cell body and
processes comprising axons, axon terminals and den-
drites. Consequently, defect of vesicular transport path-
ways have been implicated in multiple
neurodegenerative diseases [84, 354]. Several distinct
pathways of complex, highly dynamic vesicular mem-
brane structures with overlapping properties exist, in-
cluding endocytosis, exocytosis, endosomal sorting and
recycling, retrograde transport and autophagy. These
membrane dynamics are important to maintain overall
cellular homeostasis and organelle activities. During the
regulation of membrane dynamics, the lipid and protein
composition of the membranes changes. Several genes
associated with PD and APS encode proteins that are in-
volved in vesicular transport pathways. These genetic
discoveries illuminate defects of the endosomal traffick-
ing machinery and disrupted trafficking as pathological
processes contributing to the development of PD.

LRRK2
Autosomal dominant mutations in LRRK2 are the most
frequent cause of PD, accounting for 1–2% of all PD pa-
tients (Table 1) [251]. Although over 100 missense mu-
tations in LRRK2 have been reported, only a few are
considered to be pathogenic based on co-segregation
with the disease [251]. LRRK2 encodes a large, multi-
domain protein containing a kinase, GTPase and
protein-interaction domains. Recent research revealed
that LRRK2 plays a role in vesicular transport, autophagy
and lysosomal function [283]. LRRK2 is able to phos-
phorylate a subgroup of Rab GTPases, including Rab8A
and Rab10 at highly conserved positions in the center of
the effector-binding motif (Fig. 1) [325, 326]. Vesicle for-
mation, vesicle motility along cytoskeleton elements, and
docking and fusion at target membranes in the endocytic
pathway is controlled by a complex regulatory machin-
ery, which includes Rab GTPases in which Rab GTPases
play a major role [25]. The pathogenic LRRK2 mutations
cluster within the GTPase and kinase domains, resulting
in an increased kinase activity [10]. Phosphorylation of
Rab8A and Rab10 by LRRK2 prevents these Rab proteins
to bind to downstream effectors, causing perturbations
in vesicular transport due to pathogenic LRRK2 muta-
tions [325, 326]. Nevertheless, other regulatory mecha-
nisms of vesicular transport may be affected as well by
LRRK2 mutations. LRRK2 is localized in Rab5 positive
early and Rab7 positive late endosomes, suggesting a role
in endosomal trafficking as well as the autophagy lyso-
somal pathway [83, 117, 118, 140, 242].
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Table 1 Genes implicated in Parkinson disease and atypical parkinsonian syndromes

Gene MOI Mutation
spectrum

Mutation
mechanism

Clinical phenotype Levodopa
response

Pathology Protein
product

Pathway References

ATP10B AR Missense and
splice site
mutations

LOF EOPD/LOPD Limited,
levodopa-
induced
dyskinesia

Unknown Phospholipid
transporting
ATPase 10B

Endo-
lysosome

[213]

ATP13A2 AR Missense and
PTC mutations

LOF Juvenile APS called Kufor-
Rakeb syndrome with pyr-
amidal signs, supranuclear
gaze palsy and cognitive im-
pairment; NCL; HSP

Good Lipofuscinosis Cation
transporting
ATPase 13A2

Endo-
lysosome

[37, 90,
257, 277]

ATP6AP2 XR p.Ser115Ser
and
p.Asp107Asp

LOF Juvenile APS with slow
disease progression and
considerable phenotypic
variability including
spasticity, intellectual
disability and epilepsy

Limited,
levodopa-
induced
dyskinesia

LB-, tau+b Renin/prorenin
receptor

Endo-
lysosome

[176, 279]

DJ-1 AR Deletions, PTC
and missense
mutations

LOF EOPD with slow disease
progression and rarely
autonomic dysfunctions or
cognitive impairment

Limited,
levodopa-
induced
dyskinesia

LB + b DJ-1 Mitochondria [3, 31, 163,
334].

DNAJC6 AR c.802-2A > G,
p.Thr741Thr,
p.Gln791b,
p.Gln846b,
p.Arg927Gly

LOF Juvenile and early-onset APS
with rapidly disease progres-
sion and possible intellectual
disability, seizures and pyr-
amidal signs.

Limited,
levodopa-
induced
dyskinesia
and psychi-
atric
features

Unknown Auxilin Vesicular
transport

[85, 175,
240]

FBXO7 AR PTC and
missense
mutations

LOF Ranging from classic EOPD
to juvenile APS with
pyramidal signs (spasticity,
impaired fine movements
and increased reflexes)

Limited,
levodopa-
induced
dyskinesia
and psychi-
atric
features

Unknown F-box protein
7

Mitochondria [76, 125,
149, 204,
311, 369]

PARK2 AR Deletions, PTC
and missense
mutations

LOF EOPD with slow disease
progression and rarely
autonomic dysfunctions or
cognitive impairment

Limited,
levodopa-
induced
dyskinesia

Most LB- Parkin Mitochondria [1, 156,
160, 264]

PINK1 AR Deletions, PTC
and missense
mutations

LOF EOPD with slow disease
progression and rarely
autonomic dysfunctions or
cognitive impairment

Limited,
levodopa-
induced
dyskinesia

LB + b PTEN-induced
kinase 1

Mitochondria [156, 293]

PLA2G6 AR CNV, PTC and
missense
mutations

LOF Early-onset APS called
dystonia-parkinsonism with
cognitive decline, autonomic
dysfunction and psychiatric
manifestations; INAD; atyp-
ical NAD

Limited,
levodopa-
induced
dyskinesia

Axonal
spheroid,
iron deposits

Phospholipase
A2

Endo-
lysosome

[126, 139,
157, 161,
184, 249,
316, 370]

LRRK2 AD Missense
mutations

GOF LOPD with slow disease
progression and rarely
cognitive impairment

Good Most LB+,
rarely tau+

Leucine-rich
repeat kinase 2

Vesicular
transport

[132, 251,
285, 346,
379]

SNCA AD Multiplications,
p.Ala30Pro,
p.Glu46Lys,
p.Gly51Asp,
p.Ala53Glu and
p.Ala53Thra

GOF EOPD/LOPD with severe,
rapidly disease progression
and cognitive impairment;
DLB; MSA

Good LB+ α-Synuclein Vesicular
transport

[6, 28, 162,
181, 191,
263, 272,
284, 295,
317, 372]

SYNJ1 AR p.Arg258Gln,
p.Arg459Pro

LOF Juvenile APS with possible
cognitive impairment,
epilepsy and dystonia

Limited,
levodopa-
induced
dyskinesia

LB-, tau+b Synaptojanin 1 Vesicular
transport

[168, 180,
239, 273]

VPS13C AR Deletions LOF EOPD/DLB with severe, Good LB+ Vacuolar Endo- [69, 183,
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Table 1 Genes implicated in Parkinson disease and atypical parkinsonian syndromes (Continued)

Gene MOI Mutation
spectrum

Mutation
mechanism

Clinical phenotype Levodopa
response

Pathology Protein
product

Pathway References

and PTC
mutations

rapidly disease progression
and cognitive decline

protein sorting
13C

lysosome 193, 297]

VPS35 AD p.Asp620Asn LOF LOPD with slow disease
progression and rarely
cognitive impairment or
neuropsychiatric symptoms

Good Unknown Vacuolar
protein sorting
35

Vesicular
transport

[275, 364]

aPathogenicity of the SNCA p.His50Gln is uncertain [28]. bNeuropathological report of a single carrier. Abbreviations: MOI, mode of inheritance; AR autosomal
recessive, AD autosomal dominant, XR X-linked recessive, EOPD early-onset Parkinson disease; LOPD, late-onset Parkinson disease, APS atypical parkinsonian
syndrome; MSA multiple system atrophy, DLB dementia with Lewy bodies; NCL neuronal ceroid-lipofuscinosis, HSP hereditary spastic paraplegia, INAD infantile
neuroaxonal dystrophy, NAD neuroaxonal dystrophy, PTC premature termination codon, CNV copy number variation, LB+ positive for Lewy body pathology, LB-
negative for Lewy body pathology; tau+, positive for tau pathology

Fig. 1 Schematic representation of vesicular transport and lysosomal pathways affected in Parkinson's disease. Mutations in α-synuclein (α-syn),
LRRK2 and VPS35 are associated with autosomal dominant Parkinson's disease (PD), whereas mutations in VPS13C and ATP10B are associated
with autosomal recessive PD. Mutations in ATP13A2, PLA2G6, DNAJC6, ATP6AP2 and SYNJ1 are associated with autosomal recessive atypical
parkinsonian syndromes (APS). α-Synuclein interacts with membranes and functions in intracellular trafficking transport pathways. LRRK2
phosphorylates a subgroup of Rab GTPases which are important regulators of intracellular vesicle transport. VPS35, VPS26 and VPS29 form the
retromer cargo-recognition complex involved in intracellular retrograde transport from endosomes to the trans-Golgi network, and associates
with a dimer of sorting nexins. VPS13C tethers between the endoplasmic reticulum and late endosomes and lysosomes, and transports
glycerolipids between membranes. ATP10B and ATP13A2 are both late endosomal/lysosomal P-ATPases, involved respectively in
glucosylceramide export, and polyamine export/Mn2+ and Zn2+ import. ATP6AP2 is a subunit of the vacuolar H+ ATPase (V-ATPase) involved in
maintaining a low lysosomal pH. PLA2G6 hydrolyzes the sn-2 ester bond of membrane glycerophospholipids to yield free fatty acids and
lysophospholipids and interacts with the retromer subunits VPS35 and VPS26. DNAJC6 and SYNJ1 both play a crucial role in the detachment of
the clathrin-coat after clathrin-mediated endocytosis
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VPS35
The VPS35 p.Asp620Asn mutation is a rare cause
of autosomal dominant inherited PD, with a prevalence
of around 0.115% (Table 1) [275]. While other variants
in VPS35 have been identified as well, the p.Asp620Asn
mutation is the only recurrent mutation segregating with
PD in different populations [275, 364]. VPS35 encodes a
core component of the retromer cargo-recognition com-
plex (CRC) involved in intracellular retrograde transport
from endosomes to the trans-Golgi network [103]. The
CRC trimer consists of VPS26, VPS29 and VPS35, and
associates with a dimer of sorting nexins which is facili-
tated by Rab7 (Fig. 1) [177, 208, 301, 302]. In addition to
carrying cargo from endosomes to the trans-Golgi net-
work, the retromer carries cargo from endosomes to
plasma membranes to recycle membrane bound recep-
tors [343]. The cation-independent mannose 6-
phosphate receptor (CI-MPR) is a carrier protein of the
retromer system, involved in trafficking lysosomal prote-
ases, such as the cathepsin D (CTSD), to lysosomes [40,
300]. In the trans-Golgi network, the mannose-6-
phosphate residues of the CTSD signal peptide are rec-
ognized by CI-MPR and initiate trafficking towards the
endosome [222]. Inside the endosome, CTSD is acti-
vated by proteolytic cleavage of the signal peptide and
released for transport to the lysosome. Subsequently, CI-
MPR is recycled from the endosome to the trans-Golgi
network [187, 222]. The dominant negative VPS35
p.Asp620Asn mutation causes retromer dysfunction and
a decreased delivery of CTSD to the lysosome, contrib-
uting to lysosomal dysfunction [98, 103]. Moreover, α-
synuclein is known to be transported by the retromer
complex, and knockdown of VPS35 in Drosophila leads
to the accumulation of α-synuclein within the neurons
[222].

DNAJC6
Missense and premature termination codon (PTC) mu-
tations in DNAJC6, in line with autosomal recessive in-
heritance, have been reported in juvenile and early-onset
APS called dystonia-parkinsonism (Table 1) [85, 87, 175,
240]. DNAJC6 encodes the neuron specific isoform of
the co-chaperone auxilin-1, which plays a crucial role in
the detachment of the clathrin-coat after clathrin-
mediated endocytosis (Fig. 1). Auxilin-1 consists of a
phosphoinositide phosphatase PTEN-like domain, which
is required for the recruitment to a clathrin-coated pit, a
clathrin-binding domain, and a J domain, which enables
its interaction with Hsc70, a chaperone involved in di-
verse cellular processes [188]. The c.801-2A > G muta-
tion in DNAJC6 generates two abnormal transcripts that
lack either a significant part of the J domain or the
PTEN-like domain, the p.Gln734* deletes 180 amino
acid residues at the C-terminus of the protein, and the

pathogenic p.Arg927Gly missense mutation in the J do-
main is predicted to reduce the positive charge on the
protein surface, suggesting a loss-of-function mechanism
for all pathogenic DNAJC6 mutations [85, 175, 240].

SYNJ1
The homozygous SYNJ1 p.Arg258Gln and p.Arg459Pro
were identified in families affected with autosomal reces-
sive juvenile APS (Table 1) [168, 180, 239, 273]. SYNJ1
encodes synaptojanin 1, a phosphoinositide phosphatase
with a major role in endocytic recycling of synaptic vesi-
cles [273]. SYNJ1 contains two different phosphatase do-
mains, the 5-phosphatase and the Sac1 domain, which
target different phosphoinositide phosphates (PIPs), and
cooperates with Auxilin and Hsc70 to remove the
clathrin-coat after clathrin-mediated endocytosis (Fig. 1)
[180, 273]. The 5-phosphatase domain regulates synaptic
vesicle endocytosis by dephosphorylating phos-
phatidylinositol 4,5-bisphosphate (PIP2) to facilitate
uncoating of clathrin coated vesicles [60, 211]. Knock-in
of the SYNJ1 p.Arg258Gln mutation in mice leads to ac-
cumulation of auxilin, clathrin and parkin, and impaired
synaptic vesicle endocytosis in neurons [46].

PD and APS genes with endo-lysosomal functions
Lysosomes are the endpoint of various degradation path-
ways including endocytosis and autophagy and contain
nearly 60 different hydrolytic enzymes including nucle-
ases, proteases, phosphatases, lipases, sulfatases amongst
others to degrade macromolecules and cellular compo-
nents [290]. Many factors regulate lysosomal function
including an acidic internal pH at which lysosomal hy-
drolases are active through the activity of vacuolar H+
ATPase (V-ATPase) [290]. Neurons are especially vul-
nerable to lysosomal dysfunction because, without the
aid of cell division, they are largely dependent on au-
tophagy to prevent the accumulation of cellular protein
and damaged organelles. Insufficient degradation of
neurotoxic proteins by lysosomes has been implicated in
multiple neurodegenerative diseases [30]. Two novel PD
genes, VPS13C and ATP10B, and several APS genes en-
code proteins involved in endo-lysosomal functions.

VPS13C
The vacuolar protein sorting 13 C (VPS13C) gene was
first identified as a new risk gene for PD in a meta-
analysis of genome-wide association studies (GWAS)
[230], and later homozygous and compound heterozy-
gous PTC mutations in VPS13C were associated with
a distinct form of early-onset parkinsonism character-
ized by rapid and severe disease progression and early
cognitive decline [193]. Two independent studies con-
firmed VPS13C loss-of-function mutations in auto-
somal recessive PD [69, 297]. To date, the mutation
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spectrum includes PTC mutations, and a large dele-
tion comprising multiple exons (Table 1) [69, 193,
297]. The human VPS13 family consists of four pro-
teins, VPS13A/Chorein, VPS13B, VPS13C and
VPS13D, with all family members having a strong
homology to yeast Vps13. Yeast studies have sug-
gested that Vps13 may have a role in lipid exchange
between organelles and showed that yeast mutants
lacking Vps13 causes defects in mitochondrial mem-
brane integrity [186, 259]. More recent research
showed that human VPS13C is a lipid transport pro-
tein that functions as a tether between the endoplas-
mic reticulum (ER) and late endosomes and
lysosomes, and between the ER and lipid droplets, en-
abling transport of glycerolipids between membranes
(Fig. 1) [183]. Subsequently, loss of VPS13C impli-
cates defects in membrane lipid homeostasis and lyso-
somal dysfunction. Interestingly, loss-of-function
mutations in other human VPS13 genes are associated
with different recessive neurological disorders [67,
174, 304].

ATP10B
We recently identified compound heterozygous loss-of-
function mutations in the ATPase class V type 10B
(ATP10B) gene increasing risk for PD (Table 1) [213].
ATP10B mRNA is mainly expressed in the gastrointes-
tinal track and the brain [213]. Approximately 65% PD
patients develop gastrointestinal disorders 4 years after
diagnosis and Lewy body pathology is also observed in
the enteric nervous system of PD patients [35, 210, 353].
Previously, ATP10B was identified as a P4-type transport
ATPase present in the late endo−/lysosomal compart-
ment [228]. P4 ATPases are lipid flippases that use ATP
to drive the transport of lipids from the lumen to the
cytosolic membrane leaflet, establishing the vitally im-
portant lipid asymmetry between two membrane leaflets
[11, 254]. ATP10B forms a heteromeric complex with
the Cell Cycle Control Protein 50A (CDC50A) to facili-
tate the trafficking from the ER to the late endosome
and lysosome [11]. We established that ATP10B is in-
volved in the translocation of glucosylceramide (GluCer)
and phosphatidylcholine (PC) towards the cytosolic
membrane leaflet of late endosomes/lysosomes (Fig. 1)
[213]. Moreover, ATP10B might also transport glucosyl-
sphingosine and sphingomyelin besides GluCer and PC
[213]. ATP10B functionally belongs to the ATP10A/D
sub-class of human lipid flippase isoforms that share
highly conserved functional domains for GluCer and PC
transport, pointing to a physiological role of the
ATP10A, B and D transporters in GluCer/PC uptake or
subcellular redistribution [281]. However, so far no
neurological diseases are associated with ATP10A or
ATP10D. In cellular overexpression models, the

identified PD associated ATP10B mutants were shown
to be catalytically inactive and failed to provide cellular
protection against the environmental PD risk factors
rotenone and manganese [213]. In isolated cortical neu-
rons, knockdown of ATP10B led to a significant loss of
lysosomal mass and a higher lysosomal pH resulting in a
global reduction of lysosomal degradative capacity. Rote-
none exposure in ATP10B knockdown cortical neurons
also impaired lysosomal membrane integrity, which is a
major driver of lysosome dependent cell death [5].

ATP13A2
Loss-of-function mutations in ATP13A2 cause Kufor-
Rakeb syndrome, a rare form of juvenile onset autosomal
recessive APS (Table 1) [277]. Pathogenic mutations in
ATP13A2 are as well identified in patients with neuronal
ceroid lipofuscinoses, a neurodegenerative LSD, and pa-
tients with hereditary spastic paraplegia [37, 90]. The
considerable clinical heterogeneity of ATP13A2 muta-
tion carriers could be partially explained by variable im-
pact of different mutations on protein expression and
functionality of ATP13A2 [257]. Interestingly, ATP13A2
has been identified in Lewy bodies in brains of sporadic
PD patients [72, 226].
ATP13A2 encodes a P-type ATPase, mainly localized

at endosomes and lysosomes, with a role in manganese
(Mn2+) and zinc (Zn2+) homeostasis, mitochondrial bio-
energetics, and the autophagy lysosomal pathway (Fig. 1)
[23, 128, 258, 336, 345]. Recently, ATP13A2 was identi-
fied as a lysosomal polyamine exporter with a high affin-
ity for spermine [348]. The protein is highly expressed in
the brain, especially in the substantia nigra. Most of the
pathogenic missense mutations occur in functional do-
mains of ATP13A2, including the transmembrane do-
mains and the E1-E2 ATPase domain, resulting in a loss
of protein function [257]. Patient derived cells of
ATP13A2 mutation carriers revealed an impaired Zn2+

homeostasis, with lysosomal and mitochondrial dysfunc-
tion as a consequence [258, 345]. Expression of wild-
type but not mutant ATP13A2 protects mammalian cell
lines and primary rat neuronal cultures against manga-
nese induced cell death, also known as a PD environ-
mental risk factor [336]. High concentrations of
polyamines was shown to induce cell toxicity, which ex-
acerbated by ATP13A2 loss due to lysosomal dysfunc-
tion [348]. Additionally, ATP13A2 has been shown to be
involved in α-synuclein metabolism [205] and lipid
homeostasis [212].

PLA2G6
Autosomal recessive mutations in the phospholipase A2
group 6 gene (PLA2G6) are causative for phospholipase
A2-associated neurodegeneration (PLAN) syndromes,
including classic infantile neuroaxonal dystrophy (INAD)
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and atypical neuroaxonal dystrophy with childhood-
onset (atypical NAD), and adult onset APS called
dystonia-parkinsonism, which is associated with Lewy
bodies and neuroaxonal dystrophy (Table 1) [139, 157,
161, 249, 316, 370].
Mutations responsible for loss of PLA2G6 catalytic ac-

tivity usually lead to INAD and atypical NAD whereas
mutations altering substrate preference or regulatory
mechanisms are usually causal for adult onset dystonia-
parkinsonism [88]. However, patients carrying the same
PLA2G6 mutation with different clinical phenotypes
have been reported [225, 316]. The protein encoded by
PLA2G6 is a calcium-independent group VI phospholip-
ase A2 (iPLA-β), which hydrolyzes the sn-2 ester bond
of membrane glycerophospholipids to yield free fatty
acids and lysophospholipids (Fig. 1) [17]. iPLA-β expres-
sion is enriched in dendrites and axon terminals [241].
PLA2G6 is involved in repair of oxidative damage to
membrane phosphopholipids, membrane remodeling
and iron homeostasis [17, 309]. Recently, Lin and col-
leagues demonstrated that the fly homolog of iPLA-β
binds the retromer subunits VPS35 and VPS26, and that
loss of iPLA-β impairs retromer function, causes lyso-
somal ceramide accumulation, and leads to lysosomal
dysfunction [200].

ATP6AP2
Two synonymous variants in ATP6AP2, p.Ser115Ser
and p.Asp107Asp, increasing exon 4 skipping, were
identified in patients with X-linked APS character-
ized by parkinsonism, spasticity, intellectual disability
and epilepsy (Table 1) [176, 279]. ATP6AP2 encodes
the lysosomal renin/prorenin receptor, an accessory
unit of vacuolar H+ ATPase (V-ATPase) required for
lysosomal degradative functions and autophagy (Fig.
1). Alterations in ATP6AP2 are involved in different
human phenotypes, suggesting a critical function in
various organ systems [44, 127, 135, 144, 176, 245,
279, 287, 358]. ATP6AP2 interacts with renin/prore-
nin at the cell membrane which enhances proteolytic
activity toward Angiotensin II and causes activation
of intracellular signaling pathways resulting in secre-
tion of inflammatory and fibrotic factors [274]. Con-
sistent with its role in renin signaling, ATP6AP2
polymorphisms have been linked to hypertension
[135, 245, 358]. Moreover, as an accessory unit of
the membrane transporter H+ ATPase, ATP6AP2 is
involved in maintaining a low lysosomal pH and,
thereby, degradation of cellular waste [255]. siRNA
knockdown of ATP6AP2 in HEK293 cells results in
perturbed autophagy, inhibited lysosomal clearance
and in the accumulation of autophagosomes, sug-
gesting that the impaired autophagy in ATP6AP2
mutation carriers is due to reduced vacuolar H+

ATPase activity [176]. Moreover, ATP6AP2 is a
component of the WNT receptor complex involved
in the canonical WNT signal transduction pathway
in Drosophila and Xenopus [39, 63].

α-Synuclein aggregation connected to defects in vesicular
transport and autophagy-lysosomal dysfunction
The autophagy-lysosomal pathway is one of the two
major degradation pathways present in the cell for
identifying and delivering cytosolic components to
the lysosome for degradation and recycling [79].
Macro-autophagy is involved in the degradation of
aggregated proteins and damaged organelles, via en-
gulfment by a phagophore membrane, subsequent
maturation into a vesicle called the autophagosome
and afterwards fusion with a lysosome. Meanwhile,
micro-autophagy is characterized by direct lysosomal
engulfment of cytosolic material into the lysosomes
via the formation of invaginations of the lysosomal
membrane. Chaperone-mediated autophagy is in-
volved in the degradation of soluble monomeric pro-
teins containing the penta-peptide motif KFERQ, via
transport to the lysosome by the chaperone HSC70.
PD is pathologically characterized by the presence of

Lewy bodies and Lewy neurites, composed mainly of
amyloid fibrils of α-synuclein, in neurons [78] of the
central nervous system, e.g. basal ganglia, the dorsal
motor nucleus of the vagus, the olfactory bulb, the locus
coeruleus, and of the peripheral nervous system, e.g. the
enteric nervous system [35, 353]. α-Synuclein, encoded
by SNCA, was initially linked to PD as the main compo-
nent of Lewy bodies [323] and subsequently, dominant
mutations in SNCA were identified as the first genetic
cause of familial PD (Table 1) [268]. Pathogenic SNCA
mutations are present in approximately 1–2% familial
and 0.2% sporadic PD patients [95, 192, 238]. SNCA mu-
tations are also implicated in dementia with Lewy bodies
(DLB) [124, 243], and single nucleotide polymorphisms
(SNPs) in SNCA are associated with multiple system at-
rophy, an APS pathologically characterized by the pres-
ence of α-synuclein immunoreactive glial cytoplasmic
inclusions [6, 263, 295].
α-Synuclein is abundantly expressed in the central ner-

vous system, with a prominent presynaptic localization,
as a lipid binding protein that interacts with membranes
(Fig. 1) [70, 143]. The function of α-synuclein remains
poorly understood but involves maturation of pre-
synaptic vesicles, synaptic vesicle recycling, regulation of
neurotransmitter release, and plasticity of dopaminergic
neurons [202, 206, 233]. The protein contains an N-
terminal domain, which includes an imperfect conserved
repeat KTKGEV and acts as the membrane anchor re-
gion, and a central non-amyloid β component domain
consisting of hydrophobic residues that renders α-
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synuclein susceptible to polymerization [115]. The latter
domain also behaves as a lipid sensor and determines
the membrane binding affinity of α-synuclein [102].
Under normal physiological conditions α-synuclein oc-
curs as a monomeric disordered protein which could
shift upon membrane binding to an amphipathic helical
structure [347]. Nevertheless, α-synuclein can also
convert from the disordered, monomeric form to poly-
merized β-sheets constructed of additional recruited α-
synuclein monomers, which will eventually lead to the
formation of protofilaments and amyloid fibrils (Fig. 1)
[59]. α-Synuclein can be degraded by both chaperone-
mediated autophagy and micro-autophagy, with both
pathways reported to be impaired in PD pathogenesis,
resulting in α-synuclein accumulation [64]. Meanwhile,
studies in both animal models and human induced pluri-
potent stem cell (iPSC) derived dopaminergic neurons
have shown that elevated levels of α-synuclein disrupt
numerous intracellular trafficking transport pathways,
including at the ER, early and late endosomes, and lyso-
somes [58, 216, 247]. α-Synuclein expression in yeast re-
sulted in an early block in ER to Golgi vesicular
trafficking [58, 247]. In human midbrain synucleinopa-
thy models, generated through lentiviral overexpression
of α-synuclein in control cultures, or through the gener-
ation of patient lines harboring PD-causing mutations,
α-synuclein accumulation was found to reduce lyso-
somal degradation capacity by disrupting trafficking of
lysosomal hydrolases [216]. Moreover, α-synuclein accu-
mulation disrupted the ER-Golgi localization of Rab1a, a
key mediator of vesicular transport [216].

PD and APS genes involved in mitochondrial pathways
and mitophagy
Mitochondria are essential energy producing organ-
elles that regulate cellular energy homeostasis and cell
death. Mitochondria are highly dynamic and undergo
fission and fusion to maintain a functional mitochon-
drial network [221]. Mitophagy, a process involved in
the selective removal of damaged mitochondria
through macro-autophagy, is therefore crucial for
maintaining proper cellular functions. Mitophagy
comprises three important steps: the recognition of
impaired mitochondria and the formation of autopha-
gic membranes, the engulfment by a phagophore
membrane and subsequent maturation into a mitoau-
tophagosome, and the fusion of the mitoautophago-
some with a lysosome [51]. Defects in the autophagy-
lysosomal pathway consequently lead to inappropriate
removal of damaged mitochondria.
Mitochondrial dysfunction is known to contribute to

several neurodegenerative diseases, including PD [121,
148]. A reduction in complex I mitochondrial respiratory
chain activity was observed in in vivo and in vitro

models of PD as well as in post-mortem brain tissue of
idiopathic PD patients implicating a role for mitochon-
drial dysfunction in PD pathogenesis [256, 261, 294].
Later, loss-of-function homozygous and compound het-
erozygous mutations in PARK2, PINK1, PARK7/DJ-1
were found to be responsible for autosomal recessive
EOPD. The proteins encoded by PARK2 (parkin), PINK1
and DJ-1 have various well described functions but ap-
pear to converge towards mitochondrial function, in-
cluding mitophagy, mitochondrial dynamics and
oxidative stress control. Moreover, FBXO7, in which
autosomal recessive mutations cause juvenile
Parkinsonian-pyramidal syndrome, is connected to the
PARK2/PINK1 mitochondrial pathway (Fig. 2, Table 1).

PARK2
Bi-allelic mutations in PARK2 are the most common
cause of autosomal recessive PD (Table 1) [264]. Over
120 loss-of-function mutations have been identified so
far, explaining approximately 15% of EOPD patients with
an age at onset of 40–50 years [1]. Parkin, encoded by
PARK2, plays a central role as a cytosolic E3 ubiquitin-
ligating enzyme, and works in together with E1
ubiquitin-activating and E2 ubiquitin-conjugating en-
zymes of the ubiquitin proteasome system to ubiquiti-
nate misfolded, damaged or unwanted proteins for
degradation [307]. Later it was discovered that parkin is
selectively recruited to impaired mitochondria during
stress or upon membrane depolarization (Fig. 2a) [231].
Once localized at the outer mitochondrial membrane of
depolarized mitochondria, parkin promotes the ubiquiti-
nation of outer mitochondrial membrane proteins in-
volved in the upregulation of mitochondrial fusion,
mitofusin 1 and mitofusin 2 (Fig. 2a) [112, 269]. The
subsequent removal of these proteins would shift mito-
chondrial dynamics of fission and fusion and will even-
tually lead to mitochondrial fragmentation. Fragmented
mitochondria are subsequently removed via mito-
phagy [48, 189]. Additionally, parkin regulates mito-
chondrial biogenesis by mediating the degradation of the
parkin interacting substrate (PARIS), a repressor of the
peroxisome proliferator-activated receptor gamma coac-
tivator 1-α (PGC1α) transcriptional coactivator, leading
to nuclear translocation of PGC1α and transcriptional
activation of mitochondria associated genes [308, 328].
Interestingly, loss of dopaminergic neurons have been
demonstrated in animal models in which the PGC1α
gene was silenced or knocked out [146, 235].

PINK1
Mutations in the PTEN-induced putative kinase 1 gene
(PINK1) are the second leading causes of recessive PD
(Table 1). The prevalence of homozygous and compound
heterozygous PINK1 mutations varies from 0 to 4% [32, 54,
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101, 170, 197, 238, 335, 361]. PINK1 is a highly conserved
putative serine/threonine protein kinase localized to mito-
chondria via its mitochondrial targeting sequence at the N-
terminus, and recognizes mitochondrial depolarisation, re-
active oxygen species (ROS), or protein misfolding [107,
310, 355]. Most pathogenic mutations in PINK1 are found
in the serine/threonine kinase domain, suggesting loss of
kinase activity plays a crucial role in the pathogenesis of
PINK1-associated PD. In healthy mitochondria, the elec-
trical polarization of the inner mitochondrial membrane
ensures PINK1 to translocate at the inner mitochondrial
membrane via the mitochondrial import receptor
TOMM20 machinery. Here, PINK1 is rapidly cleaved by
mitochondrial proteases, including the rhomboid protease
presenilin-associated rhomboid-like protein (PARL), and

subsequently degraded by the ubiquitin-proteasome system
in the cytosol (Fig. 2a) [130]. In damaged, depolarized mito-
chondria, translocation of PINK1 by the TOMM20 ma-
chinery is inhibited, resulting in the accumulation of PINK1
at the outer mitochondrial membrane. Uncleaved PINK1
recruits and activates parkin by phosphorylating both ubi-
quitin and the ubiquitin-like domain of parkin (Fig. 2a)
[153, 158, 178]. Loss-of-function of either parkin or PINK1
results in the accumulation of dysfunctional mitochondria
in the cytoplasm, resulting in oxidative stress and subse-
quently cell death [91, 110, 113, 119, 253].

DJ-1
Approximately 0.4–1% of EOPD is caused by homozy-
gous or compound heterozygous loss-of-function

Fig. 2 Schematic representation of the mitochondrial and oxidative stress pathways affected in Parkinson disease. Mutations in parkin, PINK1, DJ-
1 and FBXO7 have been associated with autosomal recessive Parkinsonian syndromes. a In healthy, polarized mitochondria (ΔΨm) PINK1
translocates at the inner mitochondrial membrane via the mitochondrial import receptor TOMM20 machinery, which subsequently results in the
degradation of PINK1. In damaged, depolarized mitochondria (ΔΨm↓), PINK1 accumulates at the outer mitochondrial membrane and recruits
parkin upon phosphorylation. Moreover, parkin mediates the degradation of the parkin interacting substrate (PARIS), a repressor of the PGC1α
transcriptional coactivator, leading to nuclear translocation of PGC1α and transcriptional activation of mitochondria associated genes. b In
oxidative stress conditions or ΔΨm↓, DJ-1 p.Cys106 will form a sulfonic acid, which will activate DJ-1 to regulate transcription of antioxidant
genes and to promote mitophagy. c FBXO7 is a subunit of the SKP1-cullin-F-box (SCF) complex. PINK1 is involved in the recruitment of FBXO7 to
damaged mitochondria which in turn leads to the recruitment of parkin
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mutations in DJ-1 (Table 1) [31, 163]. The protein
encoded by DJ-1 is involved in transcriptional regulation,
oxidative stress responses, anti-apoptotic signaling and
protein quality control within the neuronal cells [13, 43,
52, 114, 246, 352]. In addition, DJ-1 is required for the
degradation of dysfunctional mitochondria via mito-
phagy [357]. DJ-1 is predominantly located in the cyto-
plasm and to a lesser extent at mitochondria and in the
nucleus [151, 376]. However, in oxidative stress condi-
tions, the translocation of DJ-1 into the nucleus is en-
hanced. Simultaneously, the highly conserved cysteine
residue (p.Cys106) of DJ-1 will form a sulfonic acid
(SOH, SO2H), which will activate DJ-1 to regulate tran-
scription of antioxidant genes (Fig. 2b) [13, 43, 166,
167]. Additionally, upon oxidative stress and a decrease
in mitochondrial membrane potential, DJ-1 associates
with mitochondria promoting mitophagy through mech-
anisms that are still unknown (Fig. 2b) [152, 357].
Knockdown of DJ-1 results in increased ROS, decreased
mitochondrial membrane potential and changes in mito-
chondrial morphology, leading to cell death [12, 26,
179].

The parkin/PINK1/DJ-1 mitochondrial pathway
The functions of parkin, PINK1 and DJ-1 intersect at
the mitochondria, but whether DJ-1 is directly or indir-
ectly implicated in a common pathway involving parkin
and PINK1 is still inconclusive. For example, DJ-1 is not
necessary for the recruitment of parkin to depolarized
mitochondria and is not able to rescue the mitochon-
drial defects caused by loss of parkin [131, 218, 341].
However, DJ-1 is able to reduce damage from the mito-
chondrial complex I inhibitor rotenone in the absence of
PINK1, without altering PINK1 mitochondrial pheno-
types [341]. Meanwhile, both PINK1 and parkin can res-
cue the mitochondrial fragmentation caused by the loss
of DJ-1 in primary neurons and immortalized cells [49,
142, 341]. These data suggest that DJ-1 acts in parallel
to the PINK1/parkin pathway to control mitochondrial
function and mitophagy.

FBXO7
Loss-of-function mutations in the F-box protein 7 gene
(FBXO7) are responsible for autosomal recessive APS
with various heterogenic phenotypes (Table 1) [76, 311].
FBXO7 is a subunit of the SKP1-cullin-F-box (SCF)
complex that acts as a multimeric E3 ubiquitin ligase,
wherein cullin1 and SKP1 constitute the core of the E3
ligase and FBXO7 functions as substrate-recruiting sub-
unit. To ubiquitinate a substrate in the ubiquitin prote-
asome pathway, the SCF complex brings the E2-
ubiquitin-conjugate and the substrate in close proximity
[149]. Interestingly, FBXO7 contains at its N-terminus
an ubiquitin-related (UbR) domain, which mediates the

interaction with parkin to regulate mitochondrial quality
control [42]. Indeed, mediated by PINK1, FBXO7 is
translocated to damaged mitochondria where it is re-
quired for a successful recruitment of parkin (Fig. 2)
[42]. Drosophila models showed that overexpressing
FBXO7 suppresses mitochondrial disruption and neuro-
degeneration in PARK2 mutants, confirming that they
share a common role in mitochondrial biology [42, 378].

Lysosomal dysfunction and lipid homeostasis alterations
in PD: insights from lysosomal storage disorders genes
LSDs are Mendelian-inherited metabolic disorders
caused by dysfunction in lysosomal biogenesis or func-
tion resulting in the abnormal accumulation of non-
degraded substrates. More than 50 LSDs exist with a
broad spectrum of clinical manifestations depending on
the specific substrate and the location of substrate accu-
mulation caused by protein deficiencies associated with
lysosomal function, including proteins involved in lipid
metabolism (Fig. 3). Besides α-synuclein, Lewy body
pathology consists of crowded membranes and lipids
originating form vesicles and fragmented organelles, in-
cluding mitochondria and lysosomes [306]. Compelling
associations between parkinsonism and LSDs are emer-
ging from clinical epidemiology and genetic discoveries
(Table 2). Progressive cognitive and motor decline is
present in more than two-thirds of LSDs, often including
parkinsonism [305].

GBA
Homozygous and compound heterozygous loss-of-
function mutations in GBA cause Gaucher disease (GD),
the most common autosomal recessive LSD [344]. Clin-
ical observations indicated parkinsonian features in a
subset of GD patients and in heterozygous GBA relatives
of GD patients, suggesting a role for GBA in the genetic
etiology of PD. Indeed, a multicenter genetic analysis in
2009 confirmed an increased risk (odds ratio 5.43) of de-
veloping PD in heterozygous and homozygous GBA mu-
tation carriers [313]. The missense mutations
p.Asn370Ser and p.Leu444Pro are the most frequent ob-
served pathogenic mutations in GD and PD patients, ac-
counting for 17–31% in Ashkenazi Jewish PD patients
and up to 4.5% in other PD patients [61, 234, 313, 349].
GBA patient carriers present an earlier age at onset and
more frequent cognitive impairment compared to idio-
pathic PD patients [61, 234]. Widespread and abundant
diffuse neocortical Lewy body pathology can be observed
in brains of heterozygous GBA mutation carriers [234,
262]. Moreover, the activity of glucocerebosidase
(GCase), the protein encoded by GBA, was found to be
significantly reduced in postmortem brain tissue of PD
patients with and without heterozygous GBA mutations,
with the most profound reduction in the substantia
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nigra [111, 227]. The lysosomal enzyme GCase is in-
volved in sphingolipid metabolism by catalyzing the
breakdown of GluCer to ceramide and glucose (Fig. 3)
[27, 82]. Loss of GCase and elevated GluCer levels were
shown to increase α-synuclein aggregation, though the exact
mechanism is unclear [165, 217]. The role of GCase in PD
pathogenesis is extensively reviewed elsewhere [27, 82].

SMPD1
Recessive mutations in the sphingomyelin phospho-
diesterase 1 (SMPD1) gene are responsible for neuro-
pathic (Type A) and non-neuropathic (Type B)
Niemann-Pick disease (NPD) [195, 299], while

heterozygous mutations are associated with an increased
risk of developing PD [106]. NPD is characterized by
hepatosplenomegaly and progressive neurodegeneration,
including ataxia, cognitive decline and seizures. In the
Ashkenazi Jewish population, the pathogenic mutation
p.Leu302Pro in SMPD1 was found to substantially in-
crease risk for PD (odds ratio 9.4) [106]. More studies in
different populations confirmed the association between
several pathogenic SMPD1 mutations and PD [8, 55, 66,
74, 99, 105, 367]. SMPD1 encodes acid sphingomyelinase
(ASM) which catalyzes the hydrolysis of sphingomyelin
to phosphocholine and ceramide in late endosomes and
lysosomes (Fig. 3). Subsequently, SMPD1 loss-of-

Fig. 3 Lipid metabolism and lysosomal storage disorders associated with Parkinson's disease. Proteins indicated in orange are associated with
Parkinson's disease (PD) and/or atypical Parkinsonian syndromes (APS). Proteins indicated in blue are causal for lysosomal storage disorders (LSDs)
but are also linked to PD. The primary syndromes linked to the proteins are indicated in red. The lysosomal integral membrane protein 2 (LIMP-2)
is involved in the transport of glucocerebosidase (GCase) from the endoplasmic reticulum to the lysosome. Once in the lysosome, GCase
catalyzes the breakdown of glucosylceramide (GluCer) to ceramide and glucose. Ceramide is also obtained by acid sphingomyelinase (ASM)
which catalyzes the hydrolysis of sphingomyelin to phosphocholine and ceramide, and GALC which hydrolyzes galactolipids, including
galactosylceramide. Both α-synuclein (α-syn) and PLA2G6 have also been associated with ceramide levels, though the exact mechanisms are still
unknown. Meanwhile, NPC1 has been associated with GluCer levels, even though NPC1 primarily mediates together with NPC2 intracellular cholesterol
trafficking. Furthermore, ATP10B is involved in translocating GluCer towards the cytosolic membrane leaflet. Both ceramide and GluCer levels appear to
play an important central role in PD pathogenesis. Meanwhile, NAG degrades heparan sulfate glycosaminoglycans by hydrolyzing terminal N-acetyl-D-
glucosamine residues. Finally, VPS13C is a glycerolipid transporter between the endoplasmic reticulum and lysosomes
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function mutation carriers present an accumulation of
sphingomyelin within lysosomes [53]. Strangely,
Niemann-Pick type B patients with bi-allelic SMPD1
loss-of-function mutations, resulting in approximately
10% residual ASM activity [351], present rarely neuro-
logical symptoms, while a single heterozygous SMPD1
loss-of-function mutation, anticipating 50% residual
ASM activity, increases the risk for PD. However, no dif-
ferences in average ASM enzymatic activity in blood of
sporadic PD patients compared to control individuals
were observed [8, 9]. Meanwhile, an earlier age at onset
in sporadic PD patients was found to be associated with
reduced ASM activity levels [8]. Knockout and knock-
down of SMPD1 in HeLa and BE (2)-M17 dopaminergic
cells resulted in increased α-synuclein levels [8]. The
same study provided evidence that the pathogenic
p.Leu302Pro mutation impair the localization of ASM to
the lysosome [8]. As the association between SMPD1
and PD is not fully understood, the functional effects of
PD associated mutations need to be investigated.

SCARB2
Homozygous mutations in the scavenger receptor class
B member 2 (SCARB2) gene cause action myoclonus-
renal failure syndrome (AMRF), which is an autosomal
recessive progressive myoclonic epilepsy, and are associ-
ated with significantly reduced GCase activity in patients
[24, 68, 374]. Given the observation that homozygous
SCARB2 mutation carriers have reduced GCase activity,
heterozygous SCARB2 mutations might modify PD risk.
Two common SNPs in SCARB2, rs6812193 and

rs6825004, have been associated with PD and DLB in
several genetic studies, including GWAS (odds ratio
0.84–0.91) [7, 36, 81, 136, 220, 230]. SCARB2 encodes
the lysosomal integral membrane protein 2 (LIMP-2), a
mannose-6-phosphate-independent trafficking receptor
which transports GCase from the ER through the Golgi
apparatus and endosomes to the lysosome (Fig. 3) [374].
However, the functional variants responsible for the as-
sociation between SCARB2 and PD risk remain to be
defined.

GALC
Recessive mutations in the galactosylceramidase (GALC)
gene cause Krabbe disease (KD), also known as globoid
cell leukodystrophy or galactosylceramide lipidosis,
which is a rare, often fatal LSD resulting in progressive
damage to the white matter of the peripheral and central
nervous system [292]. More than 70 disease causing mu-
tations have been identified, including missense muta-
tions, and small deletions and insertions [362]. Recently,
variants at the GALC locus were significantly associated
with increased PD risk in a large GWAS meta-analysis
[50]. The common SNP rs8005172, 12.6 kilobases prox-
imal to the GALC promoter, was the most strongly asso-
ciated variant, though the functional variant responsible
for the association is not yet known. Interestingly, this
SNP is significantly associated with GALC expression in
multiple tissues, including the brain [19]. Moreover,
brain tissue from the twitcher mouse model for KD and
from patients affected with KD identified the presence of
aggregated forms of α-synuclein and ubiquitin, which

Table 2 Lysosomal storage disorder genes which have been genetically linked to Parkinson disease

Gene Phenotype Protein product Pathway Reference

ARSB Maroteaux-Lamy syndrome Arysulfatase B Mucopolysaccharide metabolism [145, 363]

ASAH1 Farber lipogranulomatosis N-acylsphingosine amidohydrolase Sphingolipid metabolism [173, 280]

CTSD Neuronal ceroid lipofuscinoses 10 Cathepsin D Sphingolipid metabolism [280, 315,
327]

GALC Krabbe disease Galactosylceramidase Sphingolipid metabolism [50, 292]

GBA Gaucher disease Glucocerebosidase Sphingolipid metabolism [313, 344]

GRNa Neuronal ceroid lipofuscinoses 11 Progranulin Unknown lysosomal function [229, 319]

GUSB Mucopolysaccharidosis VII β-glucuronidase Mucopolysaccharide metabolism [229, 342]

MCOLN1 Mucolipidosis IV Mucolipin-1 Mucolipid metabolism [18, 55]

NAGLU Sanfilippo syndrome B α-N-acetylglucosminidase Mucopolysaccharide metabolism [365, 377]

NEU1 Mucolipidosis I (Sialidosis) α-neuraminidase Mucolipid metabolism [33, 229]

NPC1/
NPC2

Niemann-Pick disease type C NPC intracellular cholesterol
transporter 1/2

Cholesterol trafficking [47, 171,
232]

SCARB2 Action myoclonus-renal failure syndrome Lysosomal integral membrane protein
2

Lysosomal targeting of
glucosylceramidase

[24, 81]

SLC17A5 Salla disease, infantile sialic acid storage
disorder

Sialin Mucolipid metabolism [280, 350]

SMDP1 Niemann-Pick disease type A/B Acid sphingomyelinase Sphingolipid metabolism [106, 195]
aHeterozygous mutations cause autosomal dominant frontotemporal lobar degeneration with ubiquitin-positive inclusions
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are both involved in Lewy bodies [318]. GALC is a lyso-
somal enzyme that hydrolyzes galactolipids, including
galactosylceramide and galactosylsphingosine (Fig. 3).
Mutations in GALC result in low enzymatic activity and
a decreased ability to degrade galactolipids. Since galac-
tosylceramide is an important glycosphingolipid in mye-
lin, the pathological consequences of the GALC
deficiency in KD are almost exclusively confined to the
white matter of the central and peripheral nervous sys-
tems [45, 331]. The involvement of GALC in ceramide
metabolism supports a role for GALC in PD risk, though
further studies are needed to confirm the association
with PD, and to unravel the underlying pathomechanism
leading to the development of PD.

NPC1/NPC2
Niemann-Pick type C (NPC) disease is a rare autosomal
recessive inherited disorder with a highly variable
phenotype similar to Type A/B NPD and ranging from a
fatal disorder within the first few months after birth to a
late onset progressive disorder with predominantly
neuropsychiatric symptoms of which the diagnosis is
challenging. NPC is caused by mutations in the NPC
intracellular cholesterol transporter 1 (NPC1) gene in
95% of cases or the NPC intracellular cholesterol trans-
porter 2 (NPC2) gene in the remaining 5% of cases [47,
232, 288]. More than 260 mutations have been identified
in NPC1, mostly missense mutations affecting the lu-
minal domain of the protein [288]. Parkinsonism has
been described in several NPC patients and their rela-
tives [57, 150, 171]. Moreover, autopsy reports have de-
scribed phosphorylated α-synuclein pathology in brain
tissue of NPC patients [291], suggesting a possible link
between NPC and PD. However, genetic studies investi-
gating the association between NPC1/NPC2 variants and
PD have shown conflicting results [171, 373].
NPC1 encodes a large protein that resides in the late

endosomes and lysosomes which mediates cholesterol
efflux [185]. When cholesterol is released from low-
density lipoproteins in the lumen of the late endosomes/
lysosomes, it is transferred by NPC2 to the N-terminal
cholesterol-binding pocket of NPC1 [141, 359]. Loss-of-
function of NPC1 leads to accumulation of cholesterol
in the late endosome/lysosome [155, 375].

NAGLU
Recessive mutations in NAGLU are responsible for
Sanfilippo syndrome B, also known as mucopolysac-
charidosis III disease B (MPS-IIIB) [377]. Patients
with MPS-IIIB present early-onset progressive neuro-
logical disturbances, including mental retardation,
hyperactivity and seizures, in addition to mild somatic
manifestations. Interestingly, immunoreactivity for
phosphorylated α-synuclein was observed in brain

tissue of MPS-IIIB patients [129]. The SNP rs2071046
tagging a common haplotype of NAGLU was shown
to be associated with an increased risk for PD (odds
ratio 1.23) [365]. Moreover, in a recent large meta-
analysis of GWAS, NAGLU was nominated as a gene
of interest in novel loci significantly associated with
increased risk for PD [229].
NAGLU encodes α-N-acetylglucosminidase (NAG),

a lysosomal hydrolase which degrades heparan sulfate
glycosaminoglycans by hydrolyzing terminal N-acetyl-
D-glucosamine residues (Fig. 3). Interestingly, heparan
sulfate stimulates the formation of α-synuclein fibrils
in vitro [56], and in neuroblastoma cells, cellular in-
ternalization of α-synuclein amyloid fibrils is
dependent on heparan sulfate [138]. Glycosaminogly-
cans modulate the lysosome degradation pathway by
regulating CTSD, the major lysosomal protease re-
sponsible of α-synuclein degradation. In a neuroblast-
oma cell model of PD, elevated glycosaminoglycans
levels resulted in reduced CTSD activity and intracel-
lular accumulation of α-synuclein [190].

Other lysosomal storage disorder genes genetically linked
to PD
The LSD genes MCOLN1, ARSB, GUSB, GRN and
NEU1 have been genetically connected with PD as well
via gene based association studies, whole exome sequen-
cing in unrelated PD patients or meta-analysis of
GWAS, but await further replication [50, 145, 229].
Interestingly, a significant burden of rare LSD gene vari-
ants in PD patients was observed in a large whole exome
sequencing dataset including > 1100 PD patients and >
1600 control individuals, taken into account 54 different
LSD genes [280]. In this study, SLC17A5, CTSD, ASAH1
were identified as novel candidate susceptibility genes
for PD risk [280].

Disrupted lipid homeostasis in PD pathogenesis
In recent years, lipid homeostasis has become a principal
suspect in PD pathogenesis [368]. Binding of α-synuclein
to membranes depends on its lipid composition, which
has led to the hypothesis that PD pathology is induced
by alterations in the binding properties of α-synuclein to
membranes or lipid rafts. Indeed, α-synuclein is known
to selectively interact phospholipids and sphingolipids,
and disruption of lipid metabolism has been found to
predispose α-synuclein toxicity [70, 77, 92, 93, 182, 214,
215, 276, 318, 329, 332, 333, 380].
Interestingly, both GCase and ATP10B play essential

roles in the fate of lysosomal GluCer, and loss-of-
function of both proteins results in the intra-lysosomal
accumulation of GluCer combined with lysosomal dys-
function (Fig. 3) [97, 165, 213]. ATP10B may therefore
synergize with GCase to maintain low levels of GluCer
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or GluSph in the lysosome. Accordingly, loss of ATP10B
functionality might result in the same affected pathways
associated with loss of GCase functionality. Besides lyso-
somal dysfunction, loss of GCase activity and elevated
GluCer levels cause α-synuclein aggregation, mitochon-
drial impairment, inflammation, and ER stress [82, 165,
217, 314, 339], implying these pathways to be affected as
a result of ATP10B dysfunctionality. Moreover, the LSD
genes SMPD1, GALC and SCARB2, which have been as-
sociated with PD, are also involved in or linked to cer-
amide homeostasis (Fig. 3) [7, 50, 106]. Elevated levels of
sphingolipids including GluCer, glucosylsphingosine,
and sphingosine have been detected as well in NPC1
mutant cells, though the mechanism for accumulation of
these lipids is still unclear (Fig. 3) [203, 340]. The brain
is the organ with the highest proportion of lipid content,
both in neurons and glial cells, in which ceramides are
involved in a wide variety of functions to coordinate
brain homeostasis, extensively reviewed elsewhere [62,
265]. Ceramide is enriched in lipid rafts, which are spe-
cialized membrane micro-domains, acting as assembling
hubs for signaling complexes, to enable
compartmentalization of various cellular processes [303].
Accumulation of ceramide in neuronal rafts was shown
to be associated with impaired receptor trafficking and
synapse loss [134].
Additionally, cholesterol homeostasis has been asso-

ciated with PD pathogenesis, through the genetic as-
sociation between NPC1 and PD (Fig. 3). Loss of
NPC1 function has been shown to impede the clear-
ance of α-synuclein [89, 172, 198], and accumulated
oxidized metabolites of cholesterol, which have been
identified in Lewy body brain pathology, can directly
induce α-synuclein fibrilization [34]. Accumulated
lysosomal cholesterol levels have been reported in fi-
broblasts of PD patient carriers with the GBA
p.Asn370Ser pathogenic mutation [109]. Vice versa,
increased intracellular cholesterol has been shown to
initiate the breakdown of GCase via ER-associated
degradation in proteasomes, which in turn resulted in
reduced lysosomal GCase levels and increased gluco-
sylceramide and α-synuclein levels [282].
Lysosomal PC export is also diminished by ATP10B

dysfunction [213], which is in line with the observa-
tion of a disturbed PC lipid homeostasis in the sub-
stantia nigra of a PD rat model [94]. Loss of function
mutations in PLA2G6, which is involved in oxidative
damage repair to membrane phosphopholipids, mem-
brane remodeling and iron homeostasis, also disturb
neuronal lipid homeostasis, including ceramide levels
(Fig. 3) [17, 200, 252, 309].
Finally, VPS13C enables the transport of glycerolipids

between the ER and late endosomes/lysosomes, implicat-
ing defects in membrane lipid homeostasis and

lysosomal dysfunction as a consequence of loss of
VPS13C functionality (Fig. 3) [183].

Crosstalk between vesicular transport, lysosomes and
mitochondria in Parkinson disease
Causal PD mutations in genes encoding proteins in-
volved in one PD associated pathway are frequently as-
sociated secondary effects in other PD related pathways.
The autophagy-lysosomal pathway is the only means by
which damaged mitochondria are turned [15] and there-
fore, disruption in autophagy or lysosomal dysfunction
could result in, if not exacerbate, mitochondrial dysfunc-
tion. Conversely, lysosomal function could be influenced
by mitochondrial quality control, dynamics and/or res-
piration. Indeed, emerging evidence indicate that
autophagy-lysosomal dysfunction impairs mitochondrial
homeostasis, and in turn, mitochondrial defects also im-
pact lysosomal functions, suggesting a complex relation-
ship between these processes [260].

Mitochondrial dysfunction caused by alteration in genes
primarily involved in transport pathways and lysosomal
functioning
Increased levels of wild-type α-synuclein and α-
synuclein with PD causing mutations have been as-
sociated with mitochondrial fragmentation and ROS
accumulation. Moreover, α-synuclein has been found
to localize at mitochondria-associated membranes
(MAM), junctions that physically connect ER with
mitochondria that are involved in Ca2+ signaling and
apoptosis [122]. Pathogenic mutations in α-synuclein
reduce the localization to MAM, and increase mito-
chondrial fragmentation, suggesting a direct role for
α-synuclein in mitochondrial morphology [122]. In-
deed, overexpressing wild-type or mutant α-synuclein
was found to dissociate the ER and mitochondria at
MAM, thereby impairing Ca2+ exchange and mito-
chondrial energy production [248]. Additionally, α-
synuclein might regulate the PGC1α transcriptional
network, involved in mitochondrial biogenesis and
apoptosis. In a patient-derived stem cell model of
PD carrying the SNCA p.Ala53Thr mutation, basal
and mitochondrial toxin-induced nitrosative/oxida-
tive stress resulted in S-nitrosylation of transcription
factor myocyte-specific enhancer factor 2C (MEF2C),
thereby inhibiting the transcription of PGC1α [289].
LRRK2 interacts with a number of key regulators of mito-

chondrial dynamics of fission and fusion, in the cytosol or
at mitochondrial membranes. In mouse cortical neurons
and human neuroblastoma cells, endogeneous LRRK2 in-
teracts with the mitochondrial fission factor Dynamin like
protein 1 (DLP1). DLP1 phosphorylates and transfers from
the cytosol to mitochondria upon LRRK2 expression,
resulting in mitochondrial fission. LRRK2 also interacts
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with the mitochondrial fusion regulators mitofusin 1 and
mitofusin 2, and OPA1, a mitochondrial Dynamin like
GTPase. Even though one study reported a direct inter-
action between LRRK2 and parkin in HEK293T cells [320],
this finding could not be confirmed elsewhere [65]. How-
ever, LRRK2 is connected to the PINK1/parkin mediated
mitophagy pathway via its substrate Rab10. Indeed, it was
recently demonstrated that Rab10 binds the autophagy re-
ceptor optineurin (OPTN), promotes OPTN accumulation
on depolarized mitochondria and thereby facilitating autop-
hagosome formation around mitochondria, and conse-
quently mitophagy [360]. Expression of LRRK2
p.Gly2019Ser in mouse cortical neurons causes defects in
mitochondrial morphology and dynamics [237, 324]. More-
over, postmortem brain tissue of PD patients carrying the
p.Gly2019Ser mutation demonstrates decreased levels of
mature OPA1 [324]. In fibroblasts of PD patients with ei-
ther the LRRK2 p.Gly2019Ser or p.Arg1441Cys mutation
mitophagy of depolarized mitochondria is impaired [360].
VPS35 deficient mouse dopaminergic neurons and hu-

man fibroblasts also results in defects in mitochondrial
fusion and mitochondrial fragmentation [338, 356].
VPS35-induced mitochondrial deficits can be prevented
by inhibition of mitochondrial fission [356]. Moreover,
VPS35 mutants show an increased interaction with the
mitochondrial fission factor DLP1 [356].
VPS13C knockdown in COS-7 and in HEK293T cells

resulted in mitochondrial fragmentation, decreased
mitochondrial membrane potential, increased respiration
rates and exacerbated PINK1/parkin-dependent mito-
phagy [193].
Knockdown of ATP13A2 in primary mouse cortical

neurons and in SH-SY5Y cells shows an increase in
mitochondrial fragmentation and an increase production
of ROS [128, 278]. These effects could be mimicked by
inhibiting autophagy induction using siRNA to Autoph-
agy Related 7 (ATG7), a protein required for autophagy
[128]. These results demonstrate that a decrease in au-
tophagy influences mitochondrial quality control path-
ways, resulting in increased ROS production. Oppositely,
overexpression of wild-type ATP13A2 in cultured mid-
brain dopaminergic neurons delays cadmium-induced
mitochondrial fragmentation in neurons, consistent with
a neuroprotective effect [278].
Knocking out PLA2G6 in mice results in degeneration

of mitochondrial inner membranes and presynaptic mem-
branes, triggering mitochondrial and synaptic dysfunction,
and significant iron accumulation in brain [20–22].
Neuronal and glial cells of conditional GBA knockout

mice present mitochondrial fragmentation, reduced re-
spiratory chain complex activities, decreased mitochon-
drial membrane potential and lower oxygen
consumption [244]. Analogous, overexpressing GBA
p.Leu444Pro in SHSY-5Y neuroblastoma cells and

knock-in of heterozygous GBA p.Leu444Pro in mice
both trigger mitochondrial dysfunction by inhibiting au-
tophagy and mitochondrial priming, a process by which
autophagy receptor proteins are recruited to damaged
mitochondria for degradation [196]. iPSC-derived dopa-
minergic neurons from GD and PD patients with GBA
mutations showed increased glucosylceramide and α-
synuclein levels, autophagic and lysosomal defects and a
dysregulation of Ca2+ homeostasis [296]. Mitochondrial
activities are driven in a Ca2+ dependent manner, and al-
terations in Ca2+ homeostasis may imply mitochondrial
dysfunction [116, 286]. Induced mitophagy with car-
bonyl cyanide-m-chlorophenyl-hydrazine (CCCP) in 3D-
neurosphere-models, consisting of neural stem cells with
heterozygous and homozygous GBA p.Asn370Ser, re-
sulted in a significant increase in lysosomal transcription
factor EB (TFEB) mRNA levels, the master regulator of
lysosomal and autophagy genes [224]. Interestingly,
PGC1α mRNA levels were also significantly increased
following CCCP-treatment in heterozygote, but not
homozygote neurospheres, which might be explained by
compensatory mechanism absent in homozygous lines
[224]. In mouse cortical neurons, the chaperone
ambroxol, which increases GCase mRNA levels and
lysosomal GCase activity, was also shown to increase
TFEB and PGC1α levels, block macro-autophagy flux
and increased exocytosis [209]. These findings suggest
that the GCase chaperone ambroxol might act on differ-
ent pathways, including mitochondrial and lysosomal
biogenesis, and the secretory pathway. Of note, most
LSDs associated with PD or parkinsonism present some
degree of mitochondrial dysfunction associated with pri-
mary lysosomal impairment [266].
Recently, proteome analysis of primary rat cortical

neurons either overexpressing or silencing the lysosomal
receptor LAMP2A, resulting in alterations in chaperone-
mediated autophagy, identified a more than 2-fold differ-
ence in DJ-1 expression compared to control conditions
[38]. Moreover, LAMP2A silencing, which results in DJ-
1 depletion, sensitizes neurons to oxidative stress [38].

Endo-lysosomal dysfunction caused by alteration in genes
primarily involved in mitophagy, mitochondrial dynamics
and oxidative stress control
A mouse model of mitochondrial dysfunction, generated
by deleting the mitochondrial transcription factor A
(TFAM) in CD4+ T cells, demonstrated that mitochon-
drial respiratory defects impair lysosomal function, endo-
lysosomal trafficking and autophagy, and increase
sphingomyelin levels [16]. Similarly, large lysosomal vacu-
oles and lysosomal dysfunction were observed in brains
from mice lacking the mitochondrial protein apoptosis in-
ducing factor (AIF) and in embryonic fibroblasts from
OPA1 knockout mice [73]. The lysosomal defects in the
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mouse embryonic fibroblasts were partially rescued by
treatment with the antioxidants N-acetylcysteine or coen-
zyme Q10, suggesting that increased ROS from damaged
mitochondria mediates lysosomal dysfunction [73]. Treat-
ment of the mouse motor neuron NSC-34 cell line with
the mitochondrial complex I inhibitor rotenone causes al-
terations in lysosomal biogenesis, function and morph-
ology [123]. Interestingly, inducing TFEB via trehalose
treatment in iPSC-derived dopaminergic neurons with
compromised mitochondrial functioning, caused by long-
term treatment with rotenone, restored the mitochondrial
membrane potential and ATP production [312].
While parkin is well known to be involved in the regu-

lation of mitophagy and mitochondrial biogenesis, the
protective activity of parkin has been broadened to in-
clude roles in lipid metabolism and fat uptake [147,
164]. Moreover, parkin regulates the endo-lysosomal
pathway by ubiquitinating the late-endosomal GTPase
Rab7, which is a regulator of lysosomal dynamics [137,
321]. Loss of parkin function in primary fibroblasts of
two PD patients with homozygous PARK2 mutations
caused decreased endosomal tubulation and endosomal
membrane association of VPS35 and sorting nexin 1,
suggesting impairment of retromer pathway [321]. Sub-
stantia nigra tissue of PARK2 p.Q311* mutant mice dis-
played a late-stage block in autophagy, an increased
PARIS expression and a PARIS-dependent reduced ex-
pression of both PGC1α and the lysosomal transcription
factor TFEB [312]. Moreover, primary fibroblasts of a
patient with juvenile PD with compound heterozygous
deletions in PARK2 displayed abnormal abundance, acid-
ification and morphology of the late endocytic compart-
ment and lysosomal dysfunction [123].
PINK1 depletion in mouse embryonic fibroblasts from

PINK1 knockout mice also impaired lysosomal activity
and led to enlargement of lysosomal vacuoles [73] and
silencing of DJ-1 in M17 neuroblastoma cells led to an
accumulation of autophagy markers, in addition to mito-
chondrial membrane depolarization and mitochondrial
fragmentation [341]. Moreover, a recent study in dopa-
minergic neurons derived from PD patients with homo-
zygous DJ-1 p.E64D identified a time dependent
pathological cascade starting with mitochondrial oxida-
tive stress, followed by oxidized dopamine accumulation
and finally resulting in reduced GCase activity, lysosomal
dysfunction and α-synuclein accumulation [41].

Synergistic connection between the lysosomal and the
mitochondrial compartment
Altogether, these data suggest synergistic effects of mito-
chondrial and lysosomal dysfunction in the pathogenesis
of PD. The crosstalk between both pathways was also
observed in a miRNA expression analysis to investigate
the role of miRNAs in PD pathogenesis. In 6-

hydroxydopamine induced stress conditions in SH-SY5Y
cells, miR-5701 was shown to be significantly downregu-
lated, and putative targets of miR-5701 are genes in-
volved in lysosomal biogenesis and mitochondrial
quality control [271]. The transfection of miR-5701 in
SH-SY5Y cells induced both mitochondrial dysfunction
and defects in autophagy flux [271]. The observed de-
crease in miR-5701 in 6-hydroxydopamine induced
stress conditions might be a compensatory mechanism
to simultaneously rescue lysosomal and mitochondrial
function. Lastly, dynamic contact sites between lyso-
somes and mitochondria were recently identified using
live-cell imaging, which was promoted by active GTP-
bound lysosomal Rab7, a regulator of lysosomal dynam-
ics [137, 366]. Moreover, these mitochondrial-lysosomal
contact sites marked sites of mitochondrial fission, sug-
gesting Rab7 may regulate mitochondrial dynamics
[366]. Mitochondrial-lysosomal contact sites may be in-
volved in a bidirectional regulation of mitochondrial and
lysosomal dynamics, and might partially explain dysfunc-
tion of both organelles in PD.

Oligogenic and polygenic involvement of PD and APS
genes
Because genes involved in mitochondrial and lysosomal
function are associated with PD, and because of substan-
tial evidence highlighting the crosstalk between these
two pathways, it is reasonable to consider that oligogenic
or polygenic inheritance of genes implicated in the
mitochondrial-lysosomal pathway contribute to the gen-
etic etiology of PD. Indeed, accumulating clinical and
genetic observations suggest that besides monogenic in-
heritance, caused by dominant or recessive mutations in
a single gene, more complex inheritance patters of famil-
ial PD exist.

Evidence pointing towards more complex inheritance
patterns for PD
In 12 non-consanguine families affected with PD from
Crete in which PD originated from both parental sides a
high proportion (43%) of bilineal siblings were affected
with PD, whereas only 5.7% of their offspring were af-
fected [322]. This observation suggest recessive oligo-
genic inheritance in which disease predisposing alleles
from two or more genes need to be present in the same
individual for the expression of PD. Such alleles will be
diluted again in the succeeding unilineal generation,
resulting in a reduced proportion affected offspring.
Moreover, single heterozygous mutations in PARK2,
PINK1, DJ-1 and ATP13A2 are significantly more preva-
lent in PD or EOPD patients compared to control indi-
viduals [4, 75, 80, 133, 154, 170, 199, 238, 322, 330],
suggesting these variants increase risk for PD, act as
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onset modifiers for PD, or contribute to the disease to-
gether with other mutations in an oligogenic fashion.

Oligogenic mutations in PD
In two Japanese families affected with autosomal re-
cessive PD caused by homozygous or compound het-
erozygous PARK2 mutations, a heterozygous PINK1
mutation was identified as well [100]. The age at on-
set of patients with digenic mutations was lower
than the age at onset of patients with the same re-
cessive PARK2 mutations alone, indicating that het-
erozygous PINK1 might act as a modifier of age at
onset in PARK2 mutation carriers. This study identi-
fied as well a sporadic PD patient with single hetero-
zygous mutations in PARK2 and PINK1 [100].
Digenic heterozygous PARK2-PINK1 mutations have
also been reported in two affected siblings with
EOPD and one unrelated EOPD patient from Mexico
[223]. These causative digenic PARK2-PINK1 muta-
tions could be explained by the parkin/PINK1 path-
way in which PINK1 acts directly upstream of parkin
in regulating mitochondrial quality control and dy-
namics (Fig. 2). Similarly, digenic heterozygous
PINK1 and DJ-1 missense mutations have been re-
ported in a recessive family with two affected sib-
lings [337]. This study also showed that PINK1 and
DJ-1 physically associate and cooperate to protect
cells against oxidative stress [337].
Most frequently reported to date are digenic

PARK2-LRRK2 mutation carriers. So far, two carriers
of LRRK2 p.Gly2019Ser and homozygous PARK2 mu-
tations have been reported: a carrier of a homozygous
deletion of exon 4–5-6 and a carrier of a homozygous
triplication of exon 2 in PARK2 [108, 194]. The clin-
ical manifestations of both patients are as typically
seen in other PARK2 mutation carriers rather than in
other LRRK2 mutation carriers, including dopa-
responsive parkinsonism and an early age at onset.
Additionally, several cases of digenic heterozygous
LRRK2 and PARK2 mutations have been reported [65,
194, 238]. However, digenic PARK2-LRRK2 heterozy-
gous mutations do not seem to cause a more severe
disease progression or an earlier age at onset com-
pared to single heterozygous PARK2 or LRRK2 muta-
tions [65, 194, 238]. Noteworthy, one at risk member
aged 52 of a family affected by the LRRK2 p.Gly2019-
Ser mutation carried as well as a heterozygous frame-
shift mutation in PARK2 and the pathogenic GBA
p.Asn370Ser mutation [250]. The PARK2 and GBA
mutations were absent from other members of the
family and were likely inherited from the parent mar-
ried into the family [250].
While the connection between PINK1 and SYNJ1 is

yet unclear, digenic heterozygous mutations SYNJ1

p.Ser1422Arg and PINK1 p.W437* have been identified
in a Brazilian EOPD patient [273].
The impact of oligogenic mutations on disease expres-

sion is currently not well understood due to the limited
number oligogenic mutation carriers identified so far
and the lack of large families to investigate segregation
with PD. Disease expression in oligogenic mutation car-
riers is probably a joint effect of genetic background,
gene-gene and gene-environment interactions.

Rare variant analysis suggests oligogenic and polygenic
inheritance of PD
Rare variant analysis in 7900 PD patients with and with-
out a known pathogenic mutation and 6166 control in-
dividuals revealed that more than 30% of PD patients
with a recognized primary genetic cause of the disease
had additional rare variants in Mendelian PD genes
[207]. The carriers of additional rare variants in the PD
genes had younger ages at onset of approximately 4 to 6
years, though this was not significant (p > 0.05) [207].
Exome sequencing analysis of postmortem human brains
of 58 DLB and 39 PD patients identified a significant en-
richment of rare oligogenic variants in neurodegenera-
tive brain diseases (PD, DLB, Alzheimer’s disease,
frontotemporal dementia and amyotrophic lateral scler-
osis) genes in PD/DLB patients (23.71%) compared to
control individuals (10.22%) [159]. Moreover, significant
polygenic enrichment in PD patients of rare, non-
synonymous variants of a gene-set of proteins involved
in mitochondrial DNA maintenance was identified in
both a Norwegian and a North American cohort consist-
ing of PD patients and control individuals [104]. All of
the above-mentioned observations suggest oligogenic
and polygenic inheritance contribute to the expression
of PD and might explain a part of the missing heritabil-
ity in PD. Moreover, these observations may provide
new insights for functional research to investigate how
PD pathways are interconnected.

Concluding remarks
Numerous genes, either causing PD, APS or increasing
risk, are directly and indirectly associated with defects in
vesicular transport pathways, lysosomal dysfunction and
mitochondrial dysfunction. Additionally, increasing evi-
dence suggests a link between numerous LSDs and PD,
though further clinical, genetic and biochemical studies
are needed to clarify these associations. Nevertheless,
these emerging associations highlight the involvement of
lipid homeostasis and especially ceramide homeostasis in
PD pathogenesis. However, why homozygous mutations
in LSD genes cause LSDs, whether or not associated
with neurological symptoms, and heterozygous mutation
increase PD risk is unclear. We hypothesize that genetic
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modifying factors may influence the phenotype associ-
ated with these LSD gene mutations.
Our current understanding is that the lysosomal and

the mitochondrial compartment is highly intercon-
nected, given that a primary defect in either compart-
ment leads to dysfunction of the other compartment.
Moreover, while mitochondria-ER contact sites have
been recognized for years [86], and recently implicated
in PD pathogenesis via the discovery of VPS13C as a
lipid transport tether between these two organelles
[183], mitochondrial-lysosomal contact sites are only
recognized more recently. However, dynamic contact
sites and crosstalk may be important to transport metab-
olites and ions between the two organelles, including
lipids, as seen for VPS13C [183]. Moreover, transcrip-
tional regulation seems to play an important role in the
crosstalk between the mitochondria and lysosomes, indi-
cated by alterations in protein levels of the lysosomal
and mitochondrial transcription factors, TFEB and
PGC1α respectively, as a result of PD/APS gene defects
and impairment of these organelles. Despite new evi-
dence, significant gaps remain in our understanding of
the functional and physical associations between these
PD associated pathways [366].
Oligogenic mutations of the mitochondrial-lysosomal

pathway have been identified in PD patients but have
not been extensively studied yet. However, current ob-
servations suggest more complex inheritance patters of
genes of interconnected PD pathways, further strength-
ening the crosstalk and synergistic connection between
these pathways in PD pathogenesis. Nevertheless, segre-
gation analysis, clinical and biochemical studies are
needed provide insights in gene-gene interactions lead-
ing to the development of PD. The genetic architecture
of PD, in terms of the number of variants needed to
reach the threshold to express the disease and their re-
spective effects size, probably ranges from monogenic
highly penetrant variants, perhaps influenced by modi-
fiers, to oligogenic rare variants with high to moderate
effect sizes, to polygenic common risk factors which
could also act as modifiers of more penetrant variants.
Therefore, the presence of a mutation in one gene
should not be an exclusion criterion for further genetic
screening in PD patients. Mainly in PD patients with a
single heterozygous mutation in a recessive gene, add-
itional screening could reveal oligogenic variants in the
same or connecting pathways. Possible oligogenic inher-
itance patterns may include both PD/APS genes and
LSD genes associated with an increased risk for the de-
velopment of PD.
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