Zhang et al. Biomarker Research (2023) 11:86 Biomarker Research
https://doi.org/10.1186/540364-023-00530-4

Novel role of immune-related non-coding @
RNAs as potential biomarkers regulating

tumour immunoresponse via MICA/NKG2D
pathway

Jing Zhang'?, Qizhi Luo?, Xin Li%, Junshuang Guo?, Quan Zhu?, Xiaofang Lu?, Leiyan Wei?, Zhiging Xiang?,
Manging Peng?, Chunlin Ou'*" and Yizhou Zou?"

Abstract

Major histocompatibility complex class | related chain A (MICA) is an important and stress-induced ligand of the
natural killer group 2 member D receptor (NKG2D) that is expressed in various tumour cells. Given that the MICA/
NKG2D signalling system is critically embedded in the innate and adaptive immune responses, it is particularly
involved in the surveillance of cancer and viral infections. Emerging evidence has revealed the important roles

of non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long noncoding RNAs (IncRNAs) and circular RNAs
(circRNAs) in different cancer types. We searched for all relevant publications in the PubMed, Scopus and Web of
Science database using the keywords ncRNA, MICA, NKG2D, cancer, and miRNAs. All relevant studies published
from 2008 to the 2023 were retrieved and collated. Notably, we found that miRNAs can target to NKG2D mRNA
and MICA mRNA 3’-untranslated regions (3-UTR), leading to translation inhibition of NKG2D and MICA degradation.
Several immune-related MICA/NKG2D pathways may be dysregulated in cancer with aberrant miRNA expressions.
At the same time, the competitive endogenous RNA (ceRNA) hypothesis holds that circRNAs, INcRNAs, and mRNAs
induce an abnormal MICA expression by directly targeting downstream miRNAs to mediate mRNA suppression

in cancer. This review summarizes the novel mechanism of immune escape in the ncRNA-related MICA/NKG2D
pathway mediated by NK cells and cancer cells. Moreover, we identified the miRNA-NKG2D, miRNA-MICA and
circRNA/INcRNA/mRNA-mMiRNA-mRNA/MICA axis. Thus, we were particularly concerned with the regulation of
mediated immune escape in the MICA/NKG2D pathway by ncRNAs as potential therapeutic targets and diagnostic
biomarkers of immunity and cancer.
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Introduction

Immune checkpoint inhibitors (ICIs) represent new
approaches for durable immune control in cancers.
The identification of anti-tumour therapies that com-
bat immune escape is a significant challenge [1]. Natu-
ral killer (NK) cells are innate cytotoxic lymphoid cells
that are essential for tumour cell elimination and cancer
immunosurveillance [2]. NK cells are at the forefront
of many immunotherapeutic strategies that produce a
variety of cytokines and chemokines [3]. NK cell activa-
tion is influenced by the strong regulation of activating
and inhibitory signals generated by the engagement of
diverse receptors. NK cells can kill aberrant cells, includ-
ing tumour and virus-infected cells. This is because of the
high expression of its activated receptor, natural killer
group 2 member D receptor (NKG2D), also known as
killer cell lectin-like receptor K1 (KLRK1), after receiving
the ligand signal [4]. NKG2D located on human chromo-
some 12p13 and is a C-type lectin like activating recep-
tor expressed in NK cells, y8 T cells, CD8* T cells, and
some auto-reactive or immunosuppressive CD4" T cells.
It is an important recognition receptor for the detection
and elimination of virus-infected cells and various cancer
cells [4].

NKG2D is an immune checkpoint target that may also
be a potential ICI as a receptor for NK cell activation
[5]. In humans, NKG2D recognizes 8 different NKG2D
ligands (NKG2DLs), including major histocompat-
ibility complex class I chain A (MICA) and MICB. The
remaining NKG2DLs are members of the UL-16 bind-
ing protein (ULBP) family, also known as retinoic acid
early transcripts (RAET) 1. Therefore, they have been
named ULBP-1 (RAET1I), ULBP-2 (RAET1H), ULBP-3
(RAETIN), ULBP-4 (RAETI1E), ULBP-5 (RAETI1G)
and ULBP-6 (RAET1L) [1]. By binding to the activator
receptor NKG2D on the NK and T cell subpopulations,
these ligands trigger immune efflux responses, including
cytolysis and cytokine production, through costimula-
tion of the primary activation of responding lymphocytes
or cells that receive signals via the T cell antigen recep-
tor (TCR). NKG2D ligand dysregulation may be a major
source of immunogenicity in dysregulated cells. Hence,
understanding the regulatory mechanisms of NKG2D
ligands is important, as their expression may be a key fac-
tor in determining whether a cell is visible to the immune
system [1].

NKG2D regulation and lymphocyte stress monitoring
are particularly relevant in cancer immunotherapy [3,
6]. The gene encoding MICA is located on human chro-
mosome 6p21.31. The map of the MICA gene within the
major histocompatibility complex is highly polymorphic
and the alleles are expressed in a codominant manner [7].
The MICA protein encoded by most of the alleles is com-
posed of three extracellular domains, a transmembrane
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domain, and a cytoplasmic tail [8]. NKG2D binding to
MICA in target cells triggers the catalytic activation of
NK cells, resulting in target cell lysis via perforin release
by the effector cells [9]. MICA stimulation of NK cells
leads to strong activation and tumour cell rejection with
enhanced NKG2D-mediated cytotoxicity [9, 10]. These
concepts have further increased interest in exploiting
the immunotherapeutic potential of MICA-NKG2D axis
dependent NK cells for the treatment of cancer in cancer
[9, 11].

MICA undergoes post-translational modifications that
regulate their expression as they are called membrane-
bound MICA (mMICA) at the cell surface. However,
whether MICA is also expressed on the surface of normal
cells remains controversial. Any cell or cancer type can
express MICA if appropriately stimulated [1, 3]. MICA
expression was recently reported in many tumours and
normal epithelial cells, but with predominantly intracel-
lular localization and low cell surface expression. In addi-
tion, MICA upregulation is often associated with osmotic
and oxidative stress, viral infections, and increased cell
proliferation, which cannot be explained by DNA dam-
age. Hence, MICA overexpression may be a valid strategy
to limit tumour progression, as tumours exhibit escape
strategies that subvert the biological functions of NKG2D
[12]. Furthermore, the proteolytic cleavage of MICA by
adisintegrin metalloproteinase domains (ADAMs) and
tumour secreted metalloproteases (MMPs) or secre-
tion in exosomes is the underlying mechanism [13]. NK
cells recognise MICA on the tumour cell surface through
NKG2D and promote a cytotoxic response leading to
tumour cell elimination. At the same time, the expression
levels of MICA on the tumour cell surface may determine
anti-tumour efficacy, while those shed in the serum may
act as a decoy of NKG2D to avoid immune rejection. The
released soluble MICA (sMICA) can bind to NKG2D and
induce the downregulation and degradation of NKG2D
in NK and T cells, reducing NKG2D-dependent effec-
tor functions, resulting in decreased cytotoxicity of these
immune effector cells and facilitating tumour immune
evasion [4, 14, 15]. Consequently, increased levels of
soluble MICA (sMICA), decreased mMICA in malig-
nant cells, and decreased NKG2D in NK and effector
T cells represent important aspects of immune escape
[4]. Therefore, the regulation of human NKG2D ligand
expression requires further investigation.

Many viruses interfere with NK cell activating ligands
to limit cell activation, thereby reducing NK-mediated
surveillance. According to these reports, MICA is asso-
ciated with viral infections, including human cytomega-
lovirus (HCMV) [16], Epstein-Barr virus (EBV) [17],
hepatitis B virus (HBV) [18], and severe acute respiratory
syndrome corona virus 2 (SARS-CoV-2) [16, 17, 19]. For
example, Corona virus disease 2019 (COVID-19), caused
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by severe acute respiratory SARS-CoV-2, has spread
worldwide, using the respiratory tract as the main inva-
sion site to cause acute respiratory diseases with fever,
cough, and shortness of breath as the main symptoms
[19]. SARS-CoV-2 inhibits the synthesis of several NK
cell ligands, including MICA, and reduces NK cell acti-
vation [19]. In addition, the mMICA level decreased in
patients with SARS-CoV-2, reducing the hosts’ ability to
kill infected cells as well as their cytotoxic capacity [20].
SARS-CoV-2 infection generates more sMICA through
the overexpression of ADAM17 metalloproteinase after
the interaction between ACE2 and spike proteins, which
reduces NK cell activation [21].

In the past decade, the vital roles of non-coding RNAs
(ncRNAs) including circRNAs, long noncoding RNAs
(IncRNAs) and microRNAs (miRNAs) also have signifi-
cant functions in cancer [22, 23]. An increasing number
of studies focusing on the relationship between ncRNAs
and human diseases have been conducted in the context
of the widespread dysregulation of ncRNA expression
and function in human cancers [24—26]. The dysregula-
tion of these ncRNAs is closely related to tumourigenesis
[22, 27]. Emerging evidence indicates that miRNAs are
involved in tumourigenesis, cell cycle control, metabo-
lism, apoptosis, and tumour progression [28]. Although
MICA can be shed at the surface of cancer cells during
tumour development and progression, miRNA regulation
is another important mechanism that disrupts MICA
expression. Emerging data suggest that miRNAs are often
aberrantly expressed in cancer and regulate key genes
involved in tumour proliferation and metastasis.

A competitive endogenous RNA (ceRNA) hypothesis
was recently proposed. RNAs can reportedly crosstalk
with common miRNAs [29]. According to this hypoth-
esis, IncRNA, circRNA and mRNA function as ceRNAs
by regulating the post-transcriptional expression of genes
that acting as miRNA sponges [30]. Unbalanced ceRNA
networks resulting from IncRNA/circRNA/mRNA-
miRNA-mRNA axis interactions contribute to cancer
development [25]. Furthermore, abnormal gene expres-
sion alters the stability of ceRNA networks, highlighting
the role of molecular biomarkers in optimising cancer
treatment and management. Aberrant ceRNA activity
may lead to diseases, even in the occurrence of cancer.
Therefore, the development of prognostic signatures
based on cancer-specific ceRNA networks is important
for predicting clinical outcomes [30]. In summary, these
results suggest that the cancer-specific ceRNA network
involved in MICA-NKG2D pathway regulation could
contribute to carcinogenesis and immune evasion.

This review guides the reader through the immuno-
logical aspects, emphasizing the roles of ncRNAs as
modulators of the immune response mediated by the
MICA-NKG2D pathway. In cancer, ncRNAs targeting the
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immune system may represent a promising approach for
future immune treatments.

Dysregulation of MICA/NKG2D expression in human
tumuors

Aberrant NKG2D expression in different human cancer
types was evaluated in the TIMER 2.0 program by ana-
lysing the RNA sequence data from The Cancer Genome
Atlas (TCGA) data (http://timer.cistrome.org/) (Fig. 1A).
Computational and biological evidence has indicated
significantly different NKG2D expression in normal and
cancerous tissues. Notably, NKG2D expression is down-
regulated in bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), colon adenocarcinoma
(COAD), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), rectum adenocarcinoma (READ), thyroid car-
cinoma (THCA), uterine corpus endometrial carcinoma
(UCEC). Conversely, NKG2D expression is upregulated
in kidney renal clear cell carcinoma (KIRC) and kid-
ney renal papillary cell carcinoma (KIRP). The patients
showed higher NKG2D expression levels in head and
neck squamous cell carcinoma (HNSC) when they were
infected with human papillomavirus (HPV).

MICA is a stress-induced ligand of the NK cell activat-
ing receptor NKG2D, which is essential for NK cells to
kill virus-infected cells and tumour cells [1]. Meanwhile,
the aberrant expression of MICA in normal tissues and
cancer tissues was also evaluated using TIMER 2.0 pro-
gram by analysing RNA sequence data from TCGA data
(Fig. 1B). Notably, MICA expression is downregulated in
breast invasive carcinoma (BRCA), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), pheo-
chromocytoma and paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), thyroid carcinoma (THCA)
and uterine corpus endometrial carcinoma (UCEC).
Patients showed higher levels of MICA expression in
cholangiocarcinoma (CHOL), colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), head and neck
squamous cell carcinoma (HNSC), kidney renal clear
cell carcinoma (KIRC), liver hepatocellular carcinoma
(LTHC), stomach adenocarcinoma (STAD).

Regulation of MICA/ NKG2D by miRNA to influence
immune response

These MICA/ NKG2D associated miRNAs provide
insight into the development of novel therapeutic cancer
targeting medicines (Figs. 2 and 3; Table 1). The signifi-
cantly decreased NKG2D expression and lower number
of y8 T cells were detected in the peripheral blood of
patients with prostate cancer. On the contrary, miR-181a
increases in peripheral y§ T cells from prostate cancer
patients. The inverse correlation was revealed between
miR-181a and NKG2D expression in y§ T cells isolated
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Fig. 1 (A). The expressions of natural killer group 2 member D receptor (NKG2D), also known as killer cell lectin-like receptor K1 (KLRK1) and (B). MICA in
human cancers. The expressions of NKG2D (KLRK1) and MICA in different human cancer types were evaluated by analysis of the RNA-seq data from The
Cancer Genome Atlas database using the TIMER 2.0 program. *P <0.05; **P <0.01; ***P < 0.001

from the thymus and peripheral blood. This strategy phe-
nocopied miR-181a overexpression, which negatively
regulated NKG2D expression in peripheral blood T cells
at both the mRNA and protein levels, with the conse-
quence of pathophysiological implications in cancer
immunity and inflammatory disease settings. MiR-181a
impaired the differentiation of human y8 T cells into
tumour necrosis factor-a (TNF-«) associated effector T
cells and decreased NKG2D expression [31].

Moreover, miR-1245 was abundant in the exosomes of
seven patients with non-Hodgkin’s lymphoma patients
and three patients with acute myeloid leukaemia/myelo-
dysplastic syndrome patients. MiR-1245 has target
sites in the 3’-untranslated regions (3’-UTR) region of
NKG2D mRNA and downregulates NKG2D expression
in NK cells. The overexpression of mature miR-1245 in

NK cells resulted in a sustained downregulation of the
NKG2D receptor, leading to the escape of NK cell-medi-
ated killing, therefore, miR-1245 is a negative regulator
of NKG2D expression. MiR-1245 knockdown increased
NKG2D protein and transcript levels. Transforming
growth factor—f1 (TGF-P1) acts as a potent suppres-
sor of NKG2D in NK cells, by enhancing the expres-
sion of mature miR-1245 post-transcriptional regulation
and leading to impairing NK cell functions and immune
responses due to NKG2D downregulation [32].

NKG2D was down-regulated by miR-142 and Let-7i,
but up-regulated by miR-155 in exosomes isolated from
a mouse mammalian breast cancer (BC) cell line. MiR-
142 and Let-7i downregulation of NKG2D regulated
dendritic cells (DCs) maturation and affected the tumour
microenvironment through different mechanisms [33,
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34]. One study reported that miR-155 directly enhanced
NKG2D, but had little effect on DC maturation [33].

Brain ischaemia significantly and transiently suppresses
NK cell number and activity of in the peripheral blood
[35]. NKG2D expression in NK cells was also reportedly
reduced during the acute phase but recovered at subse-
quent time points. However, miR-122-5p and miR-451a
were significantly upregulated in human peripheral blood
NK cells and damaged NK cells following acute ischaemic
stroke. The inhibition of miRNA-451a or miRNA-122-5p
significantly increased NKG2D expression, which is asso-
ciated with NK cell activation and may affect circulating
NK cell function after acute ischaemic stroke [35].

Overexpression of miR-30c reportedly increases
NKG2D protein expression on the surfaces of NKL cells
and enhances their cytotoxicity, whereas miR-30c inhibi-
tion has the opposite effect [36].

MiR-34a targets NKG2D as a major hub in the T cell
regulatory network, suggesting that it acts as an interven-
tion target to regulate T cell immune responses in a wide
range of tumours [37].

MiR-16 targets the NKG2D 3’-UTR region, and its
overexpression inhibits NKG2D expression in CD8* T
cells. Particularly in miR-157/16" mice, CD8*NKG2D*
T cells are increased, while T cells become activated and
cytotoxic [38].
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MiR-18a belongs to the miR-17-92 cluster, which
targets the 3’-UTR of NKG2D and can downregulate
NKG2D expression and impair NK cell cytotoxicity in
mice with BC. In many patients with BC, indoleamine-2,
3-dioxygenase 1 (IDO1) mRNA and miR-18a expres-
sions are elevated, whereas NKG2D mRNA expression
is decreased. IDO1 impairs NK cell function mediated
by miR-18a. This is a novel functional pathway for IDO1
that counteracts the immune responses in cancer [39].

MiR-182 plays contradictory roles in NK cells and
hepatocytes during hepatitis C virus (HCV) infection
[40]. The relative expression of miR-182 is significantly
increased in NK cells from HCV-infected patients, while
NKG2D mRNA expression is decreased, and miR-182
overexpression reduces NKG2D mRNA expression.
However, miR-182 expression is lower in HCV liver sam-
ples and HCV infected cells. MiR-182 reduces NKG2D
ligand ULBP2 level in target cells and increases the viral
load. This reveals the paradoxical role of miR-182 in NK
cells and their host target hepatocytes during HCV infec-
tion [40]. Among the NK cells from patients with hepato-
cellular carcinoma (HCC) and healthy controls, miR-182
and NKG2D mRNA were reportedly significantly upreg-
ulated. MiR-182 is positively correlated with NKG2D
mRNA expression in HCC. The overexpression of miR-
182 increased NKG2D mRNA expression and ultimately
enhanced NK cell activation and lytic activity in HCC
[41].

MiR-29a* and miR-155 are highly expressed in NK cells
from HCV infected patients, and their overexpression
decreases NKG2D mRNA expression. The expression of
miR-29a in NK cells of patients with HCV may inhibit
NKG2D, decreasing NK cell lysis function and increasing
the viral load by 80% [42].

Research shows that MICA is regulated by miR-
NAs in various cancers in which MICA and miRNAs
often show aberrant expressions and contribute to the
tumour proliferation, apoptosis, differentiation, inva-
sion, and metastasis (Figs. 2 and 3). Human cytomega-
lovirus (HCMYV) belongs to the family Herpesviridae, in
the subfamily Betaherpesvirinae that might be exploited
during immune evasion. Hcmv-miR-UL112 is reportedly
encoded by HCMV and has binding sites target genes
[43]. Interestingly, luciferase reporter assays in Hela cells
suggested direct binding of hcmv-miR-UL112 to the
3-UTR of MICA. However, transduction with hcmv-
miR-UL112 revealed little or no reduction in MICA
expression. Hcmv-miR-UL112 may also contain bind-
ing sites for human cellular miRNAs to regulate MICA
expression under certain conditions. These cellular miR-
NAs are often aberrantly expressed in human tumour tis-
sues and can inhibit MICA expression, which promotes
tumour proliferation, apoptosis, differentiation, inva-
sion, and metastasis, and can also aid in the avoidance of

Page 9 of 19

immune cell attack. The 3’-UTR region of MICA affects
the protein expression. A large group of human cellular
miRNAs that also bind to hcmv-miR-UL112, includ-
ing miR-20a, miR-93, miR-106b, miR-302d, miR-372,
miR-373, and miR-520d, could target the MICA 3’-UTR.
These miRNAs specifically downregulated MICA mRNA
and protein expression, showing modest effects except
for miR-302d (which had no effect) and miR-372 in HeLa
and DU145 cells. In primary human foreskin fibroblast
(HFF) cells and human umbilical vein endothelial cells
(HUVECs:), the inhibition of miRNAs by antagonists
resulted in higher MICA expression and enhanced kill-
ing of NK cells, due to the recognition of NKG2D, as it
could be blocked by NKG2D antibodies. In contrast, the
overexpression of miR-17-5p, miR-20a, miR-93, miR-
106b, miR-373 and miR-520d downregulated MICA
and decreased the susceptibility of NK cells due to avoid
NKG2D-mediated MICA immune recognition in vitro
and in vivo [43].

MiR-106b, miR-302b, miR-372 and miR-520b target
the MICA 3’-UTR region and dramatically downregu-
late MICA surface protein expression [44]. Furthermore,
miR-520b also targets the MICA promoter. MiR-520b in
particular was induced by interferon-y (IFN-y), which
could be sufficient to reduce the MICA protein expres-
sion and transcription levels in MelJuSo melanoma and
HeLa cell lines [44].

Interestingly, IFN-y enhances the expression of MICA
mRNA and protein levels in human corneal epithelial
cells (HCECs) by down-regulating miRNA-4448, thereby
enhancing cytotoxicity and HCEC apoptosis mediated by
NK and CD8* T cells on the corneal epithelium [45, 46].
These findings provide novel insights into the pathogen-
esis of allograft rejection [47].

Papillary thyroid carcinoma (PTC) is associated with
intratumoural and lymphocytic infiltration, whereas
tumour-infiltrating lymphocytes and background lym-
phocytic thyroiditis (LT) are associated with thyroid can-
cer [48]. MiR-146b-5p was significantly downregulated in
PTC-LT cells [49]. MICA and NKG2D are significantly
overexpressed in PTC-LT and inversely correlated with
miR-146b-5p expression. There is a potential binding site
for miR-146b-5p in the 3’-UTR of MICA [50]. The down-
regulation of miR-146b-5p increased MICA and NKG2D
expression in PTC and cancer cells, respectively. MICA
was only detected in PTC-LT cases in the cytoplasm of
tumour cells or between follicles as a secreted protein;
however, MICA staining was not observed in PTC-no LT
on immunofluorescence staining or confocal microscopy.
NKG2D was detected in only a small number of tumour-
infiltrating lymphocytes. Inhibition of the MICA-
NKG2D axis by miR-146b-5p may be one way in which
PTC cells help tumours evade the immune response [50].
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Nasopharyngeal carcinoma (NPC) has an epithelial cell
origin. Exposure to EBV is a common factor implicated
in NPC aetiology [51]. In NPC, the cytotoxic activity of
NK cells in NPC patients was reduced in compared to
that in normal individuals [52]. The alternatively spliced
transcripts are called the Bam HI A rightward transcripts
(BARTs) are expressed at high levels endogenously in
NPC, while EBV-encoded miRNA BART7 (EBV-miR-
BART?) is a functional TGF-B1 inhibitor. MICA mRNA
expression was upregulated in the HK1 NPC cell line
and increased remarkably in response to TGF-B1 treat-
ment. In NPC cells, EBV-miR-BART?7 inhibits TGF-p1/c-
Myc, leading to a significant decrease in their expression.
Moreover, EBV-miR-BART7 suppresses MICA mRNA
and protein expression, reducing the sensitivity of NPC
cells to NK92MI cells [53].

Multiple myeloma is an aggressive cancer character-
ized by the clonal expansion of cancerous plasma cells in
the bone marrow, a phenomenon that is supported by the
progressive impairment of immune surveillance, primar-
ily due to alterations in T lymphocytes and NK cells [54].
One study showed that specific small molecule inhibitors
of the BET family of bromodomains (BETi) enhanced
MICA promoter activity and upregulated MICA protein
and mRNA levels, increasing their susceptibility to NK
cell recognition and killing [55]. BETi reduced c-Myc and
IRF4 expressions and upregulated microRNA-125b-5p
(miR-125b) expression. Moreover, miR-125b as a tumour
suppressor is commonly deregulated in cancer, while its
overexpression downregulates c-Myc and IRF4 mRNA
expression but upregulates MICA mRNA and pro-
tein expression [56]. Thus, the transcriptional repressor
c-Myc of MICA and IRF4 is an inhibitor of MICA pro-
moter activity in multiple myeloma cells [57].

Colorectal cancer (CRC) is among the most common
fatal cancers worldwide [58, 59]. The miR-20a expres-
sion level was significantly increased in CRC tissues [60,
61]. Ovarian cancer (OC) is the most lethal malignancy
in a woman’s reproductive system, and immunotherapy
has a limited impact on treatment outcomes. The miR-
20a expression level was also significantly increased in
OC tissues [62]. The upregulation of miR-20a in patients
results in shorter overall survival and plays an important
role in ovarian tumourigenesis and anti-tumour immu-
nity. MiR-20a can directly bind to the MICA 3’-UTR
and its overexpression suppresses the MICA mRNA and
cell surface MICA protein levels, resulting in reduced
NKG2D-mediated killing. Moreover, miR-20a expression
is negatively correlated with MICA. NKG2D signalling
affects miR-20a, which controls the sensitivity of CRC
and OC cells to NK cells. This indicates that miR-20a
downregulates MICA expression, reduces NK cell cyto-
toxicity, and is NKG2D-dependent in cancer cells to pro-
mote tumour growth [61, 62].
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BC is one of the most common malignancies among
females. MICA mRNA and protein expression levels
are lower in normal breast tissues than in paired BC tis-
sues [63]. The MICA of BC cells at early stages (I and
II) was significantly higher than that of advanced (stage
III) BC cells. Members of the miR-17-92 cluster, includ-
ing miR-20a, miR-20b, miR-93, and miR-106b report-
edly down-regulate MICA [64]. Hence, the silencing of
MICA-targeting miRNAs contributes to immune recog-
nition in vivo. Histone deacetylase inhibitors (HDAC:I)
are commonly used in clinical trials to treat malig-
nant tumours in humans. In particular, suberoylanilide
hydroxamic acid (SAHA) and valproic acid (VPA) are
vital HDACi that have been used in clinical trials to
treat cutaneous T-cell lymphoma and may induce cancer
cell differentiation and apoptosis [65]. SAHA and VPA
treatment upregulates MICA expression and decreases
miR-17-92 cluster expression, thereby increasing the
sensitivity of NK cell mediated cytotoxicity. Moreover,
miR-519a-3p expression is upregulated in BC cells and
associated with poor survival. MiR-519a-3p binds to the
MICA 3’-UTR and reduces the MICA mRNA levels and
surface protein levels. MiR-519a-3p impairs NK cell-
mediated killing of BC cells and deregulates apoptosis by
downregulating MICA [66].

The most aggressive subtype of BC, triple-negative
breast cancer (TNBC), has the highest recurrence rates
due to distant metastases and poor prognosis [63]. MiR-
20a was reportedly specifically overexpressed in TNBC.
According to one study, 3’-O-acetylvitexin affected cyto-
toxic activity and successfully increased MICA expres-
sion, which impacted miR-20a validated targets [67].
Another study showed that MICA expression was signifi-
cantly increased as downstream targets of the MALAT1/
p53/miR-155/miR-146a circuit affected by methoxylated
quercetin glycoside (MQG), which alters the immuno-
genic and oncogenic profiles of BC [68]. It was essential
to investigate the impact of MQG on miR-155 and miR-
146a targets of MICA, known to be markedly downregu-
lated in MDA MB-231 cells, and vital immune-inhibitory
cytokines (tumour necrosis factor—o, interleukin-10),
which are known to play a dominant role in potentia-
tion of the immune suppressive microenvironment in BC
patients [68].

HCC is the third most common cause of cancer-related
death worldwide [69]. MICA protein expression levels
showed different statuses in four representative HCC
cell lines, including those from the same organ. Accord-
ing to flow cytometry and immunohistochemistry,
Hep3B and PLC/PRF/5 cells express substantial MICA
protein levels, while Huh7 and HLE cells do not express
MICA protein [70]. Thus, miR-93 and miR-106b located
on the miR-25-93-106b cluster, are considered to target
MICA 3-UTR. MICA protein expression is suppressed
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by miR-93 and miR-106b in HeLa and Hep3B cells. To
determine the ability of MICA to bind to NKG2D, MICA
and NKG2D protein expression levels were decreased
by miR25-93-106b cluster overexpression, whereas their
protein expression levels were increased by silencing the
miR-25-93-106b cluster. The miR-25-93-106b cluster can
regulate tumour progression and invasion by regulating
MICA expression, while tumours are sensitive to NK
cells. Regulating the MICA protein expression is essential
for preventing the development of HCC during chronic
hepatitis viral infection [70].

SAHA treatment dramatically increased the suscepti-
bility of HepG2 and H7402 cells to cytolysis by interleu-
kin-2-activated NK cells and upregulated MICA protein
expression. The miR-17-92 cluster (miR-20a, miR-93, and
miR-106b) targeted MICA and increased MICA surface
protein levels, and the miRNAs were downregulated by
SAHA treatment. These results suggested that HDACi
promotes MICA protein expression by inhibiting the
transcription of miRNAs targeting MICA in HCC [71].

Lung cancer is the leading cause of cancer related death
in men and women worldwide [72]. When detected in
human non-small cell lung carcinoma cell lines, squa-
mous cell carcinoma tissues, and adenocarcinoma com-
pared to lung epithelial cells and adjacent normal lung
tissues, MICA transcript or protein expression was low
or absent, and miR-183 expression was higher. Thus, after
bioinformatics analysis and luciferase reporter analyses,
miR-183 targeted to the MICA 3’-UTR. MiR-183 expres-
sion was negatively correlated with MICA expression.
Antisense miR-183 transfection successfully suppressed
miR-183 expression and upregulated MICA protein
expression in H1355 and H1299 lung tumour cells.
TGF-p reduced the effectiveness of NK cells and induced
miR-183, leading to MICA suppression, and contribut-
ing to its immune escape [73]. The knockdown of TGE-f3
mRNA effectively resulted in reduced miR-183 expres-
sion and upregulated MICA protein expression. The
silencing of miR-183 and overexpression of MICA con-
tributed to tumour cells lysis by activating CD8" T cells
via the MICA-NKG2D pathway [74].

According to the Sankey diagram (Fig. 3), MICA and
NKG2D can be targeted by a variety of common ncRNAs.
For example, the top five ncRNAs were miR-20a, miR-
106b, miR-93, miR-155 and miR-372, indicating that
different tumours mediate the role of MICA/NKG2D in
immunoregulation through the same specific miRNA.
Particularly, the regulation of MICA by miR-20a in BC is
similar to that in OC, CRC and HCC. It is possible that
even ncRNAs from different tumours could lead to the
same regulatory pathway in targeting immune cells, act-
ing as powerful regulators of immunomodulatory genes
involved in tumour immunity, mediating immune escape,
highlighting their potential use as biomarkers, and
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manipulating ncRNA expression as therapeutic interven-
tions (Table 1; Fig. 4).

Role of non-coding RNA in regulation of MICA/ NKG2D axis
in different human cancers

CeRNAs suppress intracellular miRNA function and
regulate mRNA expression via shared miRNA response
elements (MREs) [75]. Our review focuses on MICA-
related ceRNA networks, which are proven powerful
tools for deciphering cancer mechanisms and predict-
ing therapeutic responses at the system level (Table 2;
Figs. 2, 3 and 5). BCL11B is considered a ceRNA sponge
that binds to the miRNAs that positively regulate MICA
protein expression [75]. MiR-17, miR-93, miR-20a, miR-
20b, miR-106a, and miR-106b have binding sites with the
MICA 3’-UTR and the BCL11B 3’-UTR. When miR-17,
miR-93, miR-20a, miR-20b, miR-106a, and miR-106b
mimics were transfected into HCT116 cells, the MICA
and BCL11B protein expression levels were significantly
downregulated. These results suggest that mature miR-
NAs negatively regulate MICA and BCL11B. BCL11B
knockdown leads to a decrease in MICA, which then
leads to a decrease in the lytic sensitivity of NK cells
and influences in NK cells cytotoxicity [75]. There-
fore, the MICA-NKG2D pathway mediates an immune
response against the killing effect of NK cells during
tumourigenesis.

Previous reports demonstrate that IncRNA hepatocel-
lular carcinoma up-regulated EZH2-associated (HEIH)
is an oncogene because of its high expression levels in
TNBC [76, 77]. The IncRNA HEIH 3’-UTR binds to miR-
939-5p [76, 77]. In contrast, miR-939-5p is dramatically
downregulated in BC, luminal B, and TNBC tissues [78].
Nitric oxide (NO) plays an important role in tumour-
genesis and immune responses, and the NO-induced by
NO synthase (NOS) regulates immunity [79]. Thus, the
efficient transfection of miR-939-5p in MDA-MB-231
cells resulted in low expression of NOS2 and NOS3 tran-
scripts as well as NO production [79]. In contrast, the
overexpression of miR-939-5p decreased IncRNA HEIH,
whereas the silencing of IncRNA HEIH significantly
downregulated NOS2, NO production, cellular viabil-
ity, and migration ability and increased MICA and miR-
939-5p expression in TNBC cells. Hence, the IncRNA
HEIH and miR-939-5p may impact MICA alterations.
Mechanistically, it was a hypothesised that the IncRNA
HEIH/miR-939-5p mediates the NOSs/NO/MICA axis
in TNBC [79].

Few functional studies have examined the variations in
IncRNAs. Interpreting disease-causing variations, par-
ticularly in long non-coding regions, has become one of
the most difficult tasks, indicating the potential relevance
of functional IncRNAs variants in complicated disorders
[18]. HBV infection is among the most common viral
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Fig.4 The MICA/NKG2D pathway was regulated by human miRNAs to induce the immune response. The green arrow indicates stimulatory modification,

while the red “T" symbol indicates inhibitory modification

infections worldwide, and chronic hepatitis B (CHB) may
further increase the prevalence of HCC [80].

LINCO01149 has two variants: rs8044472 and
rs2844512. The LINC01149 rs28445512 [C] allele sig-
nificantly decreases the risk of persistent HBV infec-
tion but increases the risk of HCC, which is associated
with persistent HBV infection and HCC susceptibility
[18]. The LINCO01149 rs2844512 [C] variant has bind-
ing sites targets miR-128-3p and is downregulated by
miR-128-3p. Moreover, miR-128-3p expression levels in
adjacent normal tissues were significantly higher than
those in HCC tissues in TCGA. MiR-128-3p is a target of
MICA [18]. The MICA mRNA expression levels in HCC
tissues were significantly higher than those in adjacent

normal tissues from TCGA and were decreased by miR-
128-3p. Thus, LINC01149 [C] acts as a sponge ceRNA
that induces MICA expression by bind to miR-128-3p.
The LINCO01149 genotypes are associated with sMICA
levels in patients with HCC and the C allele contributes
to higher sMICA levels. LINC01149 [C] contributes to
increased sMICA released via proteolytic shedding, NK
cells exhaustion, and tumour immune evasion. The regu-
latory highlights indicate that the LINC01149[C]/miR-
128-3p/MICA axis facilitates spontaneous HBV recovery
and increases the risk of HCC in persistent HBV infec-
tion and HCC [18].

A few malignant cells exist inside the intratumoural
hypoxic microenvironment of extracellular matrix,
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Cancer cell

Fig. 5 MICA mediated the immune response of cancer cells from the perspective of circRNAs or the INcRNAs-miRNAs-mRNAs axis. The green arrow in-
dicates stimulatory modification, while the red “T" symbol indicates inhibitory modification. The green NKG2D indicates a stimulatory immune response,

while the red NKG2D indicates an inhibitory immune response

fibroblasts, endothelial cells, and immune cells in pan-
creatic cancer (PC) [81]. Hypoxia typically causes the
release of immunosuppressive chemicals in tumour cells
and promotes cancer cell resistance to cytotoxic T-cell-
mediated lysis [82]. Hypoxia inducible factor 1 alpha
(HIF1A) is significantly upregulated in PC tissues [82].
Hypoxia is considered an important inducer of tumour
cell resistance to immune-effector mediated cleavage,
which occurs with increased ADAMI10 expression via
HIF1A dependent pathways. ADAMI10 and mMICA
expression were significantly upregulated and down-
regulated in the high HIF1A expression group from the
peripheral blood mononuclear cells (PBMCs) of patients,
while serum sMICA levels were increased [83]. More-
over, hypoxia could significantly upregulate sMICA
content in the culture supernatant, whereas HIF1A inhi-
bition could increase the mMICA levels and numbers of
NKG2D positive NK cells, decrease sMICA levels, and
enhance the killing effect of NK cells on Panc-1 cells [84].

Thus, ADAMI0 is negatively correlated with mMICA
expression [13]. In the HIF1A high-expression group,
circ_0000977 expression was the highest and positively
correlated with ADAM10, but negatively correlated with
mMICA. Similar to HIF1A and ADAMI10, circ_0000977
expression was induced by hypoxia in a concentration-
dependent manner in Panc-1 cells, significantly increas-
ing sMICA level in the supernatant, suggesting that
circ 0000977, HIF1A, and ADAMI10 expressions are all
highly increased in PC tissues [85]. Moreover, miR-153
was most significantly downregulated in PC tissues of
the HIF1A high-expression group and negatively cor-
related with ADAMI10 expression and circ_0000977
expressions. MiR-153 directly binds to circ_0000977,
HIF1A, and ADAMIO0. In addition, circ_0000977 could
inhibit miR-153 expression and reverse the downregu-
lation of HIF1IA and ADAMI0 dysregulation medi-
ated by miR-153. Notably, circ_0000977 as a sponge
(ceRNA) competitively binds to miR-153 to eliminate
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miR-153-mediated inhibition of HIF1A and ADAMI10
[85]. Increased ADAMI10 expression is responsible for
the enhanced shedding of mMICA on the surface of
pancreatic ductal adenocarcinoma (PDAC) cells, which
is converted to sSMICA resulting in reduced reactivity of
NK cells due to the degradation of NKG2D, which is an
important aspect of immune escape [84]. CircRNAs and
miRNAs show some crucial biological properties that
are closely related to their functions and clinical implica-
tions, and dysregulated in PC [85, 86].

Neuroblastoma is among the most common extra-
cranial malignant solid tumours of childhood. Its clini-
cal symptoms vary widely among children, with some
tumours regressing on their own [87]. After low-dose
chemotherapeutic drug stimulation induced cellular
senescence of neuroblastoma cell lines, MICA release
was significantly increased in both membranes and exo-
somes [87]. ADAM10 mRNA and protein levels are
upregulated in senescent cells, possibly related to MICA
secretion. Chemotherapy combined with ADAM10 inhi-
bition reduces MICA released from senescent cells and
inhibits immune escape. In contrast, the downregulation
of NKG2D expression was significantly inhibited by exo-
somal MICA blockage. MiR-92a-3p has common bind-
ing sites with MALAT1, and ADAMI10. This result also
suggested that MALAT1 expression was upregulated,
and that miR-92a-3p was downregulated in IMR-32
cells. These findings suggest that MALAT1 upregulates
ADAMI10 expression by acting as a ceRNA and the
competitively inhibiting miR-92a-3p, which affects on
ADAMI10 expression by promoting sMICA mediated
immune escape. MALAT1 knockdown in senescent cells
downregulated ADAMI10 expression, which inhibited
MICA released and suppressed immune escape. This
finding provides new insights into the immune escape
mechanism of senescent cells in that MALAT1 (ceRNA)
promotes the shedding of MICA through the MALAT1/
miR-92a/ADAMI10 axis, contributing to the formation of
a suppressive immune microenvironment and promoting
immune evasion [88].

Cervical cancer is the second most lethal gynaecologi-
cal malignancy worldwide [63]. NcRNAs are crucial gene
masters and potential markers of cervical cancer [26,
89]. LINC00240 expression was reportedly increased
in cervical cancer tissues and in the cytoplasm com-
pared to adjacent non-tumour tissues as well as in the
nuclei of HeLa and C-33 A cells. High LINC00240 levels
resulted in significantly shorter overall-survival. Other-
wise, miR-124-3p expression is dramatically decreased
in cervical cancer tissues. LINC00240 targeted to miR-
124-3p induced cervical cancer cell proliferation, migra-
tion, and invasion. A negative correlation was observed
between LINC00240 and miR-124-3p levels. A recog-
nized transcription factor called STAT3 has been linked
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to tumours development [90]. Increased STAT3 expres-
sion was noted in cervical cancer tissue. A positive cor-
relation was observed between LINC00240 and STAT3
expressions. STAT3 directly binds to miR-124-3p and
directly interacts with the MICA promoter [91]. MICA
plays a key role in NKT cell activation and serves as a
downstream target of STAT3. STAT3 from tumour cells
can reduce anti-tumour immunity by suppressing MICA
and generating pro-inflammatory chemokines. Thus,
LINCO00240 significantly downregulates miR-124-3p,
decreases MICA mRNA and protein expressions and
reduces the cytotoxic activity of NKT cells by regulating
STAT3 promoted cervical cancer progression in vitro and
in vivo. LINC00240 acts as a sponge by downregulating
miR-124-3p and inducing STAT3 expression to decrease
MICA expression. The cytotoxic activity of NKT cells is
facilitated by the LINC00240/miR124-3p/STAT3/MICA
axis in cervical cancer [91].

Conclusions and further perspectives
The recent emergence of immune checkpoint therapy has
become the latest approach in the fight against cancer,
including research on programmed death 1 (PD-1) and
programmed death ligand 1 (PD-L1), the discoverers of
which were awarded the 2018 Nobel Prize in Physiology
or Medicine [92]. For example, there are potential bind-
ing sites of miR155 with the 3’-UTR of PD-L1. MiR155
modulates the PD-1/PD-L1 mediated interaction
between B lymphoma cells and CD8* T cells via the regu-
lation of PD-L1 expression [93]. Additionally, high levels
of circRNA fibroblast growth factor receptor 1 (circF-
GFR1) are associated with cytotoxic T lymphocyte exclu-
sion and resistance to anti-PD-1 therapy in lung cancer
cells that targets miR-381-3p binding to the target gene
C-X-C motif chemokine receptor 4 (CXCR4) [94]. CircF-
GFR1 inhibits miR-381-3p by sponging, which mediates
the resistance of lung cancer cells to PD-1 blockers [95].
In summary, miRNAs are small ncRNAs that bind to
complementary or partially complementary sites in the
3’-UTR of target genes to inhibit target transcript pro-
tein translation and induce mRNA degradation or cleav-
age of ligands such as NKG2D and MICA. MICA is a
double-edged sword that acts as target molecules for NK
cell immune surveillance and as mediators of tumour
immune escape. The MICA/NKG2D pathway is dysregu-
lated by miRNAs, such as HCMV-miR-UL112, EBV-miR-
BART?7 and cellular miRNAs (Table 1) (Figs. 2 and 3).
This insight has important implications for understand-
ing disease progression and molecular targeting [96].
MiRNAs that regulate the transport or downstream tar-
gets of NKG2D and MICA may also have a significantly
impact the MICA-NKG2D immune signalling pathway
(Fig. 4). Currently, little is known about the correlation
between these ceRNAs and ncRNAs, the prognostic roles
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of MICA, or the therapeutic effects of the MICA-NKG2D
antibodies. Significant advances have been made in the
use of miRNAs as diagnostic targets [34]. Therefore, it
is essential to determine whether additional circRNAs,
IncRNAs, and miRNAs can serve as biomarkers and
therapeutic targets (Table 2; Fig. 5). The corresponding
ncRNA drugs are among the most powerful alternatives
to tumour drug therapies, specifically since they target
the tumour current state and enable its precise regula-
tion. It is possible to further improve the therapeutic
success of immune checkpoint inhibitors combined with
ncRNA mimics or inhibitors. Therefore, drugs can be
designed to target ncRNAs and genes closely related to
these tumours, further advancing personalised precision
therapies. In addition to the development of mechanisms,
another challenge for clinical applications is the design of
inhibitors that regulate harmful ncRNAs. These ncRNAs
are also potentially useful biomarkers for determining
the prognosis of MICA-NKG2D antibody treatment. It
is possible that in addition to further understanding, the
molecular regulatory network of MICA-NKG2D is being
targeted for cancer treatment, and an improved under-
standing of its post-transcriptional regulation may open
new avenues for next-generation immunotherapies.
Abbreviations

3-UTR 3-untranslated regions
ACC Adrenocortical

ADAMs A Disintegrin Metalloproteinase Domains
BARTs Bam HI A rightward transcripts
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EBV Epstein-Barr virus
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HBV Hepatitis B virus
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HIFTA Hypoxia inducible factor 1 alpha
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INncRNA

LT Lymphocytic thyroiditis

LUAD Lung adenocarcinoma
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PD-1 Programmed death 1

PD-L1 Programmed death ligand 1

PRAD Prostate adenocarcinoma

PTC Papillary thyroid carcinoma

READ Rectum adenocarcinoma

RAET Retinoic acid early transcripts

SAHA Suberoylanilide hydroxamic acid

SARC Sarcoma
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