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Abstract

Alzheimer's disease (AD)-related amyloid B-peptide (AB) pathology in the form of amyloid plaques and cerebral
amyloid angiopathy (CAA) spreads in its topographical distribution, increases in quantity, and undergoes qualitative
changes in its composition of modified AR species throughout the pathogenesis of AD. It is not clear which of
these aspects of AR pathology contribute to AD progression and to what extent amyloid positron emission
tomography (PET) reflects each of these aspects. To address these questions three cohorts of human autopsy cases
(in total n=271) were neuropathologically and biochemically examined for the topographical distribution of AR
pathology (plagues and CAA), its quantity and its composition. These parameters were compared with
neurofibrillary tangle (NFT) and neuritic plaque pathology, the degree of dementia and the results from
['®FIflutemetamol amyloid PET imaging in cohort 3. All three aspects of AR pathology correlated with one another,
the estimation of AB pathology by ['®FIflutemetamol PET, AD-related NFT pathology, neuritic plaques, and with the
degree of dementia. These results show that one aspect of Ap pathology can be used to predict the other two,
and correlates well with the development of dementia, advancing NFT and neuritic plagque pathology. Moreover,
amyloid PET estimates all three aspects of A pathology in-vivo. Accordingly, amyloid PET-based estimates for
staging of amyloid pathology indicate the progression status of amyloid pathology in general and, in doing so, also
of AD pathology. Only 7.75% of our cases deviated from this general association.
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Introduction

The deposition of amyloid B-peptide (AP) in amyloid
plaques is one of the histopathological hallmark lesions
of Alzheimer’s disease (AD) [47] together with neurofib-
rillary tangles (NFTs) [35]. Neuritic plaques represent a
subset of the AP plaques characterized by the presence
of dystrophic neurites in the plaques that can be stained
with antibodies against abnormal t-protein [11, 18, 35,
51, 70]. In addition to its presence in amyloid plaques,
AP can also be found in cerebral and leptomeningeal
blood vessels affected by cerebral amyloid angiopathy
(CAA) [25], as soluble, dispersible AP in extra- or intra-
cellular fluid, and as membrane-associated A} aggregates
[14, 29, 56, 58, 81]. AP pathology can be described by 1.
the topographical distribution of AP plaques [11, 71, 72]
or CAA-affected vessels in the brain [68], 2. measures of
quantity in a given brain region (morphological AP
plaque loads, biochemically detected measures of Af
levels (ELISA, western blotting)) [2, 3, 14, 41, 46, 50, 57,
59, 81], and 3. qualitative changes in the composition of
detectable modified and non-modified AB species, such
as APaosaz, APnape and APpsers [45 24, 38, 44, 57, 61, 75].
AP aggregation, thereby, starts with the accumulation of
amyloid fibrils that are only detectable with antibodies
detecting non-modified forms, followed by the presence
of ABnspe and finally by AB,sers, indicating a process
called “maturation of AP aggregates” [75]. However, it is
not yet clear to what extent a) the different aspects of
AP pathology, ie. the topographical distribution of
plaques and CAA-affected vessels, the quantitative and
qualitative measures of A aggregation and deposition,
correlate with one another, b) predict the development
of dementia and c) can be estimated in-vivo by amyloid
PET.

To address these questions, three cohorts of autopsy
cases were neuropathologically analyzed for the topo-
graphical distribution of AP plaques and CAA. These
parameters were correlated with the clinical degree of
dementia and neuropathological measures for NFT and
neuritic plaque pathology in all three cohorts, quantita-
tive measures for plaque loads in two cohorts, biochem-
ically detected levels of AP in one cohort, the
morphologically and biochemically determined stages of
AP aggregates maturation in one cohort, and with the
[2] flutemetamol PET estimates for the phase of AP
plaque deposition in another cohort.

Material and methods

Subjects

The findings of 3 cohorts of autopsy cases (Table 1)
were combined where possible and reassessed. The first
cohort of 95 cases represents autopsy cases from univer-
sity and municipal hospitals in Bonn, Ulm and Offen-
bach am Main (Germany) [57, 71, 73], a second novel
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cohort of 79 cases represents cases from the university
hospital in Leuven (Belgium), and the third cohort of 97
cases was included in the efficacy analysis of the ['*F]
flutemetamol phase III autopsy study (ClinicalTrials.gov
identifiers NCT01165554, and NCT02090855) [9, 36].
Local institutional review boards or ethics committees
approved the study protocols before initiation [17, 66].
This study covering samples from three cohorts was ap-
proved by the UZ/KU-Leuven ethical committee (S-
59295).

The non-AD and pathologically diagnosed preclinical
cases with AD pathology (p-preAD) [57] of cohorts 1
and 2 were examined at the time point of hospital ad-
mission (approximately 1 to 4 weeks prior to death) by
clinicians with different specialties according to stan-
dardized protocols. The AD patients were diagnosed by
a neurologist (RV, MV, MO, CAFvA) and followed until
death. The protocols included the assessment of cogni-
tive function (orientation to place, time and person; spe-
cific cognitive or neuropsychiatric tests were not
performed) and recorded the patients’ ability to care for
themselves and to get dressed, eating habits, bladder and
bowel continence, speech patterns, writing and reading
ability, short-term and long-term memory, and orienta-
tion within the hospital setting. These data were used to
retrospectively assess the clinical dementia rating (CDR)
scores for 162/174 patients [34] without knowledge of
the pathological diagnosis. For this purpose, the infor-
mation from the clinical files was used to provide a CDR
score according to the standard CDR protocol [34]. For
12 cases of cohorts 1 and 2 the clinical data were not
sufficient to obtain a CDR score retrospectively. In co-
hort 3, the clinical data provided mini-mental state
examination (MMSE) [23] test results from 65 cases.

Neuropathology

Autopsy was performed with informed consent of the
patients during life or the next in kin after death of the
patient. From cohorts 1-3 one brain hemisphere was cut
fresh and specimens were kept frozen for biochemical
analysis. The other hemisphere was fixed in a 4% aque-
ous solution of formaldehyde (cohort 1) or phosphate
buffered formaldehyde (cohorts 2-3) for ca. 3—4 weeks
before cutting. In the event that tissue was considered as
suspicious for Creutzfeldt-Jakob disease no frozen tissue
was collected and the formalin-fixed tissue was deconta-
minated in 99% formic acid. Brains were cut in coronal
slices and screened macroscopically. For histopatho-
logical analysis and for assessing the amounts of AD-
related amyloid plaques, NFTs, and neuritic plaques,
paraffin-embedded tissue including parts of the frontal,
parietal, temporal, occipital cortex, and entorhinal cor-
tex, the hippocampal formation at the level of the lateral
geniculate body, basal ganglia, thalamus, amygdala,
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Table 1 Age, gender distribution of the 3 patient cohorts and the respective distribution of A phases, AB-MTL phases, A-scores,
Braak NFT-stage, CERAD neuritic plaque score, NIA-AA degree of AD pathology, diagnosis, PET-A{3 phase estimate, B-AB stage, B-AB
plagque stage, AB load. Short description of the recruitment criteria of the cohorts and case selection criteria for this study

Cohort 1 Cohort 2 Cohort 3
German cases Leuven cases [18FIflutemetamol phase 3 autopsy
cases

Number of cases 95 79 97
Age in years (mean/range) 7243 (35-98) 67,43 (34-90) 80,86 (59-95)
male/female 48/47 54/25 45/52
AR phase (mean/range) 2,34 (0-5) 1,8 (0-5) 3,65 (0-5)
ABMTL phase (mean/range) 1,96 (0-4) 147 (0-5) 2,92 (0-4)
A-score (mean/range) 149 (0-3) 1,18 (0-3) 2,39 (0-3)
Braak NFT-stage (mean/range) 2,11 (0-6) 2,27 (0-6) 3,95 (0-6)
CERAD neuritic plaque score 0,53 (0-3) 0,66 (0-3) 1,86 (0-3)
(mean/range)
NIA-AA degree of AD pathology 1,11 (0-3) 0,97 (0-3) 2,01 (0-3)
(mean/range)
Diagnosis (control/p-preAD/AD/ 24/35/13/5/18 18/4/15/8/34 3/8/33/28/25
AD+non-AD-D*/non-AD-D¥)
PET-AB phase estimate (mean/ n.a. n.a. 1,81 (0-3)
range)
AB load / % (mean/range) 4,16 (0-23,34) na. 6,75 (0-17,63)
B-AB stage (mean/range) 1,42 (0-3) [n=38] n.a. na.
B-AB plaque stage (mean/range) 1,74 (0-3) [n=70] n.a. n.a.
CAA severity grade (Vonsattel) 1 (0-3) 0,84 (0-3) 1,51 (0-3)
CAA stage of topographical 1,1 (0-3) 0,72 (0-3) 1,64 (0-3)
distribution
CDR 0,993 (0-3) [n =88] 1622 (0-3) [n=74] n.a.
MMSE n.a. n.a. 9,48 (0-30) [n=65]

Scan-death interval n.a. na.

Recruitment strategy Hospital-based autopsies

Case selection criteria AB phases, ABMTL phases
and AR loads already
determined in the context

of previous studies

Memory clinic-based cohort

AR phases and ABMTL phases already
determined for biobank purposes

215 (0-846) days

Terminally ill with life-expectancy of
less than 3years, 255 years of age, no
pregnancy, no allergy against
["®F)flutemetamol, physical status allows
to undergo PET imaging

["®FIflutemetamol amyloid PET images
are available that allow the measurement
of SUVRcort and SUVRcaud

“Non-AD dementia (non-AD-D) includes cases with Lewy body disease, frontotemporal lobar degeneration with TDP43 (FTLD-TDP), fused in sarcoma (FTLD-FUS),
or T pathology (FTLD-tau: progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, Pick’s disease, and neurofibrillary tangle
predominant dementia), encephalitis, Creutzfeldt-Jacob disease, tumor, vascular dementia and metabolic encephalopathy. These non-AD-D cases served as non-
AD control cases from diseased brains to determine the differential diagnostic properties of the respective parameters

midbrain, pons, medulla oblongata and cerebellum were
examined. Paraffin sections of 5-12 um thickness from all
blocks were stained with hematoxylin & eosin. For neuro-
pathological diagnosis sections were stained with the Gal-
lyas (cohort 1) or Bielschowsky (cohort 3) silver method
and immunohistochemical methods (cohorts 1-3) with
primary antibodies against abnormal phosphorylated Tt
protein (p-1), AP17-24 APnzpes APpsers [40], phosphory-
lated transactive DNA-binding protein TDP43 (pTDP43),
a-synuclein, and/or ubiquitin as listed in Additional file 1:
Table S1. Primary antibodies were detected with

biotinylated secondary antibodies and visualized with the
DABMap Kit (Ventana, USA) or with diaminobencidine-
HCI and the avidin-biotin complex (Vector, USA).

The phase of AP plaque pathology (AP phase) was
assessed after screening the Ap-stained sections for
plaque distribution according to previously published
protocols (Additional file 1: Table S2). One single amyl-
oid plaque, thereby, indicated that a given anatomical
brain region was considered as amyloid positive [1, 71].
The neuropathological diagnosis of AD pathology as well
as the assessment of the A-score (A0 — A3) for amyloid
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plaque distribution and the determination of the NIA-
AA degree of AD pathology was performed as recom-
mended [35] (Additional file 1: Table S2). Braak-NFT
staging was performed based on sections stained with an
antibody against abnormal t-protein (AT8, Additional
file 1: Table S1) according to a widely accepted protocol
in all cohorts [10]. In some cohort 1 cases, Braak NFT-
staging was confirmed with the Gallyas silver staining
method [11]. The consortium to establish a registry for
AD (CERAD) scores for neuritic plaque density were
assessed based on sections stained with an antibody
against abnormal t-protein (AT8, Additional file 1:
Table S1) [51].

As an additional staging strategy for the topographical
distribution of AP plaques we used the phases of Afp
plaque distribution in the medial temporal lobe (APMTL
phases) [72]. The assessment of the AP phases, A-scores,
and APMTL phases was carried out according to the
protocol depicted in Additional file 1: Table S2a-d. In
addition, the severity of CAA according to Vonsattel
[80], and the stage of topographical expansion of CAA
have been assessed as previously described [68] (for de-
tails see Additional file 1: Table S2e,f).

To assess the quantitative aspect of AP pathology, ApB-
loads were determined in all cases of cohort 1 and in 31
cases of cohort 3 as the percentage of the area in the
temporal neocortex (Brodmann area 36) covered by AP
plaques detected with anti-AP;;_p4. Morphometry for
AP load determination in cohort 1 was performed using
Image] image processing and analysis software (National
Institutes of Health, Bethesda, USA). For plaque mea-
surements, the area of the morphologically identified
plaques was interactively delineated with a cursor and
then measured. Neuronal staining by the anti-AB;7 24
antibody was considered as cross-reactivity with amyloid
precursor protein (APP) and not included for the assess-
ment of the AP load. The areas of all plaques in a given
cortical region were added up. The area of the respective
cortex areas was likewise measured by interactive delin-
eation with a cursor. The AP load was calculated as the
percentage of the area of interest covered by A plaques
[56]. Likewise, APnspe and Apsers loads were assessed
in 70 cases of cohort 1 cases. In cohort 3 the cortical A
loads were assessed in the middle temporal gyrus after
scanning the 4G8-stained sections with a slide scanner
and performing automated analysis of cortical regions of
interest with Aperio XT software and a pre-developed
macro (MATLAB, Math Work In, MA, USA) [36].
Thresholds for intensity, size, and morphometry were
set by the macro to distinguish AP plaques from non-
plaque related neuronal APP staining after color decon-
volution to remove the hematoxylin staining channel.
These AP load measures for cohort 3 were performed at
a single laboratory to ensure consistency. The
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investigators were blinded to clinical and imaging data
and to the results of other histopathology analyses.

To document qualitative changes in the aggregate
composition, the stage of maturation of AB plaques (B-
AP plaque stage) was determined in 70 cases of cohort 1
(Tab. 1) [57]. To do so, sections were immunostained
with antibodies raised against APi7_ 4, APnzpr, and
ABpsers: Four B-AB plaques stages were distinguished
(for details see Additional file 1: Table S3a).

Biochemistry

Biochemical analysis was carried out from 38 cases of
cohort 1 (Tab. 1) [57]. Protein extraction from fresh fro-
zen occipital and temporal neocortex (0.4 g) was carried
out in 2 ml of 0.32 M sucrose dissolved in Tris-buffered
saline (TBS) containing a protease and phosphatase
inhibitor-cocktail (Complete and PhosSTOP, Roche,
Mannheim, Germany). The tissue was first homogenized
with Micropestle (Eppendorf, Hamburg, Germany)
followed by sonication (Sonoplus HD 2070, Heidolph in-
struments, Germany). The homogenate was centrifuged
for 30 min at 14000 x g at 4 °C. The supernatant (s1) was
ultracentrifuged to at 175000 x g to separate the soluble
fraction (supernatant s2) and the dispersible fraction
(pellet p2). The pellet (p2) resuspended in TBS and the
supernatant as the soluble fraction (s2) were stored at —
80 °C until further use, respectively. The pellet (p1) con-
taining the membrane-associated and the solid plaque-
associated fraction was resuspended in TBS containing
2% sodium dodecyl sulfate (SDS) was centrifuged at
14000 x g. The supernatant (s3) was kept as membrane-
associated SDS soluble fraction. The pellet (p3) was fur-
ther dissolved in 70% formic acid and the homogen-
ate was lyophilized by centrifuging in the vacuum
centrifuge (Vacufuge; Eppendorf, Germany) and
reconstituted in 100 pl of 2X lithium dodecyl sulfate
(LDS) sample buffer (Invitrogen, Carlsbad, CA, USA)
followed by heating at 70°C for 5min. The resultant
sample was considered as plaque-associated, formic
acid-soluble fraction [48]. The total protein contents
of soluble, dispersible, and membrane-associated
fractions were determined using BCA Protein Assay
(Bio-Rad, Hercules, CA, USA).

For western blot analysis, the four fractions (soluble,
dispersible, membrane-associated and plaque-associated)
were subjected to SDS-polyacrylamide gel electrophor-
esis (SDS-PAGE) and subsequent western blot analysis
with anti-AB;_;7, anti-APnzpe and anti-Afpses anti-
bodies (Additional file 1: Table S1). Blots were developed
with an ECL detection system (Supersignal Pico Western
system, ThermoScientific-Pierce, Waltham, MA, USA)
and illuminated in ECL Hyperfilm (GE Healthcare,
Buckinghamshire, UK). For semiquantitative comparison
of optical densities of the 4kDa AP bands were
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measured using Image] software (NIH, Bethesda, USA)
as previously described [56].

The biochemical stages of AP aggregation (B-Af
stages) were determined by the detection of the pres-
ence/absence of AP, ABxspe, and AP,sers in at least one
of the four fractions according to a previously published
protocol (for detail see Additional file 1: Table S3b) [57].

['8FIFlutemetamol PET image assessments

Amyloid PET imaging was performed for the cases in
cohort 3 at 12 different imaging sites [62, 66]. Before
PET imaging, subjects underwent head CT or magnetic
resonance imaging (MRI), unless prior images (obtained
within 12 months) were available. [*®F]Flutemetamol in-
jection was administered intravenously at a dose of 185
or 370 MBq of radioactivity at physician discretion [66].
PET images were acquired in 2.5-min frames on PET/
CT cameras, beginning approximately 90 min post injec-
tion, which was attenuation corrected using CT data.
Frame to frame motion correction was performed on the
dynamic data before the frames were averaged to give a
10-min scan. Equipment used to capture images varied
across the 12 imaging sites [66]. Most images were re-
constructed iteratively to form 128 x 128 axial slices, and
a Gaussian post-reconstruction smoothing filter was ap-
plied to some to achieve uniform image resolution
across sites.

[*®F]flutemetamol uptake was measured for six vol-
umes of interest (VOIs) restricted to gray matter and ad-
justed for atrophy manually where possible, covering
anterior cingulate, prefrontal cortex, lateral temporal
cortex, parietal cortex, one VOI covering both posterior
cingulate and precuneus, and one subcortical VOI in the
head of the caudate nucleus according to Thal et al. [67]
and Beach et al. [9]. Quantitative standardized uptake
value ratio (SUVR) calculations were made using pons
as reference region [76]. A global cortical average (neo-
cortical (composite) SUVR (SUVRneo); obtained from
anterior cingulate, prefrontal, lateral temporal, parietal,
and posterior cingulate cortex including the precuneus
region) was calculated [79]. The SUVR for the caput nu-
clei caudati (SUVRcaud) was determined based on VOI
measurements of both the left and right caudate nucleus
(anterior aspect). The caudate VOIs were drawn on a
parasagittal plane which intersected the thalamus, in-
ternal capsule, caudate head and frontal white matter
(manually due to the lack of structural MRI for most
cases). Image processing and VOI analysis was per-
formed using VOlager 4.0.7 (GE Healthcare, Uppsala,
Sweden) [67].

Thresholds to distinguish AB phases by [**F] flute-
metamol PET based estimates were applied as re-
cently published (for detail see Additional file 1:
Table S4) [67].
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Statistical analysis

Spearman correlation, partial correlation, linear regres-
sion analysis and regression coefficients were calculated
using SPSS 25 statistical software (IBM, Armonk, NY,
USA). To exclude collinearity with age and sex when
comparing Ap-related parameters with non-Apf-related
parameters partial correlation and regression analyses
were controlled for age and sex. For comparisons of the
different aspects of AB pathology with one another the
Spearman correlation analysis was used without control-
ling for age and sex in order not to bias these compari-
sons of different aspects of aggregates of the same
molecule by including additional independent variables
in the respective model terms. The Friedman test was
used to compare AP, APnspe, and APpsers in dependent
samples to observe differences in the respective levels
and loads. Pairwise comparisons were adjusted for mul-
tiple testing according to the Bonferroni method.

Results

The main findings of this study were (1) strong correla-
tions between the topographical (A phases, ABMTL
phases, A-scores, CAA stages, and CAA-severity), quan-
titative (AP loads, AP levels determined biochemically in
cortical brain homogenates), and qualitative (B-Ap
stages for AP aggregate/AP plaque maturation) aspects
of AP pathology, (2) estimation of these aspects by the
SUVR-based PET-AP phase estimates, and (3) its rela-
tionship with preclinical and symptomatic stages of AD
and cognitive decline.

Correlations between topographical, quantitative and
qualitative aspects of Ap pathology
Spearman correlation analysis was applied to determine
correlations between topographical (AP phases, ABMTL
phases, A-scores, CAA stage, and CAA severity), quantita-
tive (AB, APnape, and APpsers loads, biochemically detected
levels of soluble, dispersible, membrane-associated and
plaque-associated AB, APnspe, and APpsers), and qualitative
AP parameters (B-AB stages, and B-AP plaque stages) in
cohort 1. This analysis revealed strong correlations between
these parameters (Additional file 1: Table S5a). The ABysers
levels in the plaque-associated fraction did not correlate
with the B-AP plaque stage (p=0.094; Additional file 1:
Table S5a). Soluble Apysers was not detectable. The
correlations between topographical parameters (Ap
phases, APMTL phases, A-scores, CAA stage, and
CAA severity) were confirmed in cohorts 2 and 3
(Additional file 1: Table S5b). The correlation of
topographical parameters with Ap load was confirmed
in cohort 3 (Additional file 1: Table S5c).

In detail, with increasing AB phase, ABMTL phase,
and A-score, the AP load increased showing in general
higher levels than the AByspe load and the ABpse.s load
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(Fig. 1a-c; Friedman test corrected for multiple testing:
p =0.001). Increased Ase,s loads were mainly restricted
to end stages (AP phases 4 and 5, ABMTL phase 4, and
A-score 3) and lower than APz, loads (Fig. la-c;
Friedman test corrected for multiple testing: p <0.001).
Cases without CAA but with AB and AByspe loads larger
than 0 were seen with AP loads ranging from 0.02 to
9.78% (cohort 1)/ 0.017 to 17.625% (cohort 3) with a
mean of 3.068% (cohort 1)/ 7.17% (cohort 3) (Fig. 1d, e).
In general, AB, APnspe, and APpsers loads increased with
advancing topographical expansion of CAA pathology
over the brain (represented by the CAA stage), and with
increasing destruction of the vessel wall of cortical and
leptomeningeal blood vessels by AP deposits (repre-
sented by the CAA severity) (Fig. 1d, e). ABysers Was
thereby, seen in cases with CAA stage 2 and CAA sever-

ity degree 2.
A similar correlation relation was observed for the bio-
chemically detected levels of soluble, membrane-

associated and plaque-associated AP, ABnspe, and AP,
sers increasing with the five topographical parameters for
AP pathology, except for soluble ABpse.s (Fig. 2), which
was not detected in these cases. The levels of soluble,
dispersible, membrane-associated, and plaque-associated
total AP were higher than that of the respective levels of
ABpsers (Fig. 2; Friedman test corrected for multiple test-
ing: p <0.001-0.025). Eight cases without CAA showed
AP and AByspe mainly in the membrane-associated and
the plaque-associated fraction. The levels of AB, APnspe,
and APpsers increased in CAA stage 1 and remained
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similar in stage 2. Biochemical data from CAA stage 3
cases were not available for this analysis. A similar pat-
tern was observed for the severity degree of CAA. There
was an increase until CAA severity degree 1 (mild
CAA). In CAA severity degree 2 and 3 cases, similar
levels of soluble, dispersible, membrane-associated and
plaque-associated A, APBnspe, and APpses were ob-
served (Fig. 2).

The qualitative changes in the composition of A} aggre-
gates over time as represented by the B-Af stages and B-
AP plaques stages progressed with increasing AP phase,
ABMTL phase and A-score (Fig. 3a-c). With respect to
the AP phases the last stage of AP aggregate maturation
was reached in nearly all AP phase 4 cases and remained
stable in A phase 5 (Fig. 3a). Such a saturation effect was
not that apparent when studying the B-AP and B-AB
plaque stages in relation to the ABMTL phases and the A-
scores (Fig. 3b, c). Most cases with CAA (CAA stage 1-3,
CAA severity degree 1-3) showed B-Ap stage 3 (66.7%)
and B-Ap plaque stage 3 (87.1%) (Fig. 3d, e).

Correlations of PET-AP phase estimates with
topographical parameters of AP pathology and A load
In the cases from cohort 3 we compared the different
topographical parameters for Ap pathology (AP phase,
APBMTL phase, A-score, CAA stage and CAA severity)
as well as the quantitative measure of the AP load
among the PET-AP phase estimates obtained in pa-
tients 0-846 (mean 215) days before death and subse-
quent autopsy. All topographical parameters of Ap
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Fig. 2 Boxplot diagrams representing the distribution of soluble (Sol), dispersible (Disp.), membrane-associated (Memb. ass), and plaque-associated (Plag.
Ass) AB (a, d, g, j, m), ABusoe (b, € h, k, n), and ABgsers levels (c, f, i, I, 0) in relation to the phase of AB plaque distribution (AB phase; a-c), the ABMTL
phase (d-f), the A-score (g-i), the CAA stages (j-I) and the CAA severity (m-o) in cohort 1. The correlation for these three different forms of AB was best for
AB detected with antibodies against non-modified forms of AR (Spearman correlation analysis: r = 0.603-0.809) followed by AByspe (Spearman correlation
analysis: r=0572-0.756) whereas ABses Was not detectable in soluble AR aggregates. Dispersible, membrane-associated and plaque-associated ABpsers
showed a week correlation with the AR phases (Spearman correlation analysis: r=0.324-0.556) due to the fact that it was seen only in AR phases 4 and 5
but not earlier, except for single cases. Increased levels of AB and AByspe were found already in cases without CAA (m, n). Cases with CAA showed high
levels of soluble, dispersible, membrane-associated, and plaque-associated AB and ABysee in all stage and severity degrees of CAA. Only the presence of
ABpsers Was restricted to cases with CAA. The detailed correlation analysis is provided in Additional file 1: Table S5a
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pathology as well as the AP load correlated with the also gradually increased until PET-AB phase estimate 2

PET-AP phase estimates with r ranging from 0.610 to
0.835 (Spearman correlation analysis: p < 0.001) (Additional
file 1: Table S6).

Of the 20 amyloid PET-negative cases (PET-Ap phase
estimate 0), 13 showed plaque pathology whereas CAA
was found only in four of them. With increasing PET-
AP phase estimate the AP phases increased (Fig. 4a).
ABMTL phase, A-score, CAA stage and CAA severity

reaching a plateau that is also seen in cases with PET-
AP phase estimate 3. Of note, CAA stage remained
stable at the second stage while the third CAA stage was
limited to single cases with PET-A phase estimates ran-
ging from 0 to 3. For CAA severity only one case with
PET-APB phase estimate 3 exhibited CAA-related bleed-
ings eligible for severity degree 3 (Fig. 4a). The AP load
also gradually increased with increasing PET-AP phase
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relation to the PET-AR phase estimate in cohort 3. All parameters correlated with the PET-AR phase estimates (r=0.610-0.835; p < 0.001; for
detailed statistical analysis see Additional file 1: Table S6). Note that the main increase in AB load occurs after AR became detectable in PET-AB
phase estimate 1. The mean value of the AR load in PET-AB phase estimate 1 was 1.396% (median 1.42%) indicative for the threshold of AR
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estimate becoming detectable with a median Af load of
1.42% in PET-AP phase estimate 1 (Fig. 4b).

Correlations of topographical, quantitative and qualitative
AP parameters with the degree of dementia and non-Af
AD pathology

To determine the relationship of the different aspects of
AP pathology with NFT pathology, neuritic plaques, AD
pathology in general and the degree of dementia, we per-
formed partial correlation analysis controlled for age and
sex. The topographical and qualitative AP parameters as
well as the AB, ABnspe, and ABpsers load correlated with
Braak NFT stages, CERAD scores, NIA-AA degrees of
AD pathology, and the degree of dementia measured by
the CDR score or the MMSE score, respectively (Fig. 5a-1,
Additional file 1: Table S7a-c). The biochemically mea-
sured levels of soluble, dispersible, membrane-associated,
and plaque associated AP, APnspr, and plaque-associated
ABpsers also correlated with increasing Braak NFT stages,
CERAD scores, and NIA-AA degrees of AD. However,
only soluble, dispersible, plaque-associated APyspe, and
plaque-associated Af,s.rs correlated with the CDR score
whereas the biochemical levels of non-modified forms of
AP did not correlate with increasing dementia represented
by the CDR score (Fig. 5, Additional file 1: Table S7). The
B-Ap stage and the B-Af plaque stages representing quali-
tative changes in AP aggregates/ plaque composition over
time correlated with Braak NFT stages, CERAD scores,
NIA-AA degrees of AD pathology and CDR-scores indi-
cating that the presence of post-translationally modified
forms of A is associated with cognitive decline and AD
pathology progression (Fig. 5m, Additional file 1: Table
S7a).

A few cases did not follow the general correlation be-
tween AP and NFT pathology. Sixteen cases showed
widespread amyloid plaque pathology with AP phases 4
and 5 but only low Braak NFT stages (0-1I). Another 4
cases exhibited severe NFT pathology (Braak NFT stage
IV-V) with negligible plaque pathology (A} phases 0-2).
Moreover, severe CAA without large numbers of plaques
or NFTs was seen in one case of cohort 3 (Braak NFT
stage 0, amyloid phase 3, CAA stage 3). Altogether, 21
of 271 cases (7.75%) did not follow the general
correlation.

The PET-AP phase estimates as an AP topography-
related parameter that can be measured in patients cor-
related with Braak NFT stage, CERAD scores and NIA-
AA degrees of AD pathology and with decreasing
MMSE scores indicating a correlation with cognitive de-
cline (Additional file 1: Table S7c). All cases with PET-
AP phase estimates between 2 and 3 with known MMSE
scores showed at least mild cognitive impairment
(MMSE score 27 or lower) with a median of 3 (mean =
5.19) and a range between 0 and 27. Except for one case
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with vascular dementia (NIA-AA score 1, Braak NFT
stage 3, AP phase 3) all other cases (39 out of 40 cases)
fulfilled the criteria of intermediate to severe AD path-
ology (NIA-AA scores 2 and 3). PET-A phase estimate
1 cases consisted of a heterogeneous group with MMSE
scores ranging between 0 and 30 (median: 7; mean =
9.71). The NIA-AA degree of AD pathology was low (1)
in 70% of the PET-AP phase 1 cases and intermediate
(2) in 30%. Those cases with NIA-AA scores of 2 were
demented due to AD whereas the cases with NIA-AA
scores of 1 were either normal or had dementia due to
Lewy body disease or vascular dementia. The neuro-
pathologically normal case with low NIA-AA degree of
AD pathology and cognitive deficits was reported to be
terminally ill (scan-death interval: 9 days), which may ex-
plain the low performance in the MMSE test. The 20
cases with a negative [18F]flutemetamol PET were either
normal (n=7) or had a non-AD dementia (Lewy body
disease (n =3), vascular dementia (n = 6), neurofibrillary
predominant dementia (n = 1), argyrophilic grain disease
(n =1), progressive supranuclear palsy (n=1), and fron-
totemporal lobar degeneration with TDP-43 pathology
(FTLD-TDP) (n = 1)). The MMSE scores (available in 15
of these cases) ranged between 0 and 30 with a median
of 15 (mean = 15.15). AD pathology was either absent or
low, except for the one case with FTLD-TDP with an
intermediate degree of AD pathology.

Discussion

The results of this study demonstrate that topographical,
quantitative and qualitative aspects of AP pathology cor-
related with one another. The advancing Ap pathology
detected neuropathologically in autopsy brains corre-
lated well with the increase of ['*F]flutemetamol PET-
derived PET-AP phase estimates, i.e. with a staging sys-
tem based upon amyloid PET-derived SUVR-thresholds
applicable in patients during life [67]. All different as-
pects of AP pathology also correlated with increasing
non-AfB AD neuropathology, i.e. Braak NFT stages and
CERAD scores for neuritic plaques detected with an
antibody raised against p-t. The NIA-AA score of AD
pathology as a global parameter for AD pathology link-
ing AP and p-1 lesions and the degree of dementia cor-
related with increasing topographical, quantitative, and
qualitative aspects of A pathology. Biochemically, the
levels of post-translationally modified forms of A path-
ology, i.e. APnspe and APpses, correlated with the in-
creasing degree of dementia as represented by the CDR
score but not with the levels of non-modified AB. This
argues in favor of the hypothesis that qualitative changes
in AP aggregate composition, i.e. Ap aggregate matur-
ation due to posttranslational modifications of AP, are
critical in the progression of AD. This maturation of Ap
aggregates in plaques also correlated with the frequency
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which showed only a trend (for detailed statistical analysis see Additional file 1: Table S7)

of neuritic plaques (Additional file 1: Table S7a), i.e. the  syndrome [4, 24, 44, 57] as well as with studies indicat-
development of amyloid plaques associated with p-1-  ing the aggregation prone effects of APnspr and Aysers
containing dystrophic neurites. These findings are in line  [55, 63].

with previous reports showing a stepwise progression of Our results are in line a) with previous studies show-
AP aggregate maturation in AD, CAA, and Down- ing correlations between AP plaque loads, qualitative
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changes in AP aggregate composition and the topo-
graphical distribution of A plaque pathology [3, 57, 75],
b) with the association of the respective AP parameters
with NFT and neuritic plaque pathology and c) with the
degree of dementia when including non-AD control,
preclinical and symptomatic AD cases [11, 12, 54, 69,
71-73]. Although the degree of dementia has been re-
ported to correlate better with NFT pathology in AD
cases rather than with AP plaque pathology [2], it be-
came clear that AP pathology has already reached high
levels when AD becomes symptomatic while NFT path-
ology did not [30, 71, 73]. The correlation of AD pro-
gression with increasing tracer retention in amyloid PET
seen in our study is in line with other studies [15, 17, 31,
52, 60].

In contrast to previous studies, we correlated all as-
pects (topography, quantity and quality) of AP pathology
in one cohort, confirmed the relationship between topo-
graphical aspects of AP pathology with p-t pathology in
NFTs, neuritic plaques and the cognitive status of the
patients in two additional cohorts. Based on our findings
the assessment of the AP phases already provides suffi-
cient information to estimate the quantity of A plaques,
their maturation status, the frequency of neuritic pla-
ques, the severity of CAA, and the topographical expan-
sion of NFTs in more than 90% of the cases.
Accordingly, the PET-Ap phase estimates as an in-vivo
parameter represent distinct steps of the underlying
neuropathological and biochemical progression of Ap
pathology. Since changes in AP biomarkers, including
those observed with amyloid PET, precede that of p-t
biomarkers [13, 30] and since PET-AP phase estimates
allow prediction of the underlying neuropathological
phase of AP deposition [67] our current findings
strongly argue in favor of using amyloid PET and its de-
rived PET-AB phase estimates as markers for AD path-
ology in general and for disease monitoring once the
diagnosis of AD has been established in a given
individual.

Although our results demonstrate strong correlations
among the AD-related neuropathological and biochem-
ical parameters studied here, there are some exceptional
cases with discrepancies among the aspects of AP and
AD pathology: Severe CAA without large numbers of
plaques or NFT's was seen in one case of cohort 3 (Braak
NFT stage 0, amyloid phase 3, CAA stage 3); widespread
amyloid plaques (AP phases 4 and 5) but only limited
NFT pathology (Braak NFT stage 0-II) was observed in
16 cases; and severe NFT pathology (Braak NFT stage
IV-V) with negligible plaque pathology (Ap phases 0-2)
occurred in 4 cases [7, 32]. Moreover, AD-related path-
ology changes are frequently accompanied by changes
related to vascular incidents [5, 27, 77] or other types of
neurodegenerations, such as Lewy body pathology or
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other tauopathies [6, 32, 37, 74, 78]. Therefore, amyloid
PET and its power for estimating AD pathology alone is,
in our opinion, not sufficient for establishing the diagno-
sis of AD and needs to be supplemented by a neuro-
logical examination, magnetic resonance imaging to
screen for vascular lesions, and p-t biomarkers in order
to confirm the diagnosis of AD, to identify specific vari-
ants such as the plaque predominant form of AD, and to
detect non-AD tauopathies as it is part of the current
recommendations for the clinical diagnosis of AD [49].
This is documented by cases in cohort 3 with advanced
AP pathology with high PET-AB phase estimates and
additional non-AD pathology (e.g. Lewy body disease).
For disease progression monitoring on the other hand,
PET-AP phase estimates of a single patient at different
points in time could be a powerful tool to assess the
speed of disease progression because of its close associ-
ation with the neuropathological markers, especially the
Ap phase [67]. The transition from preclinical AD to the
symptomatic stage correlated with a transition from AP
phase 3 to 4 [71]. Since these AP phases can be assessed
by the PET-Af phase estimates, amyloid PET can indi-
cate patients at high risk for this transition. In advanced
symptomatic AD, p-t may be a better progression
marker [30].

Another finding of this study is the correlation be-
tween the aspects of AP pathology with CAA, and the
correlation of CAA severity and the topographical distri-
bution of CAA with the PET-AP phase estimate. These
data are in line with previous findings on the correlation
between CAA and AP plaque deposition [68], the detect-
ability of CAA cases by amyloid PET [14, 39] and its
probable characteristics in the cortical tracer retention
pattern [8, 19, 22]. However, it was also reported that
CAA had no major impact on amyloid PET positivity
because of the correlation between AP plaques and CAA
[36]. Only single cases with predominant CAA and very
limited amounts of plaques became detectable by amyl-
oid PET as reported by others [20] and confirmed by
one CAA-stage 3 case in our cohort 3 exhibiting AP
phase 3 and Braak NFT-stage 0. This indicates that
amyloid PET did not distinguish between AP plaque
pathology and vascular AP deposition in CAA with the
algorithms currently applied in a routine diagnostic set-
ting. It just indicates whether AP deposits in a given
amount are present or not whereby in most cases plaque
pathology and CAA anyway correlate with one another.
However, our findings also show single amyloid PET
negative cases with CAA. Accordingly, we cannot con-
firm that amyloid PET is capable of ruling out CAA
completely when negative as suggested by other authors
[8] although indeed 16/20 amyloid PET negative cases in
our study had no CAA. It may be important to note that
one case with end-stage CAA (CAA distributed all over
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the brain) in our sample was amyloid PET negative.
When assessing only positive/negative amyloid PET
reads it had been reported that CAA may contribute to
amyloid positivity in phase 3 cases [36] whereas analysis
of the SUVRs allowed distinction between amyloid
phases 0-2, 3, 4, and 5 in the same cohort of cases with-
out interference with CAA [67].

Many reports showed that 1 pathology precedes Af
plaques neuropathologically [12, 16, 21, 65, 73]. In our
three cohorts, we confirmed the presence of early stages
of 1 pathology in cases without AB plaques (Fig. 1)
known as primary age-related tauopathy (PART) and to
precede AD pathology [21]. Accordingly, our findings do
not support the amyloid hypothesis in the sense that A
causes 1 pathology [64]. However, the parallel increase
of p-t and AP pathology in the autopsy brains supports
the hypothesis that Ap can drive the propagation of pre-
existing p-t pathology as recently demonstrated in amyl-
oid precursor protein transgenic mice [26, 28, 45, 53].
As such, our findings are in line with the hypothesis that
prevalent T pathology fulfilling the criteria of definite
PART (= presence of NFTs in the absence of AP pla-
ques) is a prerequisite for the development of AD and
can be accelerated by the presence of AP aggregates fi-
nally leading to AD [65].

A limitation of this study is that there is no assessment
of the B-AP stages and B-A plaques stages in cohort 3
for comparison with the [**F]flutemetamol PET images.
Since cohort 3 was recruited and studied in the context
of a phase III clinical trial to determine the diagnostic
value of [®F]flutemetamol, the assessment of ABNspE
presence or Af,s.rg presence was not considered in the
study protocol. Correlation of the ['®F]flutemetamol
PET derived PET-AP phase estimates with the ABMTL
phases and the AP load, i.e. a second parameter describ-
ing the topographical distribution of AP plaques
(ABMTL phase) in addition to the AP phases and a
quantitative parameter (AP load), support the hypothesis
that the relationship between the three aspects of AP
pathology as shown in cohort 1 is also valid for other co-
horts of cases.

A second limitation of this study is the fact that we do
not have an independent control group to confirm that
the PET-AP phase estimates indeed correlate with the
underlying AP phase. In addition to statistical analysis
using bootstrapping methods as previously published
[67], we determined a second parameter representing
the topographical distribution of AB plaque pathology,
the ABMTL phase, which is based on the assessment of
a different set of brain regions in comparison to the Ap
phases [71, 72] and which also correlated very well with
the PET-AP phase estimates. Moreover, another group
of researchers demonstrated a similar amyloid PET-
based distinction between the AP phases when using
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PIB-PET-derived centiloids to compare their cases [42].
[*®F]flutemetamol shows, thereby, similar amyloid detec-
tion properties when compared with Pittsburg com-
pound B (PIB) in clinical studies [33, 43] and similar
increases in tracer retention with increasing AB phase
[42, 67].

Conclusions

Our analysis of AR pathology in its topographical, quan-
titative and qualitative aspects (incl. CAA), in its rela-
tionship with other histopathological features of AD,
cognitive decline and in its detection by amyloid PET in
patients during life showed that all these parameters are
correlated with one another. In doing so, the determin-
ation of one of these parameters seems to be sufficient
for estimating the others, and for monitoring the pro-
gression of a once diagnosed symptomatic or preclinical
disease. However, the occurrence of few cases (7.75% in
our three cohorts) that lie outside of the general correl-
ation, e.g., cases with plaque-predominant AD, argues
against the use of only one parameter for establishing
the diagnosis of AD. Since amyloid PET is the clinical
biomarker, which is best validated by post-mortem end-
of-life studies [15, 36, 42, 60, 67], and which allows esti-
mation of the underlying neuropathological phase of Ap
deposition [67], amyloid PET seems to be ideally suited
for this purpose especially for studying and determining
the critical transition from preclinical to symptomatic
AD as indicated by its correlation with the AB phases,
Ap loads, Braak NFT stages and the CERAD scores for
neuritic plaque pathology.
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Additional file 1: Table S1. List of antibodies and silver techniques.
IHC = immunohistochemistry, WB = western blotting. Table S2.
Assessment of topographical distribution of AR plaques (a-d), CAA (a, e),
and CAA severity [80] (a, f). Tissue-block selection (a) and assessment of
AR phases (b) [71], ABMTL phases (c) [72], A-scores (d) [35], CAA stages
(e), and the CAA severity degree according to Vonsattel et al. [80] (f).
Table S3. Assessment of the biochemical AR stage of plaque maturation
(=B-AB plaque stage; a) and the biochemical stage of AR aggregate mat-
uration in brain lysates (B-AB stage; b). Table S4. Assessment of PET-AB
phase estimates as previously published [67]. Table S5. Spearman correl-
ation analysis between A phases, ABMTL phases, A-scores, and Af load
as assessed in cohorts 1 (a), 2 (b), and 3 (c) as well as AByspe load, ABpsers
load, B-AR stage, B-AB plaque stage, and the levels of soluble, dispersible,
membrane-associated and plaque-associated AB, ABnspr, and ABpsers in
cohort 1. r and p-values are provided. No adjustment for age and sex be-
cause different methods assessing AR pathology were compared. n=
number of cases compared. Table S6. Spearman correlation analysis be-
tween PET-AR phase estimates, topographical and quantitative AR param-
eters assessed in cohort 3. No adjustment for age and sex because
different methods assessing AR pathology were compared. n = number
of cases compared. Table S7. Partial correlation analysis controlled for
age and sex between NFT stages, CERAD scores of neuritic plague path-
ology, NIA-AA degree of AD pathology, CDR-scores, AP phases, ABMTL



https://doi.org/10.1186/s40478-019-0837-9
https://doi.org/10.1186/s40478-019-0837-9

Thal et al. Acta Neuropathologica Communications (2019) 7:178

phases, A-scores, and AB load as assessed in cohorts 1 (a), 2 (b), and 3 ()
as well as ABpspe l0ad, ABgsers l0ad, B-AR stage, B-AB plaque stage, and
the levels of soluble, dispersible, membrane-associated and plaque-
associated AR, ABnspe, and ABgsers in cohort 1.1 and p-values are pro-
vided. n =number of cases compared.
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