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Abstract 

Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their 
differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using 
various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell con-
tact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune 
checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function 
of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to main-
tain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, 
and defects in their expression and function may be associated with excessive responses that can ultimately lead 
to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the forma-
tion and durability of immune responses, which leads to tumors’ immune escape. ICPs and ICPLs can be produced 
by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-
cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. 
In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines 
by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs 
and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
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Introduction
MSCs are a group of multipotent stem cells usually found 
in all body tissues [1]. These cells can usually be isolated 
and expanded in the laboratory from bone marrow, adi-
pose tissue, umbilical cord, etc. [2]. According to past 
studies, it has been shown that these cells can be used in 
the treatment of various types of diseases, such as auto-
immune and infectious, as well as in treatments based on 
tissue regeneration due to their multiple characteristics 
[3, 4]. It has also been shown that the use of MSCs in live, 
apoptotic, and dead states can have different therapeutic 
effects [5, 6]. One of the features that has led to a lot of 
attention to these cells is their ability to self-renew and 
differentiate [7, 8]. MSCs in therapeutic applications, 
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after being injected into animal models or patients, main-
tain their self-renewal ability for an acceptable period, 
proliferate and differentiate in the damaged tissue-related 
cells [9], and help restore the damaged tissue [10, 11]. 
These cells produce various growth factors, including 
VEGF, PDGF, EGF, HGF, IGF-1, FGF-4, FGF-2, FGF-7, 
BMP-7, and FGF-9 [12, 13], which leads to the growth, 
proliferation, and differentiation of healthy cells in the 
tissues also increase and prevent the destruction of other 
tissue cells [14, 15]. It is also known that MSCs have a 
high immunomodulatory potential [16–18]. Investiga-
tions to find the reasons for this kind of therapeutic effect 
of MSCs have shown that MSCs perform this action 
by producing anti-inflammatory cytokines, including 
IL-13, IL-16, IL-10, and TGF-β [19]. In addition, various 
chemokines are produced by MSCs, which can increase 
the recruitment of immune system regulatory cells to the 
injury site [20, 21]. In addition to the mentioned mecha-
nisms, studies have shown that MSCs can perform their 
therapeutic functions by producing extracellular vesicles 
(EVs), especially exosomes (EXOs) [22–24]. EXOs are 
secreted from the cell after formation in the multivesicu-
lar body (MVB) [25]. These vesicles contain various sub-
stances, including proteins (enzymes, cytokines, growth 
factors, chemokines), nucleic acids (single-stranded and 
double-stranded DNA, mRNA, miRNA, lncRNA, and 
circRNA), and lipids [26–28]. Also, novel studies have 
shown that exosomes can carry whole mitochondria 
or mitochondria-related subunits to the damaged cells 
and restore their functions [29]. However, many studies 
state that changes in the culture conditions of MSCs can 
increase their therapeutic ability [2, 30, 31]. For example, 
3D culture of MSCs can increase their immunomodula-
tory capacity by increasing cytokine and exosome pro-
duction [32]. Also, placing them in conditions such as 
hypoxia [33], cultivation in inflammatory conditions [34], 
and using genetic engineering methods [35] can increase 
these cells’ theraputic efficacy. But how this modifica-
tions (culture in inflammatory condition) takes place 
was questioned and debated for years. Some studies have 
highlighted the importance of exosomes and EVs derived 
from MSCs in their therapeutic potential [36]. How-
ever, some other studies have shown that the therapeu-
tic effects of MSCs occur through cell-to-cell interaction 
[37–40] (Table 1).

Molecules belonging to a family called ICPs play an 
important role in regulating immune system responses 
induced by regulatory cells, including Tregs [73, 74]. 
Therefore, in recent years, researchers have investigated 
whether these molecules and their ligands are expressed 
on the surface of MSCs and their role in regulating immu-
nity induced by these cells. The results show that MSCs 
express different types of ICPs and their ligands, and they 

can be called quasi-immune regulatory cells. Studies show 
that the functions of ICPs and their ligands play a role in 
the therapeutic ability of MSCs in the treatment of inflam-
matory diseases such as autoimmune. In this review, we 
collect published information about the expression of ICPs 
and their ligands (ICPLs) on the MSCs’ surface. First, we 
will talk about ICPs, their functions, and their role in dis-
ease and treatment, and then we will talk in detail about 
the studies on each of the ICPs expressed by MSCs.

Immune checkpoints (ICPs) in disease 
and treatment
ICPs are usually considered as membrane receptors pre-
sent on immune cells, while the ICPLs are expressed on 
the so-called “target cells” (namely, tumor cells, APCs, and 
stromal cells of different origins). This notion was modified 
markedly with the finding that CTLA-4, the major immune 
checkpoint molecule expressed on CTLs, can be expressed 
not only in lymphocytes but also by tumor cells [75, 76] 
and DCs [77]. As mentioned, the primary function of ICPs 
is the immune system response homeostasis (especially 
T cell responses) and preventing inappropriate responses 
[78]. ICPs play an essential role in peripheral tolerance 
and prevent the development of autoimmunity [79–81]. At 
the same time, tumor cells can express ICPs and prevent 
immune responses against these cells during tumor growth 
and development [82, 83]. Table 2 briefly shows the different 
types of ICPs, their expressing cells, and their roles (Table 2).

The expression of ICPs by tumor cells and vesicles 
produced by them (exosomes and MVs) lead to the dif-
ferentiation of T cells to Treg [140, 141], the differen-
tiation of macrophages to the M2 phenotype [142, 143], 
the reduction of the cytotoxic T lymphocytes (CTLs) 
functions [144, 145], the reduction of the immune cells 
recruitment to the tumor site, the increase of the recruit-
ment of myeloid-derived suppressor cells (MDSCs) and 
Tregs [146], and induces of exhaustion [147], senescence 
and apoptosis in immune cells [140, 148]. It has also been 
shown that ICPs play an important role in the pathogen-
esis and persistence of infections related to malaria [149], 
human immunodeficiency virus (HIV) [150], and hepa-
titis B virus (HBV) [151]. Studies have shown that CD4+ 
and CD8+ T cells of patients infected with P. falciparum 
express PD-1 to a large extent [152]. This action can con-
tribute to the immune evasion mechanism induced by P. 
falciparum [153]. Also, the infection of immune cells with 
HIV leads to an increase in the expression of ICPs such 
as CTLA-4, PD-1, LAG-3, and TIM-3, which disrupts the 
functions of NK cells and CTLs leads to preventing the 
removal of virus-infected cells [153, 154]. Therefore, ICPs 
can act as a double-edged sword based on which cells are 
expressed and at which stage of immune cells develop-
ment ICPs interact with them [155].
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During the past decades, due to the role defined for 
ICPs in the pathogenesis of infectious diseases and can-
cer, blocking the function of these molecules has been 
proposed to treat these diseases. In many studies, anti-
body-based immune checkpoint blockades (ICBs) have 

been used to inhibit the function of ICPs and have had 
promising results [156, 157]. However, it seems that 
blocking the function of one of the ICPs leads to a com-
pensatory increase in the expression of other ICPs on the 
surface of tumor and infected cells [158, 159]. Table  3 

Table 1  MSCs produced immunomodulatory mediators

No Immunomodulatory Mediators Examples Functions Ref

1 Extracellular vehicles Exosomes 1. Carry cytokines, growth factors, chemokines, 
and other component of cells
2. Effect on target cell proliferation, immune 
response, oxidative stress, etc
3. ↓ Liver and lung fibrosis

 [41–45]

Microvesicles

Apoptotic bodies

2 Chemokines and receptors CCL2, CCR2, CCL3/4, CCR5, CCL5, CCR1, CCL20, 
CCR6, CCL21, CCR7, CXCL1, CXCR2, CXCL1/2/8, 
CXCR1, CXCL1/5, CXCR2, CXCL8, CXCL8, 
CXCL12, CXCR4, CXCL16, CXCR6, CX3CL1

1. MSCs homing
2. ↑ Lymphocyte recruitment and MSC dif-
ferentiation
3. Tumor metastasis
4. ↑ Macrophage polarization and tumor 
progression
5. Neuroprotective phenotype of microglia
6. ↑ CD4 + T cell migration

 [13, 46–50]

3 Growth factors VEGF, PDGF, EGF, HGF, IGF-1, FGF-4, FGF-2, FGF-
7, BMP-7, and FGF-9

1. Pro-and anti-angiogenesis effects
2. ↑ Tissue remodeling
3. ↑ Tissue regeneration
4. ↓ Death of damaged cells

 [12, 51–54]

4 Inflammatory cytokines IL-6 ↑ Maturation and support of the survival 
of human antibody-secreting cells

 [55–58]

IL-7 1. ↑ The proliferation of colitogenic CD4+ 
memory T cells
2. B cell development

IL-8 and migration inhibitory factor (MIF) ↑ The function and survival of neutrophils

IL-28 ↑ Cancer cells apoptosis

5 Anti-inflammatory cytokines LIF Inhibiting T-cell proliferation  [59–63]

IL-10 Induce MSCs the secretion of HLA-G5 soluble 
isoform and suppress innate immunity

IL-4 Polarize microglia to the anti-inflammatory 
phenotype

TGF-β 1. ↓ The content of Th2 cytokines (IL-4, IL-5, 
and IL-13) in bronchial lavage
2. ↓ Th2 type immunoglobulins in serum
3. Induces regulatory T cells
4. ↓ M1 macrophage phenotype induction

6 ECM components Collagens, vimentin, integrin, galectins, 1. Support the formation and stabilization 
of vessels

 [9, 64, 65]

7 Enzymes Inducible nitric oxide synthase (iNOS) 1. Metabolizes the essential amino acid, trypto-
phan, into downstream kynurenines
2. Promoting immune tolerance
3. Keep pro-inflammatory signaling in check

 [66, 67]

Indoleamine 2,3-dioxygenase (IDO) Controlling M1 macrophage differentiation  [68]

Ectoenzymes such as CD73 and CD39 1. Suppresses immune cells functions
2. ↑ Tumor cell survival and metastasis

 [69, 70]

8 Mitochondria Whole mitochondria or its subunits 1. ↑ ATP production
2. ↑ Oxidative phosphorylation
3. ↑ Expression of genes involved in lipid 
metabolism and glycolysis
4. ↑ Treg differentiation and proliferation
5. ↓Conventional T cell activation and prolifera-
tion
6. ↑ Anti-inflammatory cytokines production
7. ↑ Macrophage M2 polarization

 [29, 71, 72]



Page 4 of 26Hazrati et al. Biomarker Research           (2024) 12:35 

Table 2  Summary of molecules involved in the immune regulation, their ligands, and functions

No Checkpoint receptor Expressed cells 
examples

Ligand Affected cells 
examples

Functions Ref

1 CTLA-4 (CD152) 1. Regulatory T cells
2. Activated T cells
3. Monocyte-derived 
dendritic cells
4. B cells
5. NK cells
6. Tumor cells

1. CD80
2. CD86

1. Dendritic cells
2. Macrophage
3. Monocytes

1. Mediate opposing 
functions in T cell activa-
tion
2. Inhibits T-cell activa-
tion and proliferation
3. ↓ Cytotoxic T lympho-
cytes
4. Hemoestasis 
of immune responses
5. Play a crucial regulator 
role in self-tolerance

 [77, 84–86]

2 PD-1 (CD279) 1. Activated T cells
2. NK cells
3. B cells
4. Macrophages
5. Several subsets of DCs
6. Innate-like lympho-
cytes (ILCs)

1. PD-L1
2. PD-L2
3. Galectin 9

1. Cancer cells
2. PD-L1 expressed 
by different cells
3. PD-L2 expression 
is restricted to DC 
and macrophages

1. Inhibit the effector 
function of CD8+ T
2. ↓ T cell proliferation
3. ↓ T cell cytokine 
production
4. Affect on epigenetic 
programs in tumor-
infiltrated CD8+ T
5. ↑ T cell exhaustion

 [87–90]

3 TIM-3 (CD366) 1. IFN-γ-producing T cells
2. Terminally exhausted 
T cells
3. FoxP3+ Treg cells
4. Macrophages
5. DCs
6. Tumor cells
7. NK/NKT cells

1. Galectin 9
2. Ceacam1
3. HMGB1
4. phosphatidylserine

1. Th1 cells
2. CD8+ T cell

1. ↑ Aggregation 
and death of Th1 cell 
in vitro
2. Inhibiting Th1 
responses and the pro-
duction of TNF-α 
and IFN-γ
3. Role in dominating 
the tumor-infiltrating 
CD8+ T cell pool in some 
cancer types

 [91–94]

4 LAG-3 (CD223) 1. Regulatory T cells
2. Activated CD4+ T cell
3. Activated CD8+ T cell
4. Exhausted CD8 + T 
cells
5. NK cells
6. MAIT
7. γδT cells
8. iNKT cells
9. Tr1

1. MHC class II
2. FGL-1
3. α-synuclein fibrils
4. Gal-3
5. LSECtin

1. Antigen-presenting 
cells
2. Somatic cells

1. Improves the function 
of Treg cell
2. ↓ T cells proliferation
3. ↓ T cell cytokine 
and granzyme produc-
tion
4. Suppress tumor-spe-
cific T-cell functions

 [95–100]

5 TIGIT and CD96 1. Intratumoral T cells
2. Regulatory T cells
3. Follicular T helper cells
4. NK cells
5. Tumor cells

1. CD155 (PVR)
2. CD112 (PVRL2, 
nectin-2)
3. Fap2
4. Nectin-4

1. DCs
2. Tumor cells

1. Act as a negative 
regulator of T cell func-
tions
2. ↓ TCR expression 
and signaling
3. Upregulates CCR8 
expression in Treg, which 
may promote migration 
to tumor tissue
4. Suppress Th1 
and Th17 cells function
5. ↑ immunosuppressive 
cytokine production 
like IL-10

 [101–105]

6 BTLA (CD272) 1. Activated T cells
2. Naïve T cells
3. Naïve B cells
4. NK cells
5. Macrophages
6. DCs

HVEM 1. T cells
2. B cells
3. NK cells
4. DCs
5. Myeloid cells
6. Tumor cells

1. Blocks B and T cell 
activation
2. ↓ B and T cell prolifera-
tion
3. ↓ B cell, T cell, and DC 
cytokine production
4. ↑ Treg and Th2 dif-
ferentiation

 [106–110]
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Table 2  (continued)

No Checkpoint receptor Expressed cells 
examples

Ligand Affected cells 
examples

Functions Ref

7 A2AR 1. Regulatory T cells
2. Cytotoxic T cells
3. Macrophages
6. Tumor cells

Adenosine Adenosine is pro-
duced by CD39 
and CD73 expressing 
cells and released 
to the extracellular 
environment

1. Modulate alpha-
synuclein aggregation 
and toxicity
2. ↑ IL-10 production 
by immune cells
3. ↓ NF-κB signaling 
pathway
4. ↓ Immune cells pro-
tein synthesis
5. ↓ Immune cell prolif-
eration and survival

 [111, 112]

8 CD24 1. Regulatory T cells
2. B10 regulatory B cells
3. Hematopoietic cells
4. Neutrophils
5. Eosinophils
6. Macrophages
7. Dendritic cells
8. Non-hematopoietic 
cells
9. Tumor cells

1. Siglec-10
2. P-selectin

1. B cells
2. Monocytes
3. Dendritic cells
4. Activated CD4+ T cells

1. T-cell homeostatic 
proliferation in lympho-
penic hosts
2. Promoting cell migra-
tion
3. Role in the develop-
ment of the human 
central nervous system
4. ↑ Tumor cell prolifera-
tion

 [113–116]

9 SIRPα (CD172a) 1. Monocytes
2. Granulocytes
3. DCs
4. Hematopoietic stem 
cells

CD47 1. Thymocytes
2. T and B cells
3. Monocytes
4. Platelets
5. Erythrocytes
6. Neural cells
7. Fibroblasts
8. Tumor cell

1. Act as a negative 
regulator of the PI3K 
and MAPK
2. Leads to reduced 
responsiveness to tyros-
ine kinase ligands
3. ↑ Cancer cell prolifera-
tion
4. ↓ T cell-mediated 
antitumor responses
5. Prevents the phago-
cytic synapse formation 
on myeloid cells
6. Prevent virus-infected 
and bacteria-infected 
cells immune-mediated 
elimination

 [117–119]

10 LILRB1 1. B cells
2. T cells
3. Monocytes and mac-
rophages
4. Dendritic cells
5. NK cells
6. Basophils
7. Eosinophils
8. γδ T cells

1. HLA class I molecules 
including HLA-A, HLA-B, 
HLA-C, HLA-E, HLA-F, 
and HLA-G
2. S100A8
3. S100A9
4. RIFINs

1. Somatic cells
2. APCs

1. Inhibits super-
antigen–dependent cell 
cytotoxicity
2. Impairs B-cell 
antibody production 
and proliferation
3. Role in immune toler-
ance
4. Alters DCs differentia-
tion
5. Chang DCs capacity 
in cytokines production

 [120–125]
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Table 2  (continued)

No Checkpoint receptor Expressed cells 
examples

Ligand Affected cells 
examples

Functions Ref

11 VISTA 1. Myeloid lineage-
related cells, includ-
ing MDSCs
2. Haematopoietic cells
3. Tumor cells
4. Activated CD4+ T cells
5. Activated CD8+ T cells

1. PSGL-1
2. VSIG3

1. Brain cells
2. Testis cells
3. Skeletal muscle cells
4. Tumor cells

1. Suppresses prolifera-
tion of T cells
2. Bluntes T cell 
cytokines production 
and activation markers
3. Induces Foxp3 expres-
sion in T cells
4. ↓ Tumour-infiltrating 
CD8 + T cells in vivo
5. ↓ IFNγ, IL-2, IL-6 
and IL-12 production 
from T cells
6. ↓ Toll-like receptor 
(TLR) signaling
7. ↓ Cell migration
8. ↑ IL-10 and other anti-
inflammatory mediators 
production

 [126–131]

12 Killer cell immunoglobu-
lin-like receptors (KIR)

1. NK cells
2. T cells

1. MHC class I Nearly every normal 
nucleated cell

1. Development of NK 
cells
2. Tolerance of NK cells
3. Activation of NK cells
4. ↓ T cell effector func-
tion
5. ↓ T cell activation-
induced cell death 
(AICD)

 [132–134]

13 C-lectin-type-inhibitory 
receptors (CLIRs), includ-
ing DCIR

1. Myeloid cells, includ-
ing DCs and mac-
rophages
2. Osteoclasts

Asialo-biantennary 
N-glycan (NA2)

1. Bone cells
2. Myeloid cells

1. ↓ TLR8-dependent 
IL-12 and TNFα produc-
tion from DCs
2. ↓ Pro-inflammatory 
cytokines IL-1β and IL-6 
frpm macrophages
3. ↓ IL12p70 production 
and DC-dependent TH1 
skewing
4. Inhibited osteoclas-
togenesis

 [135, 136]

14 Inhibitory Siglec recep-
tors

1. Immune effector cells
2. Trophoblasts
3. Myelin-forming cells
4. Stromal cells

Sialoglycans such 
as α2,3/6-linked sialic 
acid

1. Stromal cells
2. Immune cells
3. Cancer-associated 
fibroblasts

1. ↑ Production of immu-
nosuppressive cytokines
2. Dampen activation 
of antigen-presenting 
cells
3. Inhibit NK activation
4. ↑ Differentiation 
of MQs immunosuppres-
sive M2 phenotype
5. ↑ Antigen-specific 
Tregs population
6. ↓ Proliferation of effec-
tor T cells
7. Shaping MSC/CAF 
immunosuppression 
in the TME

 [137–139]

APCs Antigen-presenting cells, Gal-3 Galectin-3, LSECtin Lymph node sinusoidal endothelial cell C-type lectin, MAIT Mucosal-associated invariant T cells, iNKT Invariant 
natural killer T cells, Tr1 CD4+ type 1 T regulatory, HVEM Herpesvirus entry mediator, PI3K Phosphatidylinositol 3-kinase, MAPK Mitogen-activated protein kinase, RIFINs 
Repetitive interspersed families of polypeptides, VSIG3 V-Set and Immunoglobulin domain containing 3, PSGL-1 P-selectin glycoprotein ligand 1, VISTA V-domain Ig 
suppressor of T cell activation, MDSCs Myeloid-derived suppressor cells, LILRB1 Leukocyte Immunoglobulin Like Receptor B1, SIRPα Signal regulatory protein α, A2AR 
Adenosine A2A receptor, BTLA B and T lymphocyte attenuator, TIGIT T cell immunoreceptor with Ig and ITIM domains, LAG-3 Lymphocyte activation gene 3, TIM3 T cell 
immunoglobulin and mucin domain-containing protein 3, PD-1 Programmed cell death protein 1, PD-L Programmed death-ligand, CTLA-4 Cytotoxic T-lymphocyte-
associated antigen-4
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Table 3  FDA-approved immune checkpoint inhibitors with approved indications

NSCC Non-small cell lung cancer, SCC Cutaneous squamous cell carcinoma, BCS Basal cell carcinoma, MCC Merkel cell carcinoma, RCC​ Renal cell carcinoma, SCLC Small 
cell lung cancer, CRC​ Colorectal cancer, HCC Hepatocellular carcinoma, ASPS Alveolar soft part sarcoma, CSCC Cutaneous squamous cell carcinoma, HNSCC Head and 
neck squamous cell carcinoma, NMIBC Non-muscle invasive bladder cancer

No Drug Name Generic Name Target Date of Approval Applications

1 Ipilimumab Yervoy® CTLA-4 2011 1. Melanoma
2. Renal cell carcinoma
3. CRC​
4. HCC
5. NSCC
6. Malignant pleural mesothelioma
7. Esophageal cancer

2 Tremelimumab Imjudo® CTLA-4 2022 1. HCC
2. Mesothelioma

3 Pembrolizumab Keytruda® PD-1 2014 1. NSCC
2. HCC
3. CSCC
4. RCC​
5. HNSCC
6. Urothelial carcinoma
7. NMIBC
8. Colorectal cancer
9. gastric cancer
10. Esophageal cancer
11. Cervical cancer
12. Merkel cell carcinoma
13. Endometrial carcinoma
14. Classical Hodgkin lymphoma
15. Primary mediastinal large B-cell lymphoma
16. Triple-negative breast cancer

4 Nivolumab Opdivo® PD-1 2014 1. NSCC
2. Melanoma
3. RCC​
4. malignant pleural mesothelioma
5. Classical Hodgkin lymphoma
6. SCC
7. Urothelial carcinoma
8. Colorectal cancer
9. HCC
10 Esophageal cancer
11. Gastric cancer
12. Gastroesophageal junction cancer
13. Esophageal adenocarcinoma

5 Cemiplimab Libtayo® PD-1 2019 1. SCC
2. BCC
3. NSCC

6 Dostarlimab Jemperli® PD-1 2021 Endometrial cancer

7 Durvalumab Imfinzi® PD-L1 2017 1. NSCC
2. SCLC
3. HCC
4. Biliary tract cancer

8 Atezolizumab Tecentriq® PD-L1 2016 1. HCC
2. NSCC
3. SCLC
4. ASPS
5. Melanoma

9 Avelumab Bavencio® PD-L1 2017 1. Urothelial carcinoma
2. MCC
3. RCC​

10 Relatlimab Opdualag® LAG-3 2022 Melanoma
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summarizes 10 FDA-approved ICBs that are used in dif-
ferent types of cancers. It has also been shown that drugs 
such as metformin [160], curcumin [161], etoposide 
[162], etc., can affect the expression of ICPs and their 
ligands. In addition, nanobodies [163, 164] and small 
molecules [165] have also been used to block the func-
tions of ICPs.

However, as we said, the function of ICPs in physiologi-
cal conditions is essential for health, and defects in the 
expression of these molecules can lead to various auto-
immunities [166]. Based on this and considering the 
immunomodulatory role of MSCs, it is suggested that 
ICPs have a vital role in the therapeutic potential and 
immunosuppression induced by these cells. Various stud-
ies have shown that MSCs express different types of ICPs 
and their ligands and thus can influence the responses 
of T cells, macrophages, NK cells, and other innate and 
adaptive immune system cells. Also, the expression of 
ICPs affects the MSCs’ regenerative potential and migra-
tion ability. In addition, knowing the ICPs of MSCs can 
help to decide on their selection as an appropriate treat-
ment option for various diseases.

Cytotoxic T‑lymphocyte associated protein 4 
(CTLA‑4) expression by MSCs
CTLA-4, one of the most important immune check-
points expressed on immune system regulatory cells, 
including Treg cells, plays an important role in immu-
nomodulation [167]. A defect or mutation in the expres-
sion of this molecule can lead to inflammatory responses 
and various autoimmune diseases [168–170]. New stud-
ies have shown that MSCs can also express CTLA-4 
and thus play a role in immune regulation [171]. Studies 
show that cells express different isoforms of CTLA-4 in 
different conditions. Also, CTLA-4 expressed by MSCs 
through alternating splicing can be in the form of 4 iso-
forms [171], which include 1) the full-length version 
(flCTLA-4) that has all the regions related to binding to 
the ligand, transmembrane, transduction intracytoplas-
mic domain [172], 2) the type that lacks the ligand bind-
ing domain (liCTLA-4), 3) lacks the transmembrane 
domain (sCTLA-4) and is secreted into the extracellular 
environment, and the fourth type that lacks both ligand 
binding and transmembrane domain (1/4 of CTLA-4) 
[172].

Further investigations of MSCs through qPCR analysis 
show that the expression level of sCTLA-4 is higher than 
that of flCTLA-4 [171]. The critical point is that hypoxia 
can increase the expression of sCTLA-4 in MSCs [171]. 
sCTLA-4 produced by MSCs can be detected in the 
supernatant, and the therapeutic uses of the MSCs-
derived supernatant [173] play an essential role in 
induced anti-inflammatory responses [85]. In a study, it 

has been shown that the addition of anti-CTLA4 anti-
body to the coculture of MSCs and PBMCs stimulated 
with phytohemagglutinin (PHA), both in hypoxic and 
normoxic conditions, leads to the suppression of anti-
inflammatory responses induced by MSCs [171]. These 
results show the importance of sCTLA-4 and flCTLA-4 
associated with MSCs in their anti-inflammatory 
responses.

Another study showed that anti-CTLA-4 antibodies 
could not reverse the MSCs-induced anergy in T cells 
[174]. Therefore, it seems this type of anergy, which 
results from the co-culture of T cells with MSCs, is 
through a pathway independent of CTLA-4 [175]. Also, 
in another study, this issue has been confirmed and 
shown that MSCs independent of CTLA-4 increase the 
frequency and differentiation of Treg and lead to the 
reduction of Th17 cells [176].

Programmed cell death ligand (PD‑L) expression 
by MSCs
Programmed cell death-1 (PD-1) and its ligands PD-L1 
and PD-L2 are crucial in controlling immune responses 
in the hemostasis phase. PD-L1 and PD-L2 are expressed 
on the surface of tumor cells and lead to immune devia-
tion [177]. MSCs express PD-1, PD-L1, and PD-L2 and 
bind to their ligands on the surface of B cells, T-cells, and 
other cells [178]. PD-1/PD-L1 interaction can suppress 
T cell functions through different mechanisms. One of 
these mechanisms is the suppression of proliferation in 
T cells [179]. As mentioned in various studies, the pres-
ence of IFN-γ can lead to an increase in the immunosup-
pressive ability of MSCs, which does this by increasing 
the expression of PD-L1. According to new studies, it 
has been shown that binding of IFN-γ to the IFN-γR in 
MSCs leads to the activation of the JAK/STAT1/IRF1 
pathway, and by binding the IRF1 to the PD-L1 promoter 
increases its expression. On the other hand, TNF-α, as 
another pro-inflammatory cytokine, does this by activat-
ing the NF-κB transcription factor. The important point 
is that TNF-α alone is not able to increase the expression 
of PD-L1, and it does this effect synergistically in combi-
nation with IFN-γ. In this way, the NF-κB transcription 
factor helps in this process by increasing the expression 
of IFN-γR by MSCs [180].

In such a way that in the case of MSCs culture in the 
presence of anti-PD-L1 siRNA or MSCs co-culture 
with active lymphocytes derived from IFNγ−/−, it can-
not stimulate the suppressive function of MSCs [181]. 
Polyinosinic-polycytidylic acid (polyI:C), as a synthetic 
ligand of Toll-like receptor 3 (TLR3), increases PD-L1 
expression in tonsil-derived MSCs [182]. The results of a 
study that used Poly I:C pretreated MSCs show that their 
co-culture with T cells isolated from the spleen leads to 
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the suppression of the differentiation of naive T cells into 
Th1, Th2, and Th17 [182]. However, this inhibition seems 
to be stronger for Th17 than others. Based on the results 
of this study, when MSCs are used for their immunomod-
ulatory properties, manipulating them, such as adding 
Poly I:C, can increase these properties and achieve better 
treatment results. As we know, MSCs reduce the differ-
entiation of inflammatory cells and improve the differen-
tiation and function of Treg cells [183]. The results of Fei 
Gao et al.’s study showed that MSCs perform this action 
at least partially by expressing PD-L1 and by inhibit-
ing the Akt/mTOR signaling pathway [184]. Because the 
use of siRNA against PD-L1 can suppress the function of 
MSCs in stimulating Treg differentiation to some extent. 
The use of MSCs expressing PD-L1 in TNBS-induced 
colitis rats leads to the improvement of disease symptoms 
[184]. Also, PD-1/PD-L1 interaction between adipose tis-
sue-derived MSCs and PBMCs can suppress TCD8+ and 
TCD4+ cell responses through the negative regulation of 
NF-κB function [185]. The results of the study conducted 
by Kaijian Zhou et al. show that the co-culture of MSCs 
and PBMCs significantly reduces the phosphorylation 
of NF-κB, which is a critical step in the migration of this 
factor to the nucleus for transcription, and this action 
is in the presence of anti-PD- L1 antibodies is inhibited 
[185].

New studies also confirm the results of previous stud-
ies. In a study conducted by Rosanna Di Tincoet et  al. 
in 2021, it has been shown that the co-culture of MSCs 
derived from dental pulp with PBMCs can lead to a 
significant decrease in mRNA levels of IL-10, IFNγ, 
CXCL10, TNF-α, IL-2, and CCL5 [186]. This co-culture 
also led to a significant increase in PD-L1 expression 
in MSCs. However, the study’s results show that using 
PD-L1 antibodies and their blockade does not lead to los-
ing the immunosuppressive effect of MSCs [187]. There-
fore, it is suggested that MSCs use alternative methods to 
suppress the immune response. In this study, it has been 
shown that the PD1/PD-L1 pathway coordinates with the 
Fas/FasL pathway by increasing the expression of FasL 
(in the presence of PD-L1 blockade) by MSCs to modu-
late immune system responses in PBMCs [188]. PD-L1 
expressed by MSCs modulates the responses of PBMCs 
but also helps MSCs maintain immunomodulatory prop-
erties [186]. In addition to the expression of PD-L1 on 
the surface of MSCs, these cells can secrete PD-L1 into 
the extracellular environment. Inflammatory licensing 
for MSCs through an N-glycosylation-dependent post-
translational regulatory mechanism leads to increased 
expression and secretion of PD-L1 by MSCs [189]. Also, 
the level of PD-L1 expression has a strong relationship 
with their therapeutic and immunomodulatory potentials 
in the mouse model of autoimmune hepatitis [190].

It is also possible that in addition to PD-L1 expressed 
on the surface and secreted into the extracellular envi-
ronment by MSCs, this molecule is transferred to the tar-
get cell by small extracellular vesicles (sEVs) and exerts its 
immunoinhibitory function. Studies show that in patients 
with aGvHD, the amount of PD-L1 containing sEV in 
blood plasma increases after infusion of Wharton jelly-
derived MSCs. It has also been shown that the amount 
of this sEV is entirely related to the time of injection, and 
30 min after the injection, the increase in the amount of 
PD-L1 containing sEV can be evaluated (Fig.  1). These 
extracellular vesicles can suppress T-cell responses in a 
TCR-dependent manner. Meanwhile, using Wharton’s 
jelly MSCs genetically modified by the CRISPR/CAS9 
system to not express PD-L1 produces sEVs that can-
not suppress T-cell responses [191]. Finally, it has been 
shown that the use of Wharton jelly derived-MSCs can 
lead to the improvement of patients with aGvHD symp-
toms and conditions. This study also reports that, in 
addition to the fact that, like previous studies [192], IFNγ 
increases the expression of PD-L1 by MSCs but also leads 
to an increase in the secretion of sEV-PD-L1 from these 
cells [193].

Inducible costimulator ligand (ICOSL) expression 
by MSCs
ICOSL is a member of the B7 family and plays a vital role 
in follicular helper T cell interaction and high-affinity 
antibody production [194]. According to the results of 
the studies, it has been shown that blocking the ICOS-
ICOSL interaction aggravates the experimentally induced 
allergic encephalomyelitis in the model [195]. Therefore, 
the inhibitory signaling resulting from this interaction 
seems to negatively affect the immune responses. ICOS is 
expressed by various types of cells, including tumor cells, 
antigen-presenting cells, and epithelial cells, and is very 
important for the function of Treg cells [196, 197]. Stud-
ies have shown that placing MSCs in inflammatory con-
ditions leads to increased expression of ICOSL by these 
cells [198].

The results of the study conducted by Lee et  al. show 
that, in addition to other mechanisms, the co-culture of 
MSCs with T cells increases the differentiation of Treg 
cells through the ICOS-ICOSL interaction-dependent 
pathway. It has also been shown that blocking ICOSL 
expressed on the surface of MSCs reduces their ability to 
induce Treg cell responses [199].

Another study conducted in 2021 showed that the use 
and coculture of MSCs with PBMCs leads to the inhibi-
tion of type 2 responses by inhibiting the differentiation 
of Th2 cells and type 2 innate lymphoid cells (ILC2) [200]. 
A significant point about these cells is that the direct 
cell-to-cell contact of MSCs with ILC2 mediated by 
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ICOS-ICOSL interaction leads to increased ILC2 activ-
ity [201]. The results show that MSCs exert their inhibi-
tory effects on ILC2 functions through the induction of 
Treg cells [201]. Tregs alone cannot inhibit the responses 
of ILC2s, but after co-culture with MSCs, they acquire 
this ability [201]. Further investigations to find the mech-
anism of MSCs’ influence on the suppressive responses 
of Tregs show that ICOS-ICOSL interaction is one of the 
main factors [201]. Therefore, it was demonstrated that 
the co-culture of Tregs with MSCs through ICOS-ICOSL 
interaction increases the ability of Tregs to suppress the 
functions of ILC2 and leads to a significant decrease in 

the production of IL-13, IL-9, and IL-5 cytokines by ILC2 
[201]. Studies show that Tregs do this by producing IL-10 
induced by ICOS-ICOSL interaction [201] (Fig. 2).

CD39 and CD73 expression by MSCs
As we know, adenosine is one of the suppressors of the 
immune system, which performs its function by bind-
ing to the A2A receptor (ADORA2A) [202]. Extracel-
lular adenosine is usually produced from ATP by two 
molecules, CD39 and CD73 [203]. During this process, 
the adenosine deaminase converts adenosine into ino-
sine [204]. Extracellular adenosine can suppress the 

Fig. 1  PD-L1 mediated immunomodulatory and therapeutic potential of mesenchymal stromal/stem cells (MSCs). PD-L1 expressed by MSCs 
can interact with PD1 on the surface of T cells in three mechanisms. In the first option, PD-L1 is transferred to the cell plasma membrane and, 
in this way, inhibits the functions of T cells through direct cell-to-cell interaction. In the second mechanism, PD-L1 is secreted into the extracellular 
environment. For this reason, MSCs-derived supernatant can induce PD-L1-mediated immunomodulatory functions in co-culture with T cells 
or PBMCs. In the third method, MSCs affect the response of T cells by transferring PD-L1 to extracellular vesicles (EVs) such as exosomes. The 
interaction between PD-1 and PD-L1 leads to the creation of signaling cascades in T cells, which inhibits their proliferation and differentiation 
into inflammatory populations, including Th1, Th2, and Th17, as well as the production of inflammatory cytokines. It has also been found that this 
interaction also inhibits the function of TCD8 + cells. However, this interaction increases the differentiation of T cells towards regulatory T cells. In 
addition, it has been shown that signal transmission from PD-1 leads to positive feedback to PD-L1+ MSCs and enhances their immunomodulatory 
functions. It has also been shown that the use of inflammatory environments and pretreatment of MSCs with TLR ligands, including poly I:C, can 
lead to an increase in the immunomodulatory potential of MSCs by increasing the expression and production of PD-L1. This is while the use 
of anti-PD-L1 antibodies and siRNA inhibiting its expression and translation can reduce the immunomodulatory potential of MSCs. Therefore, 
the expression of PD-L1 plays an essential role in the immunomodulatory potential of MSCs, which leads to an increase in its therapeutic potential 
in autoimmune colitis and psoriasis animal models
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proliferation and responses of T cells [205]. The results 
of various studies have shown that the co-culture of T 
cells with MSCs can suppress T cell responses [9, 60]. 
Therefore, considering the importance of this molecule 
(CD39) in T-cell responses, the researchers investigated 
the expression of CD39 on the surface of MSCs and its 
effect on modulating immunity induced by MSCs. Vari-
ous methods, including flow cytometry, have shown 
that CD39 has a permanent expression on the surface 
of MSCs [206]. However, when MSCs are exposed to 
inflammatory conditions, the level of CD39 expression 
increases from 15 to 35%. Also, the amount of adenosine 
production, evaluated by high-pressure liquid chroma-
tography (HPLC), was associated with an increase of 2 
times in co-culture with activated T cells [206]. There-
fore, in inflammatory conditions, these cells can pro-
duce more adenosine and suppress the immune system’s 
responses more strongly. It has been shown that the co-
culture of human MSCs with activated T cells leads to a 

threefold increase in MSCs double positive for CD39 and 
CD73 [206]. On the other hand, this co-culture affects 
the responses of T cells and is associated with a signifi-
cant increase in ADORA2A in these cells, which is asso-
ciated with a decrease in the proliferative activity of these 
cells [206]. Also, the use of ADORA2A antagonist (ZM 
241385) [207] in this co-culture system led to a signifi-
cant increase in proliferation in T cells, which shows the 
importance of adenosine in suppressing the proliferative 
responses of T cells [206].

Mouse studies have also shown that CD39 and CD73 
are simultaneously expressed on the surface of MSCs and 
perform essential inhibitory functions on the immune 
system [208]. Many studies have suggested that soluble 
factors produced and secreted by MSCs, including TGF-β 
and HGF, lead to decreased proliferation in activated T 
cells [209, 210]. However, the study conducted by Sattler 
et  al. showed that using monoclonal antibodies against 
HGF and TGF-β receptors does not significantly increase 

Fig. 2  ICOSL mediated immunomodulatory of mesenchymal stromal/stem cells (MSCs) on T cells and ILC2. MSCs express a low amount of ICOSL 
in the naive state. However, the co-culture of MSCs by TCD4+ cells in the regulatory T cell-inducing conditions increases ICOSL expression 
up to tenfold according to qPCR results. Also, this co-culture leads to an increase in the number and percentage of regulatory T cells compared 
to the culture of TCD4.+ cells only under regulatory induction conditions (as the control group). It has been shown that the co-culture of MSCs 
with PBMCs also leads to the expansion and function of the regulatory T-cell population. The effect of MSCs on ILC2 functions is direct and indirect. 
In indirect conditions, the co-culture of MSCs with PBMCs suppresses the functions of ILC2 by expanding the population of regulatory T cells 
and their IL-10 production. Meanwhile, the direct co-cultivation of ILC2 with MSCs increases the functions of ILC2 through ICOS-ICOSL interaction. 
ILC-2 that have been directly co-cultured with MSCs have a high survival rate and highly produce cytokines such as IL-5, IL-10, and IL-33
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T cell proliferation [208]. Also, kynurenine, a tryptophan 
metabolite through the action of IDO enzyme [211], was 
not observed in the MSC supernatant. Therefore, they 
proposed another factor responsible for this prolifera-
tion suppression [208]. CD39 expressed on the surface of 
MSCs leads to the production of adenosine, suppressing 
the proliferation of T cells [208]. It has been shown that 
the use of SCH58261, an antagonist of ADORA2A [212], 
and the use of polyoxotungstate 1 (POM-1) as a CD39 
inhibitor [213] separately lead to the reversal of the sup-
pression induced by MSCs in coculture conditions [208].

In addition, MSCs can suppress the function and dif-
ferentiation of Th17 cells through CD39 [214]. Co-
cultivation of T cells with MSCs leads to a decrease in 
the production of IL-17A/IFN-γ and an increase in the 
expression of CD39 and CD73 on the surface of T cells 
[214]. Using monoclonal antibodies against CD39 can 
significantly reduce the inhibition applied to Th17 dif-
ferentiation. So, it can be concluded that MSCs, through 
a CD39-dependent pathway, inhibit Th17 function and 
proliferation [214]. Also, mass spectrometry analysis 
showed that the amount of adenosine in the superna-
tant increases during the co-culture of Th17 cells and 
bone marrow-derived MSCs [214]. This is while the use 
of monoclonal antibodies against CD39 leads to a sig-
nificant decrease in the production of adenosine and its 
amount in the supernatant of the coculture system.

Considering the importance of the expression of these 
molecules, in the study conducted by Tan et  al., it was 
shown that MSCs isolated from C57BL/6 mice adipose 
tissue include two populations in terms of CD73 expres-
sion. One of these populations expresses CD73 at a low 
level (CD73low), and the other expresses a high level of 
CD73 (CD73high) [215]. These cells differ from each other 
in terms of function and therapeutic potential. Examining 
the ability of these cells to repair myocardial infarction 
(MI) damages in a model murine induced by 2OA-BSA 
[216] and transplanting both MSCs subpopulations show 
that the CD73high subpopulation has a higher ability to 
repair and can lead to improving the structure and func-
tion of the heart [215]. The transplantation of these two 
types of cells seems to have no difference in the amount 
and the type of recruited immune cell population to the 
MI heart tissue. However, the results of the study show 
that the CD73high subpopulation leads to the reduc-
tion of inflammation and the modulation of immune 
system responses through the positive regulation of the 
expression and production of several anti-inflammatory 
cytokines, including IL-4 and IL-10, and the reduction of 
the expression and production of inflammatory cytokines 
such as TNF-α. In addition to the effect on cytokines, 
these cells affect the expression of other anti-inflamma-
tory molecules, including TGM-2 and arginase-1 (Arg-1), 

and reduce the expression of NOS2 [215]. Therefore, it 
seems that the immunomodulatory efficiency of CD73high 
MSCs is higher than the CD73low subpopulation. In this 
way, it helps to improve the functions and prevent dam-
aging inflammations to the heart tissue after MI. The 
results of the in  vitro studies also show that compared 
to the CD73low subpopulation, CD73high MSCs signifi-
cantly lead to the differentiation of macrophages to the 
M2 phenotype and functions related to the regeneration 
of damaged tissues [215]. The importance of the effect of 
the expression of these molecules and the axis induced by 
them, that is, CD39/CD73/adenosine, in the therapeutic 
potential of MSCs in other diseases has also been inves-
tigated. For example, in a study where MSCs were used 
to treat autoimmune arthritis, the role of CD39/CD73/
adenosine was evaluated [217]. Molecular studies show 
that MSCs reduce the expression of NF-kB and p65/p50 
in vitro conditions and lead to decreased osteoclastogen-
esis [218]. Also, studies showed that transplantation of 
MSCs into autoimmune arthritis DBA/1J mice model led 
to decreased RANKL expression in synovial tissue and 
osteoclast formation [217]. Using inhibitors and blocking 
the function of CD39 through POM1, blocking CD73 by 
APCP, or inhibiting the functions of adenosine by inhib-
iting its receptor, i.e., adenosine A2A receptor inhibitor 
(SCH58261) or adenosine A2B receptor inhibitor (Allox-
azine), lead to reverted treatment outcome induced by 
MSCs [217].

In addition to the role of markers such as CD73 and 
CD39 in modulating immune responses induced by 
MSCs, these molecules also perform other functions. 
Studies show that MSCs have procoagulant and antico-
agulant activity [219], but their supernatant showed to 
cannot do phenomenon [220]. Therefore, MSCs perform 
this action through cell–cell interaction. It has also been 
shown that this inhibition of activation is independent 
of the molecules related to the activation of platelets, 
i.e., P-selectin and cyclooxygenase [220]. The study con-
ducted by P. Netsch and his colleagues shows that MSCs 
isolated from different sources do this through the CD73-
produced adenosine-dependent mechanism and lead to 
preventing the platelets activation and their aggregation. 
In this study, the use of adenosine deaminase (ADA), 
which converts adenosine to inosine [221], led to the 
removal of the inhibition induced by MSCs, which con-
firms the role of CD73 in inhibiting platelet activation 
[220] (Fig. 3).

Galectins expression by MSCs
Galectins are a group of molecules related to lectins that 
exert their biological effects by binding to galactoside (in 
the receptor’s structure) [222]. The results of the studies 
have shown that this ligand, by binding to its receptor, 
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T cell immunoglobulin and mucin domain-containing 
protein 3 (TIM3), performs actions such as homeostasis 
of immune system responses [223]. Studies have shown 
that treating diseases such as autoimmune disorders and 
patients who have received allograft transplants leads to 
the improvement of the patients and increases the sur-
vival of the transplanted tissue [224]. TIM3 plays an 
important role in suppressing the responses of Th1 cells 
and prevents the production of inflammatory cytokines 
such as IFN-γ and TNF-α [225]. Also, the interaction of 
galectin-9 (Gal-9) with TIM3 leads to suppressing the 
functions of Th17 and cytotoxic T cells [226].

Various studies show that MSCs suppress immune 
system responses through Gal-9 production and have 
a role in their therapeutic potential. MSCs culture in 
IFN-γ containing medium leads to increased produc-
tion of soluble Gal-9 by MSCs [227]. Therefore, it can 
be concluded that the production of Gal-9 from MSCs 
depends on the STAT and JNK signaling pathway. A 
study published in 2018 showed that the transplanted 
MSCs suppress the proliferation and differentiation of 
Th1 and Th17, leading to the reduction of liver inflam-
mation in the autoimmune cholangitis mice model 
[228]. After transplanting MSCs to autoimmune 

Fig. 3  CD39, CD73, and adenosine mediated immunomodulatory of mesenchymal stromal/stem cells (MSCs) on T cells, macrophages, 
and osteoclasts. Extracellular ATP is first converted to ADP and then to AMP through CD39. The produced AMP is used as a substrate 
for the function of CD73 and leads to the production of adenosine. Adenosine receptor (A2AR) can be expressed on the surface of various cells, 
including immune cells and tumor cells. The binding of extracellular-produced adenosine to A2AR on the surface of tumor cells can increase 
their survival and proliferation of tumor cells and facilitate epithelial-mesenchymal transition (EMT). Also, its binding to immune cells expressed 
A2AR can lead to reduced survival and production of inflammatory cytokines by inhibiting pathways related to mTORC and NF-κB. It seems 
that tumor cells, by expressing CD39 and CD73, help their immune escape. MSCs also express CD39 and CD73, and by producing adenosine, 
they affect the functions of immune cells, including T cells, macrophages, and osteoclasts. Adenosine produced by MSCs inhibits the functions 
of Th17 and M1 macrophages while they increase the functions of regulatory T cells and M2 macrophages. Adenosine can also reduce the function 
and proliferation of osteoclasts. It has also been shown that MSCs that produce adenosine can reduce the aggregation and activation of platelets
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cholangitis model mice, the level of Gal-9 in the liver 
and serum increases significantly. Since Gal-9 is 
secreted by MSCs, the supernatant of these cells can 
perform Gal-9-mediated therapeutic and immune sup-
pression functions [228]. The use of α-lactose to inhibit 
the function of Gal-9 in MSCs-CM leads to the reduc-
tion of the therapeutic potential and reverses the sup-
pression of the proliferation of CD4+ T cells. Therefore, 
it is suggested that the soluble Gal-9 produced by MSCs 
is one of the immunosuppressive mechanisms mediated 
by these cells. It has also been shown that the thera-
peutic potential of MSCs that express high levels of 
Gal-9 is significantly higher than Gal-9 blocking MSCs 
in endotoxemia induced by LPS [229]. Examining the 
spleen cells of Gal-9 highly expressed MSCs recipients 
shows that the amount of M2 macrophages and Treg in 
them is associated with a significant increase compared 
to other groups [229]. The therapeutic use of MSCs in 
septic mice has also shown that these cells can improve 
kidney functions in septic mice through Gal-9 produc-
tion and Th1/Th2 balance adjustment. Also, the results 
of this study showed that the use of MSCs can affect the 
Th17/Treg axis by TIM3/Gal-9 interaction. Consider-
ing that the use of whole-soluble TIM3 can reverse the 
therapeutic effects of MSCs, it seems that Gal-9 is one 
of the effective immunomodulatory factors produced by 
these cells [230].

Another study showed that MSCs lead to the differ-
entiation of tolerogenic DCs through the production of 
Gal-1 [231]. Co-cultivation of MSCs with DCs leads to a 
decrease in the expression of MHC-II and co-stimulatory 
molecules such as CD80, CD83, and CD86 on the surface 
of DCs. Also, this co-culture leads to an increase in the 
production of IL-10, IL-12, and Gal-1 in the supernatant. 
Further investigations show that Gal-1 produced from 
MSCs through inhibiting the p38 MAPK signaling path-
way leads to suppression of proliferation and increased 
anti-inflammatory activity in DCs [231]. In addition, 
the study conducted by Yoojin Seo et al. showed that in 
the co-culture system, MSCs that produced Gal-1 to the 
supernatant can prevent the differentiation of microglia 
to M1 pro-inflammatory phenotype. This function of 
MSCs is suppressed through a selective Gal-1 inhibitor 
(OTX008) [232]. Also, MSCs can affect the alloreactive 
CD4+ and CD8+ T cell responses through the production 
of Gal-1 and inhibit their function. The result of the study 
conducted by Gieseke et al. shows that MSCs can reduce 
the proliferation of CD4+ T cells in a Gal-1-dependent 
manner. However, MSCs produced Gal-1 do not seem to 
play a role in modulating NK cell responses [233].

Therefore, it seems that MSCs produced Gal-1 play an 
important role in their immunomodulatory potential by 
affecting DCs, MQ, and T cell functions.

CD155 (Poliovirus receptor) expression by MSCs
CD155, also known as poliovirus receptor (PVR), is 
a ligand expressed on the surface of different cells, and 
its receptor expressed on the surface of T and NK cells 
called T cell immunoreceptor with immunoglobulin and 
ITIM domain (TIGIT) [234]. The interaction of CD155 
with TIGIT leads to the initiating of inhibitory responses 
in TIGIT-expressing cells. For example, this interaction 
leads to a decrease in cytotoxic activity, the production 
of cytokines, and a reduction in the degranulation of NK 
cells [235]. In addition, CD226 (DNAM-1) can also bind 
to CD155, but the affinity of TIGIT for CD155 is higher 
than for CD226 [236, 237]. Also, new studies have shown 
that CD155 is highly expressed on the surface of MSCs 
and can be responsible for a part of the immune inhibi-
tion induced by these cells. NK cells express both TIGIT 
and CD226, which are CD155 receptors [238]. The bind-
ing of CD155 to CD226 leads to increased activity of NK 
cells, and its binding to TIGIT leads to functional inhibi-
tion of T cells [239]. As mentioned, the affinity of TIGIT 
to CD155 is higher than the binding affinity of CD226 to 
CD155, and therefore, due to the possible simultaneous 
involvement of both inhibitory and stimulatory receptors 
in the presence of CD155, the function of the inhibitory 
receptor is overcome and leads to the suppression of NK 
cell responses [237, 240].

The results of the studies show that in myelodysplastic 
syndrome (MDS), the activity of NK cells becomes abnor-
mal, and a decrease accompanies the antibody-depend-
ent cytotoxic activity and cytolytic activity [241, 242]. 
Considering the presence of MSCs in the bone marrow, it 
seems that these cells play a role in the progression of the 
disease. MSCs affect the expression and secretion of fac-
tors related to hematopoiesis and play a role in immune 
regulation by producing cytokines, growth hormones, 
intercellular communication, and exosomes [9]. The 
results show that the culture of MSCs in inflammatory 
conditions increases the amount of CD155 on the sur-
face of these cells [243]. However, the exact mechanism 
of how MSCs work in different diseases is different, and 
depending on the type of tumor and disease, they may 
use different main mechanisms. Investigations to search 
for ligands related to NK inhibitory receptors, includ-
ing CD155, CD112, and CD113, show that the expres-
sion of CD155 on the surface of MDS patients isolated 
MSCs increased significantly compared to MSCs isolated 
from healthy controls [244]. It has also been shown that 
blocking TIGIT and activating CD226 can reverse the 
inhibitory effect induced by MSCs on NK cells. There-
fore, the in  vitro results indicate that MSCs can sup-
press the inflammatory functions of NK cells through the 
CD155/TIGIT pathway [244, 245]. It is also known that 
the CD155/TIGIT pathway can lead to the exhaustion 
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of NK cells [246]. The results of examining NK cells iso-
lated from multiple myeloma (MM) patients also show 
that these cells have exhausting markers, and the level of 
TIGIT in them is associated with an increase compared 
to healthy control [234, 247]. In addition, MSCs isolated 
from multiple myeloma patients also have a significant 
increase in CD155 expression. The in  vitro results con-
ducted by Yun Liu et al. show that the co-culture of NK 
cells with MSCs leads to CD155/TIGIT interaction and 
induction of exhaustion in NK cells [234]. So, it proposed 
that blocking TIGIT can restore NK cell exhaustion and 
provide a potential avenue for antitumor immunotherapy 
for multiple myeloma patients.

Herpes virus entry mediator (HVEM) expression 
by MSCs
HVEM is another ligand that binds to immune check-
points family family-related receptors [248]. The receptor 
of this molecule (HVEM) is B and T Lymphocyte attenu-
ator (BTLA), which binds to it and inhibits the func-
tions of lymphocytes [249]. BTLA has been identified as 
the third immune checkpoint after PD-1 and CTLA-4, 
and having 2 ITIM motifs leads to the calling of SHP2, 
which inhibits signaling events related to inflammatory 
responses [250, 251]. HVEM is expressed by various 
types of tumor cells, including melanoma cells, and in 
this way, they suppress the antitumor responses of CD8+ 
T cells [252]. It has also been shown that HVEM has a 
broader expression than PD-L1 in melanoma cells, and 
its expression level is associated with a poor prognosis 
[252, 253]. Therefore, it is imperative to investigate the 
cells that express this molecule and its functions.

The results of published studies have shown that 
HVEM is highly expressed on the surface of MSCs and 
is responsible for part of the anti-inflammatory functions 
of MSCs in treating inflammatory diseases [254]. In LPS-
stimulated mice, alveolar macrophages have been shown 
to accumulate near lung tissue-resident MSCs (LRMSCs) 
[255]. Therefore, LRMSCs may be responsible for induc-
ing anti-inflammatory responses in these macrophages. 
The results of RNA sequencing obtained from co-cul-
ture of LRMSCs with alveolar macrophages incubated 
with LPS show the downregulation of the expression of 
molecules involved in various inflammatory signaling 
pathways related to TLRs, TNF, JAK-STAT and PI3K-
Akt in them [255]. Also, as a result, the level of expres-
sion of inflammatory cytokines in alveolar macrophages 
decreases. Also, the co-culture of LRMSCs with spleno-
cytes in LPS-stimulated conditions reduces inflamma-
tory responses [255]. Therefore, LRMSCs can suppress 
the production of inflammatory cytokines from innate 
and adaptive immune cells. Injection of LRMSCs into 
LPS-induced ARDS model rats also had similar results 

to in  vitro. Considering the importance of HVEM, its 
expression level in LRMSCs isolated from LPS-induced 
ARDS model rats was five times higher than in LRMSCs 
isolated from the lungs of the sham group [255]. Fur-
ther studies showed that MSCs overexpressing HVEM 
have a greater ability to suppress immune cell responses 
than MSCs with low HVEM expression. It has also been 
shown that the expression of BTLA on the surface of 
immune cells is required to induce the increased anti-
inflammatory response of MSCs by HVEM.

HVEM expression has also been observed in MSCs iso-
lated from other tumor tissues. Considering that MSCs 
are present in the tumor microenvironment as one of the 
cell populations [256], it has been shown that these cells 
play an important role in the chemoresistance of tumor 
cells in intrahepatic cholangiocarcinoma (ICC) [257]. 
Compared to other tissues (for example, umbilical cord-
derived MSCs), MSCs isolated from ICC tissue have a 
high level of HVEM expression. In this way, they help the 
survival of tumor cells and prevent their apoptosis [257]. 
MSCs activate AMPK/mTOR-mediated autophagy in 
cholangiocarcinoma cells by overexpressing HVEM and 
producing IL-6 [257, 258].

Tumor necrosis factor receptor 2 (TNFR2)
As a pro-inflammatory cytokine in soluble and mem-
brane-bound forms [259], TNF-α plays an important role 
in forming immune system responses [260]. This cytokine 
has two separate receptors, including TNFR1 and TNFR2 
[261]. However, it seems that the affinity of TNFR1 for 
both soluble and membrane-bound forms of TNF-α is 
higher than TNFR2 [262, 263]. TNFR1 has a wide expres-
sion on different cells [264]. After binding to TNF-α, it 
can increase proliferation, differentiation, and survival 
by activating signaling pathways related to NF-kB and 
MAPK or by using the death domain (DD) and activat-
ing related RIP1-dependent and RIP1-independent leads 
to the activation of caspase 8 and the initiation of apop-
tosis in cells [263, 265]. It seems that the choice between 
whether the cell with TNFR1 receptor after binding to 
TNF-α is selected for survival or apoptosis depends on 
the responding cell cellular stress and metabolic state 
[266]. Although TNFR1, TNFR2 is expressed in some 
cells, including immune cells, endothelial cells, neurons, 
and MSCs [265]. TNFR2 signaling leads to the prolifera-
tion and differentiation of Treg cells as well as the prolif-
eration and survival of tumor cells [267, 268]. The results 
of the studies have shown that antibodies against TNFR2 
can be a potential treatment for patients with ovarian 
cancer by inducing Treg cells and apoptosis in tumor 
cells [269]. Therefore, today, TNFR2 is called as one of 
the emerging immune checkpoints [270]. Considering 
the therapeutic role of immunomodulatory functions 
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in MSCs-mediated treatments, it has been shown 
that TNF-α /TNFR2 signaling in MSCs can lead to an 
increase in their therapeutic efficiency. MSCs isolated 
from genetically engineered mice lacking TNFR2 had less 
therapeutic ability than MSCs isolated from normal mice 
[271, 272].

In a study conducted in 2020 by Ghada Beldi et al., co-
culture of WT or TNFR2 KO-MSCs with mouse T cells 
was used to investigate the role of TNFR2 in the immu-
nomodulatory function of MSCs [273]. Then, T cells 
were stimulated by antibodies against CD3 and CD28, 
and by immunostaining, the cytokines related to the 
stimulated T cell population were evaluated. Also, differ-
ent Treg markers were examined to check the percent-
age of these cells in each test group. The results showed 
the importance of the presence of TNFR2 on the immu-
nomodulatory properties of MSCs. However, the absence 
of TNFR2 does not eliminate the immunosuppressive 
potential of MSCs [273]. It was also shown that the pro-
duction of pro-inflammatory cytokines dependent on 
TNFR2 was associated with a significant decrease in the 
groups co-cultured with WT-MSCs [273].

Regarding the status and percentage of Treg cells in 
different experimental groups, the percentage of T cells 
induced to Treg was higher in the groups co-cultured 
with WT-MSCs, and it showed that MSCs express-
ing TNFR2 have higher Foxp3+ Treg induction capacity 
[273, 274]. Therefore, MSCs can reduce the proliferation, 
activation, and production of inflammatory cytokines 
in T cells by expressing TNFR2 [273]. Consequently, it 
is imperative to investigate the mechanisms related to 
weakened immunomodulatory in TNFR2 KO-MSCs. In 
another study to investigate this issue, it was reported 
that knocking out TNFR2 expression, in addition to 
decreasing the immunomodulatory ability of MSCs, 
leads to a decrease in specific markers characterizing 
these cells (except CD44) [275]. Also, the expression of 
inflammatory cytokines such as TNF-α, IL-6, and IFN-γ 
increases significantly in TNFR2 KO-MSCs [275]. This is 
while the expression of anti-inflammatory cytokines such 
as IL-10 and TGFβ decreases [275]. The comparison of 
nitric oxide production by two types of WT-MSCs and 
TNFR2 KO-MSCs also indicates that nitric oxide pro-
duction in WT-MSCs expressing TNFR2 is higher than 
TNFR2 KO-MSCs [275]. Also, knocking out TNFR2 as 
an immune checkpoint on MSCs can decrease the ability 
of these cells to migrate and heal wounds [275].

Concluding and future perspectives
One of the main features that lead to the therapeutic 
applications of MSCs is their immunomodulatory poten-
tial. One of the most recent suggestions for this function 
of MSCs is the immune checkpoint-related mechanisms. 

As mentioned in this article, MSCs express different 
types of ICPs and their ligands. Previously, it was men-
tioned in many studies that pretreated MSCs in inflam-
matory conditions, such as adding TNF-α and IFN-γ 
to the culture medium, can increase their therapeutic 
potential by improving their immunomodulatory abil-
ity (Table 4). The exact mechanism of this issue was not 
clear. However, in this review, we conclude that in addi-
tion to the effect of these pro-inflammatory environ-
ments on the production of anti-inflammatory cytokines 
and exosomes by MSCs, inflammatory conditions by 
affecting different signaling pathways lead to increased 
ICPs and their ligands expression on the surface of MSCs 
and their secretion and thereby increase these cells 
immunomodulatory potential.

Each of the ICPs and their ligands expressed by MSCs 
plays an important role in their immunomodulatory abil-
ity. A very important point that came to the opinion of 
the authors during the review of various articles is that 
in studies that investigated the role of different immune 
checkpoints expressed by MSCs, the suppression of the 
pathway related to the studied ICPs led to the loss of 
MSCs’ therapeutic potential. This is while other mecha-
nisms associated with the therapeutic potential of MSCs, 
such as the production of exosomes, cytokines, growth 
factors, and mitochondrial transfer, are not affected by 
the inhibition of the ICPs and their ligands’ expression 
or function. Also, inhibiting the expression or function of 
one type of ICP and its ligands on the surface of MSCs 
does not affect other ICPs and their ligands’ functions.

In addition, it has been shown in some studies that 
inhibiting the functions of PD-1 and its ligand leads 
to a compensatory increase in the expression of pro-
teins related to other ICPs and suppresses the inhibition 
induced by the treatment. It seems that in some stud-
ies, the inhibition of the immunomodulatory function of 
MSCs by the inhibition of an ICP has been exaggerated 
to some extent. As discussed in this article, it has been 
pointed out in some other studies that the inhibition of 
an ICP and its ligands can lead to a decrease in the ther-
apeutic potential of MSCs. Still, it does not lead to its 
complete inhibition.

Some studies have pointed out the importance of can-
cer-associated MSCs (CA-MSCs) in tumor progression 
using various mechanisms such as immune modulation, 
increased metastasis, drug resistance, angiogenesis, and, 
finally, increased tumor growth. However, none of these 
studies have investigated the importance of the ICPs and 
their ligands’ role expressed or secreted by CA-MSCs. 
In many tumor treatments using ICBs, only the changed 
responses in tumor cells and immune cells are exam-
ined, and the importance of MSCs in this type of treat-
ment is ignored. It seems that examining the functions of 
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CA-MSCs after treatment with ICBs can help our under-
standing of the effect of this type of treatment on the 
interaction between CA-MSCs and tumor cells.

Considering the importance of the expression of ICPs 
and their ligands by MSCs, various methods, includ-
ing CRISPR/CAS technology, can be used to produce 
MSCs with high expression levels of one or more types 
of ICPs and ligands. Also, considering the role of 3D cul-
ture in increasing the therapeutic potential of MSCs, it 
seems that they affect the expression of ICPs and ligands. 
Therefore, studies can be designed to investigate this 
issue. Studies on ICPs and their ligands expressed on the 
surface of MSCs are low, and it seems that this field is in 
its early stages, and more studies are needed to reveal all 
its aspects.
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