
Hilfert and König Visualization in Engineering (2016) 4:2
DOI 10.1186/s40327-015-0031-5
RESEARCH Open Access
Low-cost virtual reality environment for
engineering and construction

Thomas Hilfert* and Markus König
Abstract

Background: Presenting significant building or engineering 3D-models is a crucial part of the planning,
construction and maintenance phases in terms of collaboration and understanding. Especially in complex or large-
scale models, immersion is one of the major key factors for being able to intuitively perceive all aspects of the
scene. A fully immersive system needs to give the user a large field-of-view with reduced latency for lifelike
impression. Technologies such as VRwalls and shutter glasses can deliver high refresh rates, yet fail to give a large
field-of-view. Head-mounted-devices for virtual reality fill this gap. Head tracking mechanisms translate movements
of the user’s head into virtual camera movements and enable a natural way of examining models. Unlike a
stereoscopic representation with projectors, point-of-view tracking can be achieved separately for each individual
user. Hardware costs for such systems were very high in the past, but have dropped due to virtual reality systems
now gaining traction in the mainstream gaming community.

Methods: In this paper we present a way to build a low-cost, highly immersive virtual reality environment for
engineering and construction applications. Furthermore, we present a method to simplify and partly automate the
process of reusing digital building models, which are already used in construction, to create virtual scenes, instead
of having to do parallel content creation for visualization. Using the Oculus Rift head-mounted display and the Leap
Motion hand-tracking device, we show the possibilities of naturally interacting within a virtual space in different use
cases. The software, based on the popular game engine Unreal Engine 4, will be used as a basis for further research
and development.

Results: Building Information Modeling data can be imported to UE4 with our presented plugin. Using an
automated database for mapping materials to the geometry simplifies the process of importing Building
Information Modeling entities. The refresh rate of the system stays within acceptable margins needed for virtual
reality applications using head-mounted devices.

Conclusions: Head-mounted devices present a great potential for the Architecture, Engineering and Construction
industry, as a person can experience realistic first-person situations without having to care about injuries.
Automated processes for the simplification of content creation, leveraging existing models, and the usage of visual
programming languages enable even nonprogrammers to create scenarios to their needs.

Keywords: Virtual Reality, Visualization, Construction, Engineering, Head-mounted devices, Building Information
Modeling
* Correspondence: thomas.hilfert@rub.de
Computing in Engineering, Ruhr-Universität Bochum, Universitätsstraße 150,
Bochum 44801, Germany

© 2016 Hilfert and König. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40327-015-0031-5&domain=pdf
mailto:thomas.hilfert@rub.de
http://creativecommons.org/licenses/by/4.0/

Hilfert and König Visualization in Engineering (2016) 4:2 Page 2 of 18
Background
Head mounted devices (HMD) for Virtual Reality (VR)
are currently experiencing a renaissance. In the past,
these systems were only accessible for large companies
at high costs (starting at several thousand Euros) and
using specialized systems. Even then, the user experience
was under par. Devices were lacking the refresh rate
needed to smoothly translate head movements in the
virtual world and had inadequate resolution and a low
field-of-view (FOV) for realistic impressions. Sufficient
refresh rates of displays and updates in the virtual world
are key factors to consider when using VR, as the user
will be otherwise likely prone to motion sickness on lon-
ger exposure.
In contrast to traditional surface based stereoscopic

methods, such as 3D shutter glass monitors or beamers,
HMDs enable individual rendering of the user’s perspective.
Movements of the head and / or body are being translated
into movements of the virtual avatar. The camera location
and rotation will then be modified to the matching position.
These techniques are similar to the field of Augmented
Reality (AR), omitting the blending with the real world. AR
will become more important in the future, but lacks the
fully free designed environment without the boundaries of
reality VR has.
While a designer or engineer has learned to use his

imagination during the design phase to visualize the final
product, this is difficult for outsiders. Being able to
present 3D models and scenes to a wide range of audi-
ence is therefore beneficial in engineering and construc-
tion. We chose to use a game engine as basis of our
research, as they are trimmed to maximum performance
at a high level of detail. Also, in contrast to using a pure
graphics engine, sound playback, physics and networking
abilities are already present. Having game developers
targeting the engine for plugin development is also a
plus, as ongoing feature extensions and bug fixes will be
available.
When creating 3D building models in construction,

additional resources have to be assigned for the conver-
sion into a realistic visual representation or the buildings
have to be recreated from scratch for the different 3D
formats for visualization, which are most likely incompat-
ible among each other. If additional iterations of those
models are created by the engineers, time consuming and
costly effort has to be spent on adapting the newest
changes into the VR scenes. Also, the visual representation
of the entity in 3D space has to be defined after each
import, so that realistic materials can be used in the
visualization. Minimizing the complexity and automating
this migration process into the VR presentations would be
a great benefit for the construction industry.
In this paper we present a solution for building a VR

environment, consisting of different hardware and
software components to achieve a deep level of immersion
to users while minimizing the effort of creating 3D scenes
for VR from building models. We show applications for
the environment via three different, common use cases.
Additionally, all of the components mentioned are cheap
to buy, enabling even non-professionals access to such
simulations. Every part can be used independently, but
play well together on maximizing the immersion experi-
ence and interaction.

Related research
In Sampaio and Martins (2014) the application of VR to
visualize the construction of a bridge using two different
construction methods is described. The target of this
implementation was to give students a deeper under-
standing about how bridges are built, as they can’t have
the same level of insight on a real construction site due
to safety reasons. They target mainly the creation and
deployment of 3D models over traditional teaching prac-
tice (verbal description / pictures / diagrams) and come
to the conclusion that the interaction is one main bene-
fit of using VR. However, they don’t elaborate on proper
input methods for natural interaction with the system
and the high level of immersion a HMD would give.
Grabowski and Jankowski (2015) are testing VR train-

ing for coal miners using different HMD hardware
setups in conjunction with joystick and VR glove input
methods. They found out that the test subjects preferred
high immersive VR, but the FOV was negligible. The
reason may have been, the hardware used for the 110°
FOV is known to be prone to ghosting (artefacts from
previously rendered frames still partly visible, causing
motion sickness) and this may be diminishing the
positive effects of having a high FOV. Nevertheless, the
study showed that the use of a vision based system for
detecting natural hand movements is better than
wireless 3D joysticks and that the result of the training
“[…] is maintained in the long term.” (Grabowski and
Jankowski, 2015, p. 321).
Rüppel and Schatz (2011) describe the creation of a

serious game environment for evacuation simulation in
case of a fire. They harness Building Information Model-
ing (BIM) data as a base for their building-modelling con-
cept and describe the advantages of having material data
included to simulate the structural damage. The VR-lab
concept described uses ideally most human senses (visual,
tactile, auditory, olfactory) and enables interaction with
the scene. However, their proposal references expensive
components for the environment, by means of VR-lab
facilities. Using the low-cost equipment described in this
paper may benefit creating an easier deployable and af-
fordable setup with only minor drawbacks (missing olfac-
tory or tactile senses), but with more immersive visual
representations. Surround headsets and / or binaural

Hilfert and König Visualization in Engineering (2016) 4:2 Page 3 of 18
recordings can replace the audio installation described in
their paper.
Merchant et al. (2014) explore different publications

on virtual reality-based learning with regard to the out-
comes in education. During the assessment they found
out there are many examples of VR being beneficial for
learning and “virtual reality-based instruction is an ef-
fective means of enhance learning outcomes” (Merchant
et al., 2014, p. 37). As stated, one reason for not having
widespread VR in education is financial feasibility. Also,
VR environments based on desktop 3D computers do
not provide fully immersive experiences, but enhance
the learners’ engagement (Merchant et al., 2014, p. 30).
We conclude that having a low-cost VR environment at
disposal, which works on a normal desktop level, may be
favourable for the Architecture, Engineering and Con-
struction (AEC) industry, as well as for education outside
of this field. There may be some applications where regu-
lar serious games on a computer monitor may be better to
use, as mostly everyone can use a mouse or keyboard to
operate traditional user interfaces (e.g., entering numeric
values). However, operations, such as pushing buttons or
levers, may manifest more naturally in a students’ memory
if real world movements are usable and being tracked into
VR.
Roupé et al. (2014) support the aforementioned state-

ment, in saying that “body movement can enhance naviga-
tion performance and experience” (Roupé et al., 2014, p.
43), but the ability of tracking parts of the body usually
needs expensive equipment. The authors describe a system
using an Xbox Kinect sensor for navigating planned urban
environments. By using body postures (leaning back and
forth, turning the shoulders) participants are able to navi-
gate through a VR-model of a city. They were able to
perceive distances and scales inside the environment better
when using body movements. As translating postures to
VR navigation is a first step, an optimal solution would be
to map walking movements directly with dedicated hard-
ware, if possible.
Edwards et al. (2015) show the feasibility of using a

game engine to include end-users in the BIM design
process. They use an Autodesk Revit plugin for commu-
nicating with the Unity game engine and enable collab-
oration over a networked connection. They also extract
BIM information via a local webserver started in Revit,
but this is only a short-lived instance and is disabled, as
soon as a dialog is closed. A central server for adminis-
trating projects and revisions would be beneficial to inte-
grate the already existing design process. Furthermore,
the implementation is missing the VR integration we
aim to achieve.
All studies show that there is demand for VR in many

fields. It may have not been considered testing the actual
deployment in some due to financial concerns of such a
system. Providing a low-cost flexible environment which
delivers safe testing and natural interactions is desirable.
Especially in fields where hazards limit trial and error
testing, VR can gain a foothold.

Concept
The goal of our approach is to unify an environment for
different use cases in engineering and construction. As
BIM is being introduced throughout the construction
industry, support for Industry Foundation Classes (IFC) is
beneficial. The IFC enable data exchange between a wide
range of software applications and design tools. IFC
models consist of optional geometry information with
attached metadata, such as materials used and product
structure. By retaining this metadata information within
the virtual environment (VE), interaction with the ele-
ments enables more profound experiences. If a user wants
to check which material a certain wall is composed of, this
is seamlessly possible without breaking immersion.
A VE consists of a visual output element and one or

multiple input elements to enable interaction with the
system. Creating natural input methods are a hurdle at
building such a system. They are either camera-based rigs
with multiple cameras using visual detection algorithms,
handheld devices or specialized depth sensors. Tracking
the hands in relation to the virtual body position seems to
be the most promising way to manipulate objects in the
virtual world, as the learning curve for new users is mod-
est and tracking reliability is not limited by hidden body
parts due to an unfavourable camera position.
Ideally, off-the-shelf equipment should be usable for

the whole system, as this will lower the total cost and
increase deployment options.

Hardware setup
Several different display technologies are possible to im-
merse users into a virtual world. In contrast to beamer
supported solutions, namely CAVE (Cave Automatic Vir-
tual Environment) or similar shutter / polarized 3D walls,
HMDs allow for full first person immersion. Therefore,
we will only further elaborate these kinds of display de-
vices. For our application, the currently most widespread,
low cost single device, the Oculus Rift, will be used.

Oculus Rift
Recent innovations in display technology enable us now-
adays to have low cost HMDs by using display panels
intended for mobile phones. The most prominent device
is the Rift from Oculus, commonly referred to as
“Oculus Rift” (Oculus, 2015). It uses a single mobile
phone display, derived from the Samsung Galaxy Note 3
device (1920x1080 pixels, overclocked at a 75 Hz refresh
rate). While older HMDs incorporate independent

Fig. 1 Oculus Rift (a) with mounted Leap Motion (b)

Hilfert and König Visualization in Engineering (2016) 4:2 Page 4 of 18
displays, the picture displayed on a Rift screen is divided
into two different parts and then separated for each eye
by using lenses, providing an effective resolution of
960x1080 pixels per eye with 100° nominal field-of-view.
An internal gyroscope, an accelerometer and a magnet-
ometer are polled at 1000 Hz for detecting head move-
ments and rotations in all three dimensions of space.
Connection to the host system is realized with a regular
HDMI connector and USB ports.
The current status of the Rift is the Development Kit 2

(Fig. 1, a), which first introduced positional tracking by
employing infrared LEDs. An additional camera, mounted
in front of the user, films these blinking emitters enabling
the detection of positional changes of the head and body
at 60 Hz. Also, ghosting effects have been reduced due to
a technique called “low persistence,” setting the screen to
black (pixels off) between two rendered frames.
Oculus announced their first consumer headset release

for the first quarter of 2016. The display refresh rate will
be boosted to 90 Hz and the total resolution for both
eyes is aimed at 2160x1200 pixels. Oculus is using its
already proven camera tracking system (constellation
tracking) for additional input devices, which can be held
in both hands. They will enable precise manipulation
with buttons and gestures.

HTC Re Vive
Another important hardware manufacturer stepped re-
cently into the area of head-mounted displays. HTC,
known mainly from the smartphone market, is develop-
ing their Re Vive headset (short name “HTC Vive”) in
cooperation with a major games distribution company.
The Vive uses a different technique for tracking the
users’ position on room scale. Where the Oculus Con-
sumer Version 1 (CV1) will use the visual constellation
tracking system with optical LEDs (outside-in tracking),
HTCs approach is inside-out tracking. The user has to
fix two laser emitters in each corner of the room, which
will move an arc of laser light in a sweeping pattern.
The headset can then track the exact position in the
room via multiple, spatial distributed photo diodes,
based on the time of signal received at each diode. This
enables the user to move freely in the room and to be
tracked all the time in the VE, instead of having a
seated-only experience. However, as no currently avail-
able wireless display technology has the bandwidth or
latency to present VR to the user, one is still limited by
the cables of the headset. Specialized wearable com-
puters already exist to counter this caveat, but are not
considered here, because they are specialized builds and
/ or expensive to build and maintain.
The Vive also supports tool tracking, sporting the same

technology as the headset tracking, and enables the user
to precisely grab and manipulate objects in the environ-
ment. The joysticks can also be visually presented in the
VE, so that the user is able to see the orientation and pos-
ition of them, as he is using the system. The room scale
tracking and the precise sensors enable a highly interactive
and immersive environment, but the locomotion problem
itself is still present. If the user wants to move beyond his
current room without breaking immersion, this is only
possible by playing tricks on his mind, e.g. simulating a
blink of his / her eyes and a relocation while having a
blacked out screen.
Leap Motion
The Leap Motion controller (Leap Motion, 2015) is a
hand-input device, which uses two cameras and infrared
LEDs to capture stereoscopic images of the user’s hands.
With calibrated camera positions and proprietary soft-
ware algorithms it is able to calculate the finger, hand
and wrist positions. It is attachable to the Rift via a sep-
arately sold VR mount (Fig. 1, b).

Hilfert and König Visualization in Engineering (2016) 4:2 Page 5 of 18
Tracking performance is dependent on lighting and
environment. False positive detections of hands are pos-
sible when the distance is comparable to other nearby
objects, such as monitors or keyboards. With optimal
tracking conditions it is possible to fluidly convert de-
tected joint positions to a model in virtual space.
Natural tracking devices, such as the Leap Motion

controller, are the most intuitive way to interact with a
virtual environment, but often lack the needed precision
for pinpoint movements. As Oculus and HTC are releas-
ing their new consumer headsets with specialized tool
tracking solutions, natural interaction seems more and
more obsolete. But for entry-level users usability is much
higher with hand movements and gestures, than with
specialized tools and buttons. Also, the user is free to
utilize his hands, as he may. The whole physical bound-
aries of his fingers and hands are interacting with the VE
and allow for more freedom than only using a few but-
tons. However, immersion may break more easily when
tracking fails.
Additional hardware inputs
Using the Leap Motion, only hand (and tool) tracking is
possible. Tracking the users legs may be beneficial for
further immersion if he is looking down in the VE. Also,
error correction for misalignment of the body tracking
points and the virtual world may be countered by using
multiple input sensors.
For obtaining whole body positions, we’ve been work-

ing on integrating Microsoft’s new Kinect 2.0 (Microsoft,
2015) sensor. This also allows for spatial tracking inside
a medium range and lets the users move around. As the
Rift is not wireless, HDMI- and USB-extenders are
needed to allow for freedom of movement. Larger loca-
tion changes are only supported by controller inputs
(e.g., by an analogue stick of a game controller) or by
gesture detections (e.g., flat palms up and fingers ex-
tended =move in this direction) in this approach.
Research and development using only Inertial Meas-

urement Unit (IMU) sensors for relative input is also
done. One promising product to feature these capabil-
ities in conjunction with low latency is “Control VR”
(Control VR 2015), which lately went out of pre-order
phase. Tracking sensors on the hand, down to the finger
level, the lower and upper arm and chest measure move-
ments and rotation. The system uses a calibration ges-
ture to reset all stored positions to zero, by holding the
arms straight down to the sides of the body. Relative
changes to the individual sensors’ position can then be
measured and translated as VR input. The sensor drift in
this application should be held reasonably low, as errors
in position detection multiply and prediction of current
posture gets worse over time. Using an absolute tracking
system, such as the Kinect / Vive Lighthouse / Oculus
Constellation, could aid in minimizing sensor drift.
As an alternative to giving the user movement ability in

a limited real world space, recent “treadmill” systems for
consumers have been presented. They work by fixing the
user on a stationary point and reducing friction on the
feet. One widely known product using this technique is
the Virtuix Omni (Virtuix, 2015). Special shoes limit side-
ways slipping, but enable forward sliding movements,
while sensors track the movements and convert them to
regular game controller signals. This allows for a high
compatibility with most 3D-engines and platforms.

Software engine
While the Oculus Rift runtime can be attached to many
graphics engine implementations, we decided to use an
existing game engine at our disposal. Game engines, used
to power computer games, are targeted at the highest per-
formance (measured in frames per second) while provid-
ing the most possible realistic user experience, in contrast
to scientific visualization. Rift support is enabled in the
Unity game engine (Unity Technologies, 2015) and the
Unreal Engine 4 (Epic Games, 2015) through a plugin-
based architecture. Unity is more mature, but the Unreal
Engine allows for more detailed graphics and is completely
open-source for subscribers. It also features a complete
network stack for communication between servers and
clients, usually intended for multiplayer gaming. This
enables collaboration between different collocated or
remote users.
The UE4 comes included with an editor for creating and

managing scenes (levels), materials, characters and anima-
tions, to name a few. The editor and engine are modifiable
by plugins, written in C++, so that a developer is able to
extend the functionality or graphical user interface, if
needed. Support for hot-plugging code changes is also in-
cluded. As long as the code changes are not too complex
for the running environment, Dynamic-Link Libraries
(DLL) files will be compiled from the integrated develop-
ment environment (e.g. Visual Studio) and reloaded at
editor runtime.
Programming in UE4 can also be done via Blueprints,

which are connectable event driven structured logical
building blocks (cf. Fig. 2). Every Blueprint is a logical
sequence of commands, which may read and write vari-
ables. Subfunctions may be defined by the user in Blue-
prints and will be callable as a custom node. Multiple
start events are defined inside of UE4 for beginning the
sequence, but those can be extended by custom imple-
mentations. This enables modification of the application
behaviour to be carried out even by non-C++ program-
mers. Blueprints support context sensitive assists, sug-
gesting several alternatives when drawing a connection
from one component to another. Entities inside a scene

Fig. 2 Example of blueprint logic modelling in UE4

Hilfert and König Visualization in Engineering (2016) 4:2 Page 6 of 18
can be referenced inside the Blueprint graph to change
their attributes and they generate events that a program-
mer can subscribe to. Even custom C++ code is access-
ible from the Blueprints, which enables a developer to
rapidly create custom classes for his application and
then extend the functionality and logic by using Blue-
prints. This also gives the advantage of not having to re-
compile the code and does enable visual debugging in
real-time. One possible example application for using
Blueprints is to map different user inputs from the key-
board or mouse events to actions inside UE4. Upon
Fig. 3 Example of a menu inside a VE
having the input event called, custom Blueprint code
can be called, e.g. calculating a ray hit-detection from
the users’ point of view and getting the first UE4 actor
that is underneath the cursor / crosshair for further ma-
nipulation (grabbing, moving, deletion). Figure 2 shows
the game logic to add a torque impulse to a ball the
player controls as an example. First the input axis value
is multiplied with a variable “Roll torque” and fed into a
“Make Vector” function (green lines). Then the resulting
vector is applied to the “Add Torque” function, so that
the result is added to the movement of the ball in the

Hilfert and König Visualization in Engineering (2016) 4:2 Page 7 of 18
map. The white line shows the sequential order of exe-
cution, where the “InputAxis MoveForward” event trig-
gers the “Add Torque” function.
As the normal input methods are not in view to the

user when wearing the Rift, menus should be integrated
into the VE. Unlike traditional menu placement, which
is overlaying the 3D view, menus in VE need to be
placed in the rendered scene itself. A recent release from
Leap Motion covers this possibility by attaching a menu
on the user’s virtual arm.
Figure 3 shows the implementation inside a planetar-

ium demo application. Users are able to change different
settings of the software while keeping them immersed.
Rotation of the wrist changes the displayed submenus
and interaction with the second hand changes the dis-
played settings. This is done by hit testing the individual
fingers with the plane on which the menu resides. UE4
already has interaction handlers for menus, which can
be used in conjunction with a 3D-menu. This allows for
context based manipulation, such as selecting an elem-
ent and changing its ID, name, material or colour in the
scene. It is also possible to display the user’s current
position inside a model or to use this to teleport him to
different places inside. Storing special positions and
viewports for later presentation is also a feasible ap-
plication, as cumbersome navigation through large-
Fig. 4 Software Architecture
scale models is simplified by having such a “positional
bookmark”.
The presented widget in Leap Motion (2014) can be

reproduced in multiple software engines, using the input
provided by the Leap Motion controller. Alternatively,
mapping controls to objects on surfaces inside the VE is
also possible. This should be done when triggered actions
result in modification of the VE’s objects, mimicking a real
world control circuit, such as a lift control. UE4 allows also
for very realistic rendering, supporting up-to-date graphics.

Software architecture
Due to UE4’s flexible plugin architecture, it is possible to
connect it to various different systems. When working
in teams, having a central server which holds all the
BIM data is beneficial. Therefore, we’ve decided to con-
nect to the OpenSource BIMServer (Beetz et al., 2010).
Figure 4 shows all the important components of the
system.
First, an engineer or architect creates BIM models via

the regular design and iteration process. The resulting
file can be imported to the BIMServer, which will then
initially parse the geometry and store it alongside the
BIM model data. The project manager, or a dedicated
engineer, may manage different revisions in the develop-
ment process of a building and update the data

Hilfert and König Visualization in Engineering (2016) 4:2 Page 8 of 18
accordingly. The project may then be imported into the
UE4 editor for further modification. The project can be
bundled and distributed to different machines for testing
purposes, as soon as the preparation is finished. Live
previews of the resulting VE are also possible inside the
UE4 editor to check for any major inconsistencies or
problems.
As UE4 doesn’t know about different BIM materials, e.g.

concrete for walls or glass for windows, additional map-
ping is needed on the development side. UE4’s standard
starter pack materials are sufficient for fast prototyping,
but further materials may be needed for realistic display of
a building. Therefore, we propose to use a material data-
base for mapping such information. The person in charge
for the preparation of the scene may assign different
materials anytime and even define new ones during the
process.
The part of the UE4 code interfacing with the Open-

Source BIMServer is exchangeable with different Applica-
tion Programming Interface (API) calls to other software,
so that even other server solutions, e.g. such as described
in Das et al. (2015), are accessible, as long as they use
HTTP calls. Even custom protocols are possible to imple-
ment, as the plugin structure for UE4 is dynamic enough
to reference external libraries, if needed.
Regarding network connectivity between multiple cli-

ents, there are two different ways of implementing a
multi-user VE. One possibility is to create the level before-
hand, assign materials and optionally build scenarios. This
allows for most creative flexibility, as all values can be
fine-tuned before stepping in the VE. The major downside
to this approach is that dynamic updating is somewhat
limited. If the BIM data changes, the preparation process
needs to be done again and also distributed to every client,
as the actual model geometry is retained inside a UE4
level. An alternative way of distributing the data would be
to fully automate the process of assigning materials and
preparing the scene via configuration files and a common
material database, which will work for the project. Clients
can then dynamically parse the information given by the
central BIMServer and every update since distribution of
the client software will be honoured. A customizable ava-
tar will represent other participants in the networked VE,
so that social interaction regarding point-of-view is pos-
sible and virtual inspections are more realistic. Communi-
cation between clients can be realized via chatting by
keyboard inputs or a dedicated voice server, which should
be more immersive than using the keyboard. There are
even technologies available for incorporating positional
audio, so that the voice of the other participant seems to
emerge from the direction his avatar is located at (Mum-
ble, 2015).
If a problem is detected during the virtual inspection,

users should be able to store this information. Therefore,
we propose and plan to implement support for the BIM
collaboration format (BCF / buildingSMART, 2015).
Users can annotate specific elements of the building and
add notes, either directly in the VE, or save a screenshot
for later on and write a description of the problem later
on their keyboard. This information should be recover-
able for later user, so that users can jump to the specific
viewport of the problem on a later revision and check
for changes in the model. Support for BCF is included in
BIMServer by the Bimsie1BcfInterface and is accessible
via the JSON-API (JavaScript Object Notation). There is
also a BCF Forum available as plugin for a Wordpress
installation (opensourceBIM, 2015), which can load BCF
information from a connected BIMServer and visualize
the model alongside the separate issues, enabling even
users without access to the VE to work on problems.
As of now, locomotion is an essential problem in the

simulation of virtual worlds and we hope this will be
solved in the near future. Even professional game compan-
ies are solely trying out different concepts at the moment.
Therefore, we still resort to using a game controller /
gamepad or keyboard and mouse for the locomotion. This
should be easily adoptable for any user, which is familiar
with first-person games and / or gaming consoles.

Application for architecture
UE4 uses global illumination (GI) for calculating static
lighting in a level with an engine called Lightmass. Calcu-
lation results will be stored into a special texture channel
during compilation time, taking load from the real time
rending and resulting in very detailed light calculations for
a scene.
Figure 5 shows a published engine example by Dereau

(2015), which demonstrates photorealistic rendering by
Lightmass usable for architectural design. We were able
to run this demo fluidly on an NVidia GeForce GTX980
with no noticeable lags at all. In the past, such quality
was only possible with pre-rendered videos or stills. If a
client wanted to view the scene differently, another off-
line rendering run would have been needed to produce
additional video files. Using UE4 to navigate the scene
allows interactive viewing and presentation of architec-
tural designs.
Running a scene like this with the Oculus Rift is pos-

sible, but it needs to be considered that the amount of
render targets doubles in a worst case scenario. Each eye
has to be rendered from it’s own point of view, giving a
moderate performance hit on slower machines. Network-
ing support in the engine is also helpful again, if multiple
users want to explore the space at the same time.
Table 1 shows the initial costs of each individual compo-

nent. The costs for obtaining the starting package (Rift,
Leap Motion and mount) are approximately around 420€
(without considering the computer system) as of August

Fig. 5 “Paris” Demo by Benoît Dereau

Hilfert and König Visualization in Engineering (2016) 4:2 Page 9 of 18
2015. Additionally, access to the UE4 source code is free
of charge as of recent. If the Unreal Engine is used with
this licensing model, then 5 % of gross revenue per prod-
uct per year has to be paid to the creators of the UE4.
However, this only applies to product sales after $3000 is
exceeded per product per year. This price range is even af-
fordable for hobbyists and home usage.
Implementation
For our development process, the Oculus Rift and Leap
Motion are used as a base system to build upon to. UE4
is used as the central point for simulating VEs. Using
the BIMServer as a central connection between clients,
it is possible to load building data from multiple end-
points. Metadata about certain objects will be available
to the user, such as the element ID of an IFC element.
Additional information can be polled via the JSON-API.
Extending the editor interface itself is easy, as source
code examples are readily available. The BIMServer
Table 1 Costs of components as of August 2015 (w/o shipping)

Name Category Price

Rift DK2 HMD 350.00 $

Leap Motion Hand detection 89.00 €

Leap Mount for
Rift

Accessory 14.99 €

Microsoft Kinect
v2

Body / hand
tracking

(sensor + adapter) 199.98 €

Control VR Body / hand
tracking

(two arm package) 600.00 €

Virtuix Omni Treadmill System 699.00 $

Unreal Engine 4 Game Engine Free to use, royalties may
apply
internally uses the ifcopenshell project (ifcopenshell,
2015) for parsing of IFC files.
To query the BIMServer, we have created a plugin to

connect to the JSON-API and download geometry infor-
mation. Figure 6 shows the process as UML sequence
diagram and the interaction with the API endpoints.
First, the user has to login with his credentials of the
BIMServer to get a session token. The plugin is then
processing all projects that are readable to the user and
stores their latest revision number. It is also possible to
select different revisions of a model when querying.
After the selection, we are finding the unique id of the
BinaryGeometrySerializer plugin, as they vary between
installations of the BIMServer. With the token, the revi-
sion number and serializer id, it is possible to download
a binary representation of the project’s geometry.
It is necessary for parsing the download to know more

about the binary format, which was acquired by reading
the BIMServer source code on serializing. Figure 7
shows a representation of the binary structure. The file
starts with a padding of two bytes, followed by the String
“BGS”, which is short for BinaryGeometrySerializer. The
next six float values describe the bounding box of the
whole IFC project. After that, an entity count is given,
which will be used to further iterate over the file. Every-
thing in the red border of Fig. 7 is a separate IFC entity.
Therefore, we need to evaluate the bordered file struc-
ture “Entity Count” times. Each IFC entity begins with
the IFC class descriptor (e.g. “IfcWindow”), the entity ID
(unique to the BIMServer) and the geometry type. Latter
is 0 for triangle data and 1 for instances, which have no
further geometry to parse. We then need to set the file
pointer to the next offset being a multiple of four, be-
cause the server structures the data differently for the
normal JSON-API and an additional WebSocket

Fig. 6 UML diagram of the connection procedure

Hilfert and König Visualization in Engineering (2016) 4:2 Page 10 of 18
implementation. The transformation of the object in 3D
space is done by using a 4x4 transformation matrix, with
the upper left 3x3 submatrix defining the rotation. The
following geometry data ID is referencing the unique id
for the geometry on the server. The subsequent six float
values define the bounding box of the IFC entity’s
Fig. 7 Binary geometry serializer format (order left to right, then top to bo
geometry. Each triangular geometry is then defined by
indices, vertices, normals and colors. A group of three
indices define a triangle with the vertices’ coordinates.
Additional normals and colors help with visualization,
although we are calculating the normals using UE4’s
calculation methods.
ttom)

Hilfert and König Visualization in Engineering (2016) 4:2 Page 11 of 18
After parsing the data structure contained inside the
binary file, we are able to create actors in UE4 to display
the geometry. We are using a class “IFCActor” that in-
herits from UE4’s own AActor class and extends with
additional attributes and functions. Usually, UE4 uses
static meshes for presentation, but there is an option of
having procedural geometry (i.e. created at runtime)
with the “ProceduralMeshComponent” class. As no ref-
erence to static meshes can be stored, which is usually
contained in UE4’s “uasset” file format, the triangular
data is retained inside the map we are importing into.
This leads to larger map sizes, but simplifies asset man-
agement, as everything is stored at a single location.
To map the UE4 materials to the created actors, a rule

based association is needed. We created a database, con-
sisting of the project reference ID on the server, and the
material to be assigned for specific IFC classes (Fig. 8).
Windows, for example, may be set to a glass material,
while walls will have a different one. The “mapping_set”
table has a 1-to-n relation with the “mapping” table,
defining the IFC entity class and the corresponding UE4
material. UE4 materials can be accessed using their path
in the project directory and their unique name. If nothing
is defined for the current project id, a template may be
used as basic information. Templates may be composed of
different mapping sets, which define parts of the whole set
of IFC classes available. Furthermore, by using a template
for a project and adding an additional mapping set, the
user is able to leverage default settings and overriding
them by specific settings. We are looking forward on con-
tinuing to simplify this workflow and make it easier for
the user to define at runtime.
Fig. 8 Schema of material database
Using the Oculus Rift with UE4 is simple due to the
engine having a plugin available. This will be loaded
automatically, as soon as the user has a Rift connected.
Visual corrections for chromatic abbreviation and distor-
tion caused by the lenses and input mapping to a virtual
camera works out of the box.
For communication with the Leap Motion, the internal

plugin can be used or an external one can be downloaded.
We found the event driven Leap Motion plugin (getnamo,
2015) to be simple to setup and reliable to use. Conveni-
ence content, such as already rigged character models, is
available and is tuned to usage with the Rift. We had to
modify the physical collision shapes in order to enable full
ten-finger support for interactions. Unreal usually uses
only a capsule shaped collision model on characters to
check for interactions with enabled actors in the environ-
ment. Therefore, each finger needs a tuned capsule shape
for the physics system (Fig. 9). UE4’s socket system
supports to attach objects to user-defined positions of the
animated skeleton of an actor. After adding sockets to
each finger, it is possible to attach a collision shape to
them. Only rotational, scale and position offsets need to
be fine tuned. Afterwards, the shapes’ movement will be
synchronized to the socket’s parent bone, which is the
individual finger we want to have collision be checked for.
Specific collision channels allow to modify the interaction
behaviour with the environment (static environmental ob-
jects, dynamic moving objects, other actors, etc.).
Grabbing objects in 3D space can’t be achieved with

regular collision modelling, as the object would bounce
back and forth between fingers. Gestures or special finger
combinations can be used to attach objects to certain slots

Fig. 9 Capsule collision shapes

Fig. 10 Sensor fusion in testing environment

Hilfert and König Visualization in Engineering (2016) 4:2 Page 12 of 18

Hilfert and König Visualization in Engineering (2016) 4:2 Page 13 of 18
on the user’s character. A Leap Motion gesture could be
moving certain parts of the hand in a circle, swiping in a
direction or pressing a finger forward / downward. Ges-
ture based input can be modelled with Blueprints only,
giving non-programmers a possibility to extend the logic.
As UE4 is one of the major game engines available, sup-

port for alternative HMD devices, especially the HTC
Vive, is possible by using the SteamVR-API (supported
from UE4 version 4.8 onwards), which aims to be a stand-
ard for interfacing with virtual reality hardware. Tool
based input, such as the tracked joysticks of the HTC
Vive, is beneficial when trying to grab objects, as pressing
a dedicated button on the handle of the stick is easier and
more reliable to detect than a grabbing gesture.
Sensor fusion
We are currently working on implementing support for
the Microsoft Kinect v2 sensor into UE4. While there are
plugins available, our aim is to fuse different sensor inputs
together, to improve detection on hand and body postures.
While the Leap Motion is good at detecting hand and
finger movements, it does not detect additional body
parts. Therefore we are aiming towards detecting rough
body posture (legs, upper body, arms) through the Kinect
system and fine tune the hand position when the Leap
Motion detects one or two hands. Figure 10 shows the ini-
tial implementation inside a UE4 testing environment.
The Kinect SDK already has support for detecting skele-

tons, but needs some smoothing on the software side to
prevent jerking of the joints on a frame-to-frame basis.
Unfortunately, support for multiple Kinects on one com-
puter to prevent detection dead zones is not possible due
to runtime and hardware limitations, as the USB 3.0 bus
Fig. 11 Immersive testing of escape route visibility in UE4
rate would be exceeded. Using multiple computers may
circumvent this, but combining the calculated output on
the software side, however, will require complex calcula-
tions and calibrated sensor positions.

Scenarios
In the following segment we present some possible appli-
cations of virtual reality in conjunction with the Unreal
Engine and the aforementioned VR hardware. While some
of the scenarios may not be completely novel, the usage in
a low cost VE with HMDs is well worth a consideration.

Evacuation testing
Behaviour in case of an emergency differs from person to
person. While legal requirements to provide emergency
escape routes in construction are always fulfilled, they
may be not necessarily the optimal solution for a safe
escape. With immersive VR environments it is possible to
test multiple escape scenarios safely and realistically with
many types of users. The usage of first person view using
an HMD and integrated sound effects enable a more real-
istic impression to the user than otherwise possible. Test
operators can monitor the subjective perception of escape
route signs and set up the scene accordingly for another
run. The users’ direction of view can be recorded and
saved for later playback and an in depth analysis. Figure 11
shows an example of escape sign placements and visibility
to the user in case of a fire outbreak. The fire objects can
be placed throughout the scene and even be spawned by
the engine’s logic using Blueprints.
Event scripting, such as the user triggering another fire

sequence upon reaching a certain position within the
environment, is also possible. This technique can also be
used to measure the time needed to exit the building

Fig. 12 Realistic lighting view of fire effects in UE4 with a HMD

Hilfert and König Visualization in Engineering (2016) 4:2 Page 14 of 18
safely. When setting the character’s movement speed to
that of a running or fast walking person, the measured
time should be similar to that of a real world scenario.
The lighting calculations of the UE4 in combination with

sound effects lead to a very realistic scene (cf. Fig. 12).
Ideally, this testing environment can be implemented using
existing IFC models and the BIMServer. Additionally, the
UE4 interfaces natively with the FBX file format. Therefore,
using Autodesk Revit, which is a software solution for
creating and modifying BIM models, as a direct source of
geometry is also possible (cf. Rüppel and Schatz, 2011).
Additions to the scene are always needed in this case, as es-
cape signs and fire outbreak locations are not automatically
generated, depending on furniture and materials.
We are looking forward on streamlining the process of

generating an escape scenario and automatic measuring
Fig. 13 Example first person view of hand interactions with Oculus Rift and
of the escape route times, especially with participants
who have no knowledge of the building layout. For test-
ing, it should be viable to let participants experience the
building from a visitor’s perspective. They have entered
an unknown building and walked to a certain point, but
haven’t been able to fully grasp all of the emergency exit
routes.

Expert training
Training to control special and / or heavy machinery is a
key qualification in multiple professions. However, at the
beginning of such training, accidents may happen due to
major mistakes. Costs of using real machinery are also
not negligible. While hands-on experience is the most
important part of education, certain parts can be accel-
erated if the user knows the control scheme beforehand.
Leap Motion

Hilfert and König Visualization in Engineering (2016) 4:2 Page 15 of 18
Figure 13 shows the stereoscopic image of the user’s
view with the Oculus Rift and hand detection using the
Leap Motion.
Collisions of hands and controls inside the cockpit can

be detected and translated to scripted events for control-
ling movement of the machinery. The user gets a first
person impression of environmental visibility around
him. This scenario requires more scripting work when
applied inside the UE4, as control input and resulting
actions have to be modelled. However, reusing of Blue-
print components is possible, resulting in a more rapid
development enabling further test cases.
Additional use cases include safety considerations when

operating cranes at a construction site. The planned con-
struction site layout can be used to model the environ-
ment. A user would take place in the cockpit of a crane,
giving him the impression of limited visibility and move-
ment range of the actual machine. Attaching objects to
prepared slots on the crane supports the lifting and drop-
ping of objects. Even the basic simulation of waypoint
navigating non-player characters (NPCs) as workers on
the site is possible. If a load hits any modelled object in
the level, physics simulation would lead to a swinging
motion. NPCs can be equipped with a defined number of
hit points (health), which will drop if exposed to certain
forces. A message to the user would then be presented to
notify of the error and restart the scenario, again a great
improvement over reality.

Accessibility validation
Accessibility planning for sidewalks or buildings needs to
be accurate and mistakes at this stage may lead to expen-
sive adjustments later on. First person testing, for example
of wheel chair accessibility, is possible with the proposed
VR environment.
Fig. 14 Simulated wheelchair inside a building
The user can be placed into a wheel chair model and
will see the designed level around him from a handi-
capped perspective (Fig. 14).
Using the additional hand detection and resulting arm

placement enables a check for unreachable controls, such
as light switches or fire alarm buttons. The physics engine
prevents entering rooms that are too small to drive into.
The UE4’s physics engine allows for the definition of

wheeled character blueprints. While these are usually
intended for simulating cars, they can also be adapted to
the wheelchair. Each tire of the vehicle supports friction
settings and the total centre of mass will be taken into
consideration by the physics engine. Acceleration and
deceleration parameters are also supported.

Feasibility / Discussion
For determining the feasibility of the approach, we have
tested the performance of our imported geometry with
assigned materials and the Oculus Rift DK2. The test
was executed with a NVidia GeForce GTX 980, an Intel
Xeon W3565 and using Windows 8.1 as operating sys-
tem. The imported model consists of 4,731 IFC entities
with a total of 264,131 triangles. As can be seen in
Fig. 15, the overall performance is centred well around
the targeted 75 frames per second (FPS). Some lag spikes
exist, which occurred while doing rapid 90° to 180° turns
while inside the building. The authors assume this may
be due to the occlusion culling algorithm testing which
faces of the triangles are visible to the user.
Drawing all of the 264,131 triangles at once was not

possible while maintaining a steady 75 FPS to the user,
but is also not necessary. As the user will be most of the
time inside the building, which is the key application of
our proposal, the integrated algorithms will only draw
visible (not occluded) surfaces in the view frustum of the

Fig. 15 Frames per second for example IFC model

Hilfert and König Visualization in Engineering (2016) 4:2 Page 16 of 18
camera. Therefore, the amount of triangles to be proc-
essed is drastically reduced and the performance needed
for displaying an immersive interior is easily fulfilled.
Figure 16 shows the general approach of the occlusion
culling process (Hudson et al., 1997). The camera is cre-
ating a view frustum that extends from the viewpoint
into the 3D scene. Everything inside this volume has to
be potentially rendered by the UE4, but as some objects
occlude other entities farther away (in view direction) an
intelligent approach has to be chosen on testing which
parts are visible. Therefore, after finding all occluders in
the vicinity of the camera, shadow volumes can be cast
from them. Everything inside this volume is culled and
Fig. 16 Concept of shadow volume occlusion culling, source:
Hudson et al. (1997)
can be skipped when rendering the scene, using the
hardware’s z-buffer.
Additional countermeasures may include another

step in the pre-processing of IFC geometry by hashing
the vertices coordinates and faces to store already exist-
ing or similar geometry in a map structure. Figure 17
shows the process of reusing the already processed
geometry. First the vertices coordinates’ and face order
is concatenated into a string using delimiters. Then this
string is fed into a one-way hashing function to get a
resulting hash value, which can be used as a lookup key
for a map structure. If the key already exists in the
map, we can assume this geometry has already been
processed. Therefore, the IFC entity can be cloned in
UE4 for optimizing the draw calls needed on the
graphics-processing unit’s end. Only rotation and trans-
lation have to be applied, to reflect the different pos-
ition and orientation in the 3D space. If the key does
not exist in the hash map, we have to create new geom-
etry from the vertices and faces and then store a
pointer to this geometry for later usage. Then the iter-
ation processes the next IFC entity.
With the new devices (Oculus Rift CV1 / HTV Vive)

the requirement rises to 90 FPS for more immersive ex-
periences, which should be achievable with our proposed
approach. Especially as newer graphics cards in combin-
ation with Windows 10 have support for DirectX 12,
which is reducing draw call overheads with an optimized
graphics pipeline.
Special implementations, such as special control schemes

and interactions with the 3D world still need initial devel-
opment effort, as no “out of the box” solutions exist.

Fig. 17 Processing IFC entities with using a hashed map structure for efficient geometry usage

Hilfert and König Visualization in Engineering (2016) 4:2 Page 17 of 18
Complex and high level architectural scenes, such as seen
in Fig. 5, still require a capable 3D artist for content cre-
ation or a developer experienced with the game engine. As
immersion inside a scene does not solely depend on the
realism of graphics, professional developers without deep
understanding of modelling can also do fast creation of
environments. Several free 3D model sites are available on
the Internet, which can be used as a source of models for a
scene. Full body joint detection can be implemented using
Microsoft’s Kinect or similar hardware. Users are then able
to move every part of their body and see the results in the
VE.
Hand detection using the Leap Motion is good, but

tends to give false positives when not having free space in
front of the user. Also, misdetection of the left and right
hand are possible. This is an issue that is currently being
worked on by the manufacturer and developers. Combin-
ing the Leap data with the Kinect system seems promising
for now.
Regarding the fire example, we propose to further

elaborate the scripting qualities of the UE4. Depending
on material properties, a fire spread rate could be calcu-
lated, minimizing the set up time for the test operators
and giving a more realistic environment.
As of now, several developers are porting their soft-

ware to SteamVR and the HTC Vive, where the develop-
ment kit preorder phase ended recently. Setting up the
lighthouse trackers for the Vive and clearing a room of
obstacles may be still a thing for enthusiasts, but track-
ing the hands with tools seems more reliable, as the
optic detection of the hands is still not consumer-ready.
In reasonable time, Sony will step into the market with
their own solution (Morpheus headset) and this will be a
big step forward for the whole VR community, as more
customers are aware of the possibilities tied to VR.
Conclusion / Outlook
HMDs today are getting more useful for a wide range of
applications in construction and engineering, while cost-
ing less than in the past. Modern game engines, such as
the UE4, enable even non-programmers to generate logic
procedures and levels for presentation. VEs enable the
users to experience complex models or control schemes
instead of having to comprehend a complex explanation
or offline rendered 2D/3D images.
We have shown the feasibility of automating major

parts in the VR creation process from BIM as a starting
point and the simplification by using the proposed meth-
odology and software, as no parallel designing process for
visualization is needed. BIMServer as a central server for
storing BIM data is beneficial when using the proposed
workflow and plugin for UE4. Geometry does not have to
be recreated and can be imported. We plan to further
extend the functionality and simplify the workflow in the
future to create an easy importer for VR experiences based
on real building data.
Different use cases for utilizing a VE are evacuation

plan testing, expert training and accessibility validation
of environments. The supplied scenarios are only a small
selection of what can be done using a VE for construc-
tion and engineering. Especially when using intuitive

Hilfert and König Visualization in Engineering (2016) 4:2 Page 18 of 18
and natural control schemes, it may be easier for users
to interact with the virtual surroundings.
Also, we are looking forward to future HMDs that

may include eye-tracking mechanisms. Rendering from
two different point-of-views is computationally expen-
sive, even more, when considering increasing resolutions
for HMD displays in the coming years. Eye tracking can
limit this impact, by only calculating high-resolution
parts of the VE where the user is looking at and giving
more approximate representations at the peripheral
vision.
Having the graphics card manufacturers change their

architectures and drivers to be optimized for VR seems
to be an indicator that this technology is here to stay
and will be further improved in the future.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed extensively to the work presented in this paper.
Hilfert reviewed and analyzed the literature, developed the concept and use
cases, and drafted the manuscript. König supervised the entire processes of
this study. All authors read and approved the final manuscript.

Received: 31 August 2015 Accepted: 28 December 2015

References
Beetz, J, van Berlo, L, de Laat, R, van den Helm, P (2010). BIMserver. org–An open

source IFC model server. In Proceedings of the CIP W78 conference.
buildingSMART (2015). BIM collaboration format – BCF intro. http://www.

buildingsmart-tech.org/specifications/bcf-releases, Accessed: 20.08.2015
Control VR (2015). Control VR. https://www.kickstarter.com/projects/controlvr/

control-vr-motion-capture-for-vranimation-and-mor, Accessed: 30.01.2015
Das, M., Cheng, J., & Kumar, S. S. (2015). Social BIMCloud: a distributed cloud-

based BIM platform for object-based lifecycle information exchange.
Visualization in Engineering, 3, 8.

Dereau, B (2015). Unreal Paris Virtual Tour. http://www.benoitdereau.com,
Accessed: 30.01.2015

Edwards, G., Li, H., & Wang, B. (2015). BIM based collaborative and interactive
design process using computer game engine for general end-users.
Visualization in Engineering, 3, 4.

Epic Games (2015). Unreal Engine 4. https://www.unrealengine.com, Accessed:
30.01.2015

getnamo (2015). leap-ue4 – event driven Leap Motion plugin for Unreal Engine
4. Online: https://github.com/getnamo/leap-ue4, Accessed: 30.01.2015

Grabowski, A., & Jankowski, J. (2015). Virtual Reality-based pilot training for
underground coal miners. Safety Science, 72, 310–314.

Hudson, T., Manocha, D., Cohen, J., Lin, M., Hoff, K., & Zhang, H. (1997).
Accelerated occlusion culling using shadow frusta. In Proceedings of the
thirteenth annual symposium on Computational geometry (pp. 1–10).

ifcopenshell (2015). open source ifc geometry engine. http://ifcopenshell.org,
Accessed: 30.01.2015

Leap Motion (2014). Arm HUD VR (Alpha). https://developer.leapmotion.com/
gallery/arm-hud-vr-alpha, Accessed: 30.01.2015

Leap Motion (2015), Leap Motion. https://www.leapmotion.com, Accessed: 30.01.2015
Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014).

Effectiveness of virtual reality-based instruction on students’ learning
outcomes in K-12 and higher education: A meta-analysis. Computers &
Education, 70, 29–40.

Microsoft (2015), Kinect SDK v2. http://www.microsoft.com/en-us/
kinectforwindows/develop, Accessed: 30.01.2015

Mumble (2015). Mumble Wiki – Positional Audio. http://wiki.mumble.info/wiki/
Positional-Audio, Accessed: 20.08.2015

Oculus (2015). Oculus Rift. https://www.oculus.com, Accessed: 30.01.2015
opensourceBIM (2015). BCF-Forum. https://github.com/opensourceBIM/
BCFForum/wiki/BCF-Forum, Accessed: 20.08.2015

Roupé, M., Bosch-Sijtsema, P., & Johansson, M. (2014). Interactive navigation
interface for virtual reality using the human body. Computers, Environment
and Urban Systems, 43, 42–50.

Rüppel, U., & Schatz, K. (2011). Designing a BIM-based serious game for fire safety
evacuation simulations. Advanced Engineering Informatics, 25(4), 600–611.

Sampaio, A. Z., & Martins, O. P. (2014). The application of virtual reality
technology in the construction of bridge: The cantilever and incremental
launching methods. Automation in Construction, 37, 58–67.

Unity Technologies (2015), Unity Game-Engine. http://unity3d.com, Accessed: 30.
01.2015

Virtuix (2015). Virtuix Omni. http://www.virtuix.com/products, Accessed: 30.01.
2015
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.buildingsmart-tech.org/specifications/bcf-releases
http://www.buildingsmart-tech.org/specifications/bcf-releases
https://www.kickstarter.com/projects/controlvr/control-vr-motion-capture-for-vranimation-and-mor
https://www.kickstarter.com/projects/controlvr/control-vr-motion-capture-for-vranimation-and-mor
http://www.benoitdereau.com
https://www.unrealengine.com
https://github.com/getnamo/leap-ue4
http://ifcopenshell.org
https://developer.leapmotion.com/gallery/arm-hud-vr-alpha
https://developer.leapmotion.com/gallery/arm-hud-vr-alpha
https://www.leapmotion.com
http://www.microsoft.com/en-us/kinectforwindows/develop
http://www.microsoft.com/en-us/kinectforwindows/develop
http://wiki.mumble.info/wiki/Positional-Audio
http://wiki.mumble.info/wiki/Positional-Audio
https://www.oculus.com
http://unity3d.com
http://www.virtuix.com/products

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Related research
	Concept
	Hardware setup
	Oculus Rift
	HTC Re Vive
	Leap Motion
	Additional hardware inputs

	Software engine
	Software architecture
	Application for architecture

	Implementation
	Sensor fusion

	Scenarios
	Evacuation testing
	Expert training
	Accessibility validation

	Feasibility / Discussion
	Conclusion / Outlook
	Competing interests
	Authors’ contributions
	References

