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Abstract

This article presents an investigation about prediction accuracy of multi-parametric
models derived from numerical data. Three different mechanical test-cases are used for
the generation of the numerical data. From this data, models are derived for the
prediction of characteristic variation to arbitrary changes of the input parameters.
Different modeling approaches are evaluated regarding their prediction accuracy.
Polynomial matrix equations are compared to regression models and neural network
models provided by Machine-Learning toolboxes. Similarities and differences of the
models are worked out. An exponential matrix-equation-model is proposed to increase
accuracy for certain applications. Influences and their causes to the prediction accuracy
for the model predictions are evaluated. From this minimum requirements for deriving
valuable models are defined. Leading to a comparison of the modelling approaches in
relation to physical plausibility and model efficiency. Where efficiency is related to the
effort for data creation and training-procedure. For one of the sample cases, a
prediction-model is applied to demonstrate the model application and capabilities. The
model equation is used to calculate the value of a penalty function in a
multi-input/multi-output optimization task. As outcome of the optimization, four
natural frequencies are fitted to measured values by updating material parameters. For
all other cases sensitivity-studies including verification to numerical results are
conducted.
Keywords: System modelling, Machine Learning, Numerical experiment, Parametric
Finite Element Analysis, Prediction accuracy, Sensitivity study, Model optimization

Introduction and background
Today’s engineering tasks are usually part of multi-parameter, -level and -physics pro-
cesses. Numerical models and simulations are often applied in development processes.
Common to all model-based approaches is a certain calculation procedure that contains
one or more variables which are used to create the link between the model and a real
counterpart. A drawback of these numerical simulations is also commonly known. They
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are only able to deliver “one result” for a given input. A simulation outcome using average
material parameters for a nominal geometry represents therefore an average result.
Model optimization updates material parameters of an available FE-model to fit better

to experimental data, see [1]. But getting closer to one measurement is also not sufficient
looking at a series of products.Manufacturing requires tolerances, which lead to inevitable
variations of the final geometry. These variations result in a scatter of characteristic prop-
erties of the product. They are not deterministic—therefore the resulting scatter also
is uncertain. The authors of [2] describe a procedure to predict the frequency scatter
for Low-Pressure-Steam-Blades under different operating conditions. The task here is a
prediction of a max. deviation from nominal data. Which also requires a model-based
optimization method. A third application of models is product optimization. Optimiza-
tion routines try to find an optimum (nominal) solution. All applications are dealing
small changes in input-values to reach a local or global minimum. Direct optimization on
numerical simulations is possible, but it may also be expensive in computational effort.
To reduce effort and speed up development iterations, model based optimization may
be used. Another demand for efficient but accurate predicting models are whole-system
models for automation purposes. Full detailed models are not applicable in this scope as
numerical effort contradicts real time requirements.
This variety of applications requires models to be established, which are capable to

predict the characteristics of the (expensive) full featured-models with reduced effort. As
the deviations from the nominal value are relatively small compared to the characteristic
values, high accuracy and still physical valid prediction methods are required.
From a system modeling standpoint different approaches are available. This study

presents several methods, highlights and discusses their capabilities, efficiency and influ-
ences on accuracy.

Systemmodeling

Usually systemmodeling is based on a presumed structure represented by a certainmodel
equation with a number of model parameters (nsys), e.g. [3]. Similar to the material
parameters of an FE-model, these model parameters are unknown. Prior to transferring
the model to a productive state, they have to be defined appropriately. Engineers often
call this approach grey box model [4].
As the exact physical functions are most probably not known analytically, they are fitted

by a polynomial sum, see [5]. Such a polynomial is written

f (x) =
d∑

i=0
aixi = a0 + a1x + a2x2 + · · · (1)

as a sum of infinite number of elements. The variable x represents a single system param-
eter of the system to be modelled. In a real application the sum often does not contain a
high number of degrees d. A plot of three generic functions is given in Fig. 1.
To identify the model parameters (ai), experimental data is usually fitted by a Least

Square Fit method (LSF), e.g. [6]. With a certain number of measurements, the function
values f (xmeasured,i) at a location xmeas,i are known. For a good fitting, a higher number of
measurements than the actual number of model parameters npoly should be used.
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Fig. 1 Scalar function. Plot of generic polynomial function

Fig. 2 Artificial Intelligence. Artificial Intelligence, Machine Learning and Deep Learning, see [7]

Machine learning

Artificial Intelligence (AI),Machine Learning (ML) and Deep Learning (DL) are frequently
used words today. Their relation is shown on the left side of Fig. 2 from [7].
AI basically deals with data handling and analysis. The different levels of the models

require different amounts of data for application. DL, using neural networks with many
layers, requires most data, ML requires less, see Fig. 2 on the right.
ML can be subdivided in Supervised Learning respectively Unsupervised Learning.
In the scope of this study supervised learning techniques were applied. An outcome

of an ML-procedure is a tool which can be applied for making decisions or predictions.
At this point we are close to system modeling. Both methods are using an algorithm for
making predictions and both use empirical data to define model parameters. In contrast
to this modeling approach, Artificial Neural Networks (ANN) do not prescribe a certain
structure, they are closer to a “black box”-model type.

Methods, procedures andmodels
This section starts with a description of the applied methods and calculation procedures
used in the present study. Then modelling techniques from classical engineering and ML
packages are described briefly and compared regarding their capabilities. Finally, three
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Fig. 3 Calculation procedure. Schematic sketch of calculation procedure, similar to [2]

sample problems are introduced, which are used to demonstrate and discuss influences
on model accuracy.

Automated calculation procedure

The automated calculation procedure applied in this study is very similar to the procedure
described in [2]. The basic idea is to use data from a numerical experiment during devel-
opment to derive a simplified model. This model is then used for system optimization or
predicting deviations of certain system characteristics. The focus for the newly developed
software package is being versatile and not bound on a specific application, underlying
software or design target. This is demonstrated here using different FE-software and
meshing procedures.
The procedure is divided into four steps

1 Data creation
2 System Modeling
3 Analysis of system characteristics
4 Validation of models and results

which are illustrated in Fig. 3.
The data creation is done by using a Numerical Experiment. Required for this is a para-

metric numerical model, which may either be an FE- or a CFD-analysis. The parametric
system includes nsys different system parameters. For example geometrical dimensions,
material parameter or layer-directions for fibre reinforced plastics. During preprocessing
of the numerical experiment, the model is modified by random input data within reason-
ably defined boundaries. This is leading to ncalc different calculation runs for the underly-
ing model. After solving, relevant characteristic data (for example natural frequencies or
stress values) is extracted and gathered in adequate data-files.
With the second step the model identification is performed. This is done by combin-

ing and least-square-fitting the random-input- in conjunction with the characteristics-
output-data. Details and results of feasible accuracy is the main topic of this study and
will be described later.
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In the third step, the identified system is used to do further analyses. The main advan-
tage to the underlying numerical simulation is a significant reduction of computational
effort. Using the simplifiedmodel therefore leads to quick and efficient calculations. Opti-
mization, model updating of the numerical simulation to match characteristic-targets or
prediction of spread for characteristic values is feasible. The latter application represents
the focus of [2].
For the later shown sample problems, a sensitivity study and max. deviation search will

be performed.
As an optimization result is highly dependent on the model-accuracy, this study puts a

focus on comparing model accuracy of the models discussed. To validate the prediction
results, the fourth and final step is done. The optimized system parameters nsys are fed
back to the FEA and calculation results are compared.

Modeling approaches

The focus of this study is set on the comparison of different modelling approaches. To
understand the differences and similarities, common models are described briefly and a
new model equation is proposed.

Vectorial model equation

The polynomial Eq. (1) is only for adequate for fitting a function of a scalar value x. As
the parametric model has nsys input parameters, the scalar value x evolves to a vector �x
consisting of nsys entries. With that (1) rewrites to

f (�x) = C0 + A · �x + �xTB · �x + �xT (C · �x) · �x (2)

a vectorial notation. For simpler reading we will only use up to third order terms of the
sum. Newly introduced terms are a

• scalar C0
• row shaped vector A with nsys entries
• nsys × nsys square-shaped matrix B
• nsys × nsys × nsys cubic matrix C

All components of the new variables C0, A, B, C are unknown and free parameters
of the model parameters. For a three-parameter system nsys = 3 this would result in
1 + 3 + 32 + 33 = 40 free parameter.
This number can be reduced significantly. For our sample three-parameter problem,

the second term of (2) can be rewritten as

�xTB · �x = B1,1 x12 + B2,2 x22 + B3,3 x32 (3)

+ (B1,2 + B2,1) x1 x2 + (B1,3 + B3,1) x1 x3 + (B2,3 + B3,2) x2 x3

containing sums of
(
Bi,j + Bj,i

)
for the related mixed xi · xj-products. With this the matrix

B =
⎡

⎢⎣
B1,1 B1,2 B1,3
0 B2,2 B2,3
0 0 B3,3

⎤

⎥⎦ (4)



Groensfelder et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:26 Page 6 of 29

Table1 Number of model parameters for 5 and 6 system-parameter-problem

Polynomial-degree Number of model parameters npoly for
nsys = 5 nsys = 6

1 6 7

2 21 28

3 56 84

4 126 210

5 252 462

6 462 924

can be reduced to a upper (respectively lower) tri-diagonal matrix. Having

nB = 1
2

(
n2sys + nsys

)
(5)

parameters in the matrix. With a similar justification the number of parameters

nC = nsys
6

(
n2sys + 3nsys + 2

)
(6)

for the cubic matrix C can be reduced. Generally, the number of parameters in (2) can be
calculated to the number of

npoly =
(
nsys + d

)
!

nsys! · d! (7)

when using d as polynomial degree of the model equation, see [8]. As one can see, this will
generate a very high number of model parameters npoly, when the number of numerical
system parameters nsys is increased. Table 1 lists an overview on the polynomial model
parameters (7) for a five and six variables system.
Meaning that the polynomial order ought to be as low as possible for efficiency reasons.

On the other hand, polynomial functions of low order are restricted in the capabilities
to reproduce steep gradients.1 Furthermore, does first order modeling of (2) not seem
promising in the desired context of this study, as it is not capable of reproducing cross-
interactions of �x-components.
An exponential-function approach

g(�x) = exp
(
Aexp · �x

)
+ exp

(
�xTBexp · �x

)
+ exp

(
�xT

(
Cexp · �x

)
· �x

)
(8)

is proposed here to improve the steep gradient capabilities. The complete model equation

fmodel(�x) = f (�x) + g(�x) (9)

simply sums up (2) and (8). The final number of free parameter in (9) can be calculated by

ntotal = 2 · npoly − 1 (10)

bypassing the factorial increase of model parameters.

1Which is one of the reasons why meshes in FE-Analyses have to be refined at high stress regions. FE-software usually
uses second order meshes as efficient tradeoff.
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We will call these terms of the exponential equation to be of first to third order, fol-
lowing the definition of the polynomial nomenclature. The currently realized internal
software implementation offers arbitrary combinations of first to third order polynomial-
equation (2) and none to third order exponential-equation (8) system identification. The
identification procedure facilitates SciPy, [6], leastsq()-function amongst others and offers
CPU-parallelization also for the exponential equation.

Machine-Learning algorithms

From an engineering standpoint it is important to understand that terminologies in ML
context are somewhat different from common engineering speech. An engineer would
select for example (2) as model equation. This equation would be used to calculate a
result, which the engineer is interested in.
MLand its terminology are centered on the data it is based on. InML-context calculating

a result according to the certain model data is called predicting. ML-Toolboxes offer
a variety of different models to be used. For making predictions the models are called
Regressor, as they do regressions to the model data. Finally, the engineering identification
of model parameters (e.g. A, B etc.) is called training of the regressor. One of the first
regressor algorithms introduced in [8] is called LinearRegressor, see also [9]. At a first
glance, it seems like LinearRegressor is only capable of performing linear, like using only
A in (2). By expansion of the input vector

�q = [
1, x1, x2, x3, . . . , x1x2, x1x3, x2x3, . . . , x21 , x

2
2 , x

2
3 , . . .

]T (11)

containing also the different cross-combinations of �x themodel equation can be rewritten
to

h(�x) = Rlin · �q (12)

where Rlin represents a column vector of linear parameters for the model.
Using this method, a linear system of equations is derived, and the LinearRegressor-

function can be utilized for polynomial regression, too. The number of entries in Rlin
is identical to (7). In practical applications the ML-Toolbox provides a preprocessing-
function that automatically transformseachentry in thedataset.A-todayminor-drawback
is, that datasets using a higher number of input parameters nnsys and calculations ncalc
dissipate a lot of RAM. This PolynomialRegression-called approach is not only identical
in theory, the actual implementation in Python also uses a similar leastsq()-function, see
[8], for training. High polynomial order model selection is quite easy with the provided
function. Nevertheless, the number of free parameters in Rlin will grow extremely fast.
Thus, the reproduction of steep gradients still is limited for the PolynomialRegression.
Unfortunately, switching to (8) in conjunction with LinearRegressor is not feasible as

rewriting it to a linear notation is not possible. Only a few irrelevant subsets with a single
term would deliver linear models.
Several other functions, for example Ridge-Regression, are provided by [9], with an

excellent introduction to application given in [8]. Ridge-Regression, and others like Lasso-
Regression, represent a class of linear regression algorithms. In combination with the data
preprocessing by (11) they become capable of polynomial regression. This class of models
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Fig. 4 Single perceptron, from [12] with/without bias and variables

is applied in order to reduce model overfitting by introduction of an additional model
parameter. Another class of functions is available with Support Vector Machines (SVM)
introducing newmodels. SVMwere also tested in the scope of this study. As they also did
not perform better than the discussed models and a main reason for overfitting lies in the
polynomial preprocessing, the whole class should be represented by the Ridge-Regression
algorithm only.
All these functions have in common that they are introducing another model with an

additionalmodel-equation, having at least one or two additionalmodel parameters. These
model parameters are unknown andmust be identified by the user. This identification step
of the additional parameters is typically referred to as model-tuning. There are no strict
rules given for tuning of these additional model parameters. Some helper functions (i. e.
grid_search()) are provided, which automatize the calculations. In general, ML-functions
cannot be rated in best for all-categories. It is a known behaviour, that a well performing
method for one application fails on another.
A completely different approach to systemmodelling is taken by Neural Networks (NN).

Based on the idea of “learning like a brain”, they come closer to a “black box”-method.
Theory about NNs can be found in literature, e.g. [8,10], or in documentation for software
packages, e.g. [9,11].
Basically NNbuildmodels that connect input with output, too. The smallest entity aNN

is built of is called perceptron, see Fig. 4 from [12]. Each perceptron has as many weigh-
factors as inputs, marked as wi in Fig. 4. If required, an bias-value can be added. All of
these values represent unknown parameters for that perceptron. Finally, each perceptron
got an activation function which has to be chosen by the user and is therefore considered
as known.
In aMulti-Layer-Network , these perceptrons are ordered in hidden layers, see Fig. 5. In

a feed-forward network, each perceptron can be connected to every perceptron of the next
layer. ANN is completed by an Input- andOutput-Layer to fit the demands of system resp.
output parameter. The unknown weigh-factors are identified during a training step. This
design gives the opportunity to create individual interactions between input and output.
For example: Starting from the input layer of Fig. 5 with x1 and x2. Putting values to the
input weigh-factors w1 �= 0 and w2 �= 0 of the first perceptron would lead to

winp = w1 · x1 + w2 · x2 (13)
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Fig. 5 Multi-Layer-Network, from [12] with input. 3 hidden and output layers

as input to the selected activation function. All weigh-factors and bias-values sum up to a
total number ntotal of trainable variables of the network.
As the weigh-factors also represent the connections between the perceptrons, a NN

can be evaluated as a step closer to a “black box” approach. Several training methods for
NN are available. A very important detail for training is that the weigh-factors has to be
initialized by random-numbers. This is required to enable the applied training algorithms
to find a solution.

Model parameter identification and requirements

The described model equations contain npoly resp. ntotal unknown model parameters.
A linear equation requires at least this number of datasets to be prepared for solving.
Such a direct solution is usually replaced by a Least Square Fit (LSF) procedure to reduce
influence of measurement errors or other random effects.
An LSF builds up an over-determined system using more than required ntotal linear

equations. More details on LSF should not discussed here.
Relevant for this study is an Over-Determination-Factor

odf = nident
ntotal

(14)

which relates the numbers of required and actually used nident datasets for identification.
This factor was used to evaluate influences on the accuracy of the model-predictions.
The mathematical requirement of odf ≥ 1 is not necessarily checked, if you are using

external functions. All externally supplied ML implementations ([9,11]) ran also under-
determined training without warning. As a result, an effect calledOverfitting is commonly
known in ML application. We will discuss this later using example problems. The total
dataset of ncalc numerical calculations was therefore split into

• identification-set with nident
• validation-set consisting of nvali

datasets. An odf -value close to 1 is also not sufficient for identification of physically
accurate models, due to noise in the experimental data. Results are shown and and rec-
ommendations are derived below.
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Qualitymetrics

The quality of the model output/regression has to be measured by certain quality metrics.
Required for calculation of a meaningful metric is a dataset containing a

• number of nsamples having measured (=true) values ytrue,i with
• corresponding number of input datasets �xi

for each sample. These input-vectors are used for a calculation/prediction of ypred,i output-
values. The data used for metric-calculation should, at least partly, deviate from the data
used for identification/training, see [8].
First the absolute deviation

�yi = ytrue,i − ypred,i (15)

from actual to predicted values can be evaluated. Alternatively written as relative

ri = �yi
ytrue,i

(16)

deviation. For the relative deviation vector �r a

rmin = min (�r) (17)

rmax = max (�r) (18)

max. and min deviation can be evaluated. And from this the

�rel = rmax − rmin (19)

maximum relative spread (given in % in this study) within the evaluated data.
Very common—and also by ML-Toolboxes provided—is the

R2 = 1 − u
v

(20)

u =
nsamples∑

i=1
(�yi)2 (21)

v =
nsamples∑

i=1

(
ytrue,i − ytrue

)2 (22)

Root-Mean-Square-Error (RMSE) often only referred as Score, see [9]. A perfect fit would
deliver a value of R2 = 1, very bad values are negative.

Sample cases

The present study uses sample cases to elaborate the specific qualities of the described
modeling approaches.This sectiondescribes the basic FE-modelingused for thenumerical
experiment in the procedure of Fig. 3.
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Fig. 6 Beam with holes. Sample beam with 8 holes for natural frequency analysis, geometry created
according to [1]

Table 2 Technical data for sample beam

Description Value (mm)

Length 1100

Width 29.2

Height 9.6

Hole diameter 5.8

Hole distance 100

Table 3 Natural frequencies from [1]

Mode Measured Hz Initial calculation Hz

1 41.5 42.3

2 114.5 117.0

3 224.5 227.3

4 371.6 376.9

Fig. 7 Meshing at holes. Mesh at holes after mesh independence study

Natural frequencies of a beamwith holes

The first case was introduced by Marwala in the 1990’s and is constantly referred to in
his work, e.g. [1]. The geometry is shown in Fig. 6. The beam is made of aluminum and
has a constant thickness, height and cross section. There are eight holes equally spaced
on the centerline of the beam. Due to an intended asymmetry, the bearing out at one end
of the beam is larger than the other (Table 2). Four natural frequencies were measured
by the author of [1] under free suspension condition and were also calculated using a
simplified beammodel. The frequencies for transversal bending modes are listed in Table
3. These modes were measured by the applied equipment. The Initial Frequency-column
was calculated using an Elastic-Modulus of E = 7.0 · 1010 N/m2.
For the present study, a parametric FE-model reproducing the given geometry was

created. As solver the OpenSource FE-Program Calculix was selected, [13]. A mesh study
delivering a mesh independent solution was conducted. Figure 7 displays a magnification
of the final mesh.
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Table4 Comparison of FE-calculated natural frequencies and [1]

Frequency FE-Analysis Calculix Marwala measured Marwala model

Hz Hz Hz

F1 41.14 41.5 42.3

F2 113.54 114.5 117.0

F3 126.22 N/A N/A

F4 222.75 224.5 227.3

F5 346.58 N/A N/A

F6 368.31 371.6 376.9

Fig. 8 Sample brake disk photo, geometry (Cut) and meshing of sample brake disk

In order to get accurate FE-results it is kept rather dense in the vicinity of the holes. The
FE-results were verified against CAD-geometry simulation using an unstructured mesh.
Table 4 shows a comparison of the frequencies.
All available FE-calculated values are below the measurement data. In contrast to this,

lie all frequencies reported by [1] above the actually measured ones. Lines marked with
N/A contain lateral bending modes which were not detectable by the applied sensors,
these were only calculated by the FE-model in this study.
Five parameters were selected

• Elastic Modulus E,
• Hole diameter dhole,
• Hole distance �hole,
• Total length of the beam lbeam,
• Width of the beam cross section wbeam

to be modified in the numerical experiment of the current study.

Natural frequencies of a brakedisk

Second case is another analysis of natural frequencies, see Fig. 8. The Geometry is a
brakedisk taken froma common automobile application. All geometric datawasmeasured
from the actual part and a model was created in an OpenSource-CAD software, [14]. The
CAD-software modelling is fully parametric in all dimensions and all dimensions can be
manipulated via a Python programming interface.
The geometry was manipulated with random input data on five parameters

• thickness of material at contact surfaces (parameter #1 and #5)
• width and length of “blades” in ventilation ducts (parameter #2 and #3)
• angle of inner ventilation ducts (parameter #4)
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Fig. 9 Sample geometry notched plate. ( 14 -Model with symmetry). Model and mesh of the notched plate
sample problem

Fig. 10 Result—contour plot. Exemplary result of a notched geometry

and then meshed within the CAD software. The mesh was exported and the subsequent
modal analysis delivered six natural frequencies for each geometry. For this FEA the
geometry was fixed at the central cylinder, see red markers in Fig. 8 on the right.
This case and FE-workflow were chosen for several reasons. The geometry is more

complex than in the first sample. Thus, the influence and potential interactions of the
parameters to the natural frequencies are expected to be more complex, too. Another
interest was to check out the capabilities and performance of the implemented toolchain,
especially the tetrahedral meshing.

Stress calculation in a notched plate

Third sample is a 2D-problem. A stress calculation of a notched plate is performed,
assuming a linear-elastic material behavior (Fig. 9). Due to symmetry in the chosen setup
just a quarter section of the geometry was modelled in the FEA. The calculation result is
well known. A contour plot of the stress distribution is shown in Fig. 10. An initial mesh
study was conducted for definition of a reliable unstructured mesh. It was taken care to
set a FE-node at the highest loaded location of the notch. The automated calculations for
the numerical experiment were performed using a commercial FEA-software, [15].
All models for all test cases were trained on identical data. For this test case, a restriction

was introduced to the numerical results. The overall dataset was limited to values being
smaller than 150% of the value of the original calculation. The limited data was not
evaluated as outlier having poor quality result. Frommodeling perspective, the restriction
is an discrimination of the exponential model equation.
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Fig. 11 Identical models. Identical score results for different degrees in (2) and (12)

Results and discussion
The previous section showed that the vectorial Eq. (2) and the polynomial regression
equation according to (12) result in identical models, which was verified by comparison of
least-square identification model results. This is shown here exemplarily by comparison
of the RMSE-Scores for both models given in Fig. 11.
The orange line depicts the vectorial equation, while the polynomial regression model

is given in blue with ×-markers.

Evaluation of brake-disk

This model uses nsys = 5 system parameter. A dataset of 601 randomized calculations
was created for this study. The number of polynomial model parameters npoly for different
polynomial degrees is therefore given in the second column of Table 1.
The prediction accuracy according to (16) is plotted in Fig. 12 for the whole Dataset

ncalc. The green brace marks the nident samples used for identification, while the red brace
is for the remaining nvali datasets used for validation of the equation. The relative error for
the (green) identification samples is not visible in the given plot because the axes limits are
defined by the relative error of the validation dataset. The error span �rel is approx. 15%
here. The graph of Fig. 13 shows the identical evaluation using now Over-Determination-
Factor odf = 10.
It is evident that the overall error spread is ≈ 2% and much smaller. It is also more

evenly distributed between the identification and the validation areas.
The behavior of Fig. 12 is similar to the effect which is called Overfitting in machine

ML-terminology. The model is suitable for all values of the training dataset, but it fails
with the validation-datasets. Overfitting is omitted using an over-determined system and
by application of the LSF-method. The model is fitted to reduce the mean error for more
points than model parameter leading to a “better” prediction in the whole.
From that the question arises which odf is reasonably required to gain an accurate

predicting model. The convergence of the prediction for the whole dataset including
validation is given in Fig. 14.
On the left the RMSE-Score is for several polynomial models plotted, while the right

plot shows the relative error span according to (19) within the whole dataset. The right
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Fig. 12 Rel. error for brakedisk. odf = 1 Plot of the rel. error of the brakedisk with odf = 1

Fig. 13 Rel. error for brakedisk. odf = 10 Plot of the rel. error of the brakedisk with OD = 10

Fig. 14 Brakedisk: convergence of quality measure RSME-score and �rel for brakedisk model
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Fig. 15 Rel. Error for brakedisk-models using up to fifth polynomial degree

Fig. 16 Brakedisk with ridge comparison evaluation of ridge-regression-performance of �rel for npoly and
α-variation for the brakedisk

plot delivers a clearly visible, more meaningful basis for distinction as the left score of
all models is well above 0.9. The polynomial model with the degree 3 leads to the most
accurate predictionwith odf ≥ 8, in the considered case. But the second ordermodel with
odf = 4 performs also quite well with an error spread of ≈ 2%. Higher order polynomial
models do not perform significantly better, this can be taken from Fig. 15 showing the
max./min deviation score up to fifth order. No better result with higher effort means
less efficiency forthe model performance. Any exponential model did not fit the model
significantly better and are not shown here.
Slight improvements could be reached by utilization of a Ridge-Regression-model which

is depicted in Fig. 16. It shows the relative difference�rel for different polynomial degrees.
Ridge Regression allowsmodification of an additional model parameter α, which is shown
with the differently coloured lines. The α-parameter is introduced to restrict overfitting
of the function to the training data. A perfect model performs best with α = 0. The higher
the order of the polynomial-preprocessing, the higher α must be selected. This can be
observed at the minimum points of the lines up to α = 0.1. The optimum α increases
with polynomial degree. Selecting a higher α reduces accuracy again. The model of eighth
polynomial order and α = 0.1 performs best according to this plot. This behaviour shows,
that identification ofα adds an additional layer of optimization tomodel training. It should
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Fig. 17 Brakedisk comparison of ridge-regression to polynomial third order

Fig. 18 Sensitivity for brakedisk sensitivity for F1 of brakedisk(Poly=2 left, Poly=3 right)

be kept in mind, that a sufficient number of input-data must be available to train the high
order models. And a high order model does not necessarily result in improved accuracy.
This is depicted by the remaining two α-lines, which perform worse than the red line at
α = 0.1.
Using that Ridge-regression model and the third order polynomial model a comparison

of prediction performance is shown in Fig. 17. The slight improvement can be identified
here, but the overall performance is similar. Both models are able to predict quite accu-
rately for most of the data. Only some of the predictions and always the same peak out.
As none of the models outperform the others significantly, polynomial models will be
investigated further for this sample case.
Amain interest during product development would be the sensitivity of the characteris-

tics to single variations in the system parameter. Such an evaluation is a simple application
of the polynomial-model, which could also be easily conducted with the FE-model. The
lines in Fig. 18 represents the sensitivity for second and third polynomial degree. Each of
the system parameter ismodified in 11 Steps: 0%,±1%,±2.5%±5% and±10%. Each of the
lines describes the relative change of the system characteristic—F1 in this case—caused
by that variation.
The two boxes in the plots are the result of another evaluation, which could not as simply

be done with the underlying FE-model. The horizontal lines of the boxes depict the range
of relative deviation that could be expected due to a modification of system parameters.
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Fig. 19 Sensitivity to thickness for second, third, and fifth order model

Fig. 20 Sensitivity to Angle-variation for second, third, and fifth oder model

Fig. 21 Sensitivity to spacer length-variation for second, third, and fifth order model

Including the interactions of combined influences in �x. The vertical range is calculated by
an optimization routine with variation limits within a ±1%-range (resp. ±5%), searching
for minimum/maximum deviation from the initial value. Both plots differ only in details.
A more detailed comparison model of performance can be done by feeding back the

model-parameter values to the underlying FEA. Figure 19 shows predicted (full) and FE-
calculated (dashed) values for the second, third and fifth order-models. Visually evaluated,
the second ordermodel is best fitting the line.While third ordermodel starts to overfit and
the fifth order model clearly does. Please note that this model prediction is significantly
closer to the calculated value than it could be expected by the 2%-spread given in Fig. 14.
Same comparison-lines are given in Fig. 20 for an angle-variation. The actual sensitivity

of the natural frequency to this change is smaller, which leads to a different y-axis-scaling
turning out the curvature of the prediction models. The behavior of the dashed line is
somewhat strange. From the whole setup a smoother progression would be expect. This
behavior indicates that the accuracy of the FE-workflow is getting close to limitations in
accuracy.
This limitation is obviously visible in Fig. 21. It shows the change in the natural frequency

driven by amodified spacer length. A smooth increasing F1 as for the second degreemodel
could be expected with increasing spacer-length. The zig-zagging-pattern of the dashed
line is physically not plausible. Omitting the outlier, second order model performs best
here.
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Fig. 22 Beam with holes: convergence of quality measures RSME-Score and �rel for beam with holes

Further investigation showed that this error was introduced during automatized mesh-
ing of the geometry. The mesher sporadically gave warning messages, but a valid mesh
was exported. The subsequent FEA-program-checks (e.g. Jacobian) were passed without
warning. The mesh quality introduced an uncertainty of ≈ ±1.0% in the FE-data. This
stochastic variation also seems to be the reason for the peaking-out values in Fig. 17. The
values and input data itself are not significantly special. This finding does not mean, that
the complete FEA-procedure is not reliable. It only indicates some limitations in accuracy,
which would not be of big interest for a single FEA-simulation. Especially if it is kept in
mind that a modified boundary condition, for example a stiffer support or introduction
of a brake-pad, would lead to a much higher than 1%-offset to the average value.
The calibration of themean-FEA values to eventually availablemeasurement data there-

fore should be done by adaption of the boundary conditions as close as possible to the
measurement environment. If higher accuracy is required for scatter prediction, additional
efforts like refined meshing would be the method to use.
The scatter affects the identification process similar to noisy measurement data of a real

experiment. And as ameasurement error of±1% is quite acceptable formost applications,
the accuracy of the FEA may be acceptable, too. From the perspective of this study it can
be stated that sporadical deviation in identification and validation datasets indicates noisy
data from the FEA. Finally, the second order model could be evaluated as best suited for
the given example case. The accuracy is good and a peak out value could be assessed as
an outlier.

Evaluation of beamwith holes

As the geometry of this case is simpler than the brakedisk, a structured meshing was
generated. Figure 22 shows the already known odf -convergence up to a value of 10 for
the polynomial models.
All three models level out very fast and the value of odf = 2 is sufficient for this case.

The error levels are in the order of magnitude of 0.7%, 0.05% for the first and second
order equations. The third order model delivers almost exact predictions, see the right
plot of Fig. 23. These plots were created for an odf of 2. Using the left plot, there is
no distinction possible between prediction and input-data. The relative error delivers
slightly better predictions for the identification section (calculation 1–168) than for the
validation section. But the order ofmagnitude of the error is insignificant. This leads to the
conclusion that the FEA-toolchain delivers accurate results without stochastic deviations.
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Fig. 23 Prediction beam absolute value and rel. error

Fig. 24 Sensitivity for beam sensitivity for F1 and F6 of beam for all parameter

The identified model is suitable for application and higher order or exponential models
are not required.
Figure 24 shows the sensitivity analysis of two natural frequencies of the beam (F1 and

F6). Both reveal almost identical behaviour.
The first parameter (elasticmodulus) increases natural frequencies as the last parameter

(density) reduces it. This can be explained using the simplified equation

ω1 =
√

K1,global(E)
M1,global(ρ)

(23)

of a single spring-mass system.The stiffnessKglobal(E) fromFEA is a linear depending value
to the elastic modulus as the massM1,global(ρ) dependency to the density ρ. Dividing two
natural frequencies, lead to

ω1,a
ω1,b

=
√
Eaρb
ρaEb

(24)

which can be used for estimation of a modified frequency.
Putting in the values of ±10% for E the lower and upper deviation can be evaluated

to −5.1% resp. 4.9%. And for the ρ-modification it is determined to 5.4% resp. −4.7%
changes. Exactly these values can be found in the right plot for the blue and the brown
lines. Themost significant lever for changes in the frequency is given by the red line, which
depicts the change due to total-length deviations. This correlation is clearly non-linear.
All other system-parameters have an inferior impact on the frequencies.



Groensfelder et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:26 Page 21 of 29

Table 5 Boundaries and fitted values for the beamwith
hole sample

Parameter Unit Lower bound Upper bound Value

Elastic modulus MPa 60000 80000 70684.8

Hole distance mm 99.5 100.5 99.503

Hole diameter mm 5.7 5.9 5.82

Total length mm 1098 1102 1098.1

Width mm 29.5 29.8 29.786

Density g/dm3 2.7 2.7 2.7

Table 6 Frequency-fitting for the beamwith hole
sample

Measured Fitted Rel. Error

Hz Hz %

F1 41.5 41.492 0.020

F2 114.5 114.503 −0.002

F4 224.5 224.629 −0.058

F4 371.6 371.458 0.038

The polynomial model should now be used for updating the system parameters of the
FEA to fit themeasured frequencies. The discrepancies of the initial FEA are already given
in Table 4. A target search algorithmwas created using a constraint min-search algorithm
from SciPy-Library. All frequencies were included in one run. The penalty function was
defined by

err =
nfreq∑

i=1

( Fi,pred.
Fi,target

− 1
)2

(25)

as sum of square errors. The upper and lower bounds for the constraints are listed in
Table 5 in column 3 and 4. They were chosen as plausible values for deviations that
may be introduced due to manufacturing tolerances. The density ρ was set to a standard
value for aluminum. With respect to (24) possible changes to density are included in the
modified elastic modulus.
The outcome of the target search is given in Table 6. Minimization of the penalty

function (25) was quite successful as all frequencies match extremely good. The identified
values for the system parameters are within reasonable limitations. The Elastic Modulus
is slightly higher than the standard static value for aluminum, which is also reasonable for
a dynamic elastic modulus, see [16].

Evaluation of plate with hole

Stress concentration at small holes of tension probes may lead to steep gradients close to
the hole surface. Due to that fact, exponential and higher order polynomial models are
expected to be applied here.
The convergence plot related to odf is given in Fig. 25. Axis scaling of the plots is selected

to focus on high quality values, leading to outlying points, which are of no interest.
The fitting of the polynomial models versus odf is leading to the expected and already

seen close to optimal scores.
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Fig. 25 Plate: convergence of score related to over-determination

Fig. 26 Rel. deviation for plate for different model equations

The plots of the exponential models look significantly different to the plots of the
polynomial models shown before. The exponential equations were chosen to model steep
gradients. As they are doing, the predicted values can be very high and with this the errors
compared to the real values, too. This behavior can also be assumed as an overfitting of
the data to a model equation that does not fit well to the underlying problem.
Looking at the models of the third polynomial degree it can be stated that their metrics

converge quite fast to small error spreads. The second and third exponential degreemodel
does not differ significantly in this figure.
Well converged models from that pool were chosen for further application. Figure 26

gives an overview of the relative deviation for all of them. The “Poly-Reg”-lines are related
to the convergence in Fig. 11. An improvement in prediction quality to the fifth order poly-
nomial can be stated from that. Very similar values are reached by the exponential models.
Again nsys = 5 system parameters were used in the FEA. This means in combination

with Table 1 that the npoly = 5model got 252 parameters to be identified. The exponential
model with npoly = 3 and nexp = 3 only has got

ntotal = 2 · 56 − 1 = 111

parameter. Reducing the effort by a factor of approx. 2.
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Fig. 27 Plate rel. sensitivity for third and fifth polynomial degree

Fig. 28 Plate rel. sensitivity for fifth order polynomial and third/third exponential degree

A deeper investigation is done again with the sensitivity study compared to the actual
FEA-results. For this case all lines are plotted in one graph and FE-results again aremarked
by dashed lines.
For this FEAno implausible scatter could be stated, and the accuracy of the FE-toolchain

seems to be sufficient for this application. All visible dashed lines are obviously located
closer to their related prediction for the fifth order model.
But there is a significant difference in the predictions. It can be identified at “Parameter

#1” shown by the blue lines. They are mirrored on the abscissa of the graph. Which of the
lines is correct? The answer is: None of them. The related reference line in dashed orange
is not visible as the relative changes of the values from the FEA are close to zero (Fig. 27).
Figure 28 depicts the sensitivity analysis of the fifth-order polynomial model (left) in

comparison to the third order polynomial and third order exponential model.
All visible dashed lines are fitted closely. The most interesting result of the plot again is

the “Parameter #1” line. The exponential model predicts a value close to zero, as the FEA
does require. Application of the polynomial model using high order is not recommended
for this case, as it leads to overfitting.
To figure out the capabilities of a Ridge-Regression-function a model was trained using

sixth-order data-preprocessing. For using the sixth order polynomial in combination
with five nsys-parameters it has 462 model-parameter, see Table 1. The Regression-
function uses one additional parameter α for regularization. For having the minimum
over-determination of odf = 2 a dataset of 924-samples was taken for training. Figure 29
shows the sensitivity plot for that model. The physical invalid deviation of the blue line is
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Fig. 29 Sensitivity ridge-regression of Poly-degree 6

Fig. 30 Validation of plate against new data set

suppressed by the Ridge-regression compared to the fifth-order polynomial model of Fig.
28, left plot.
All other predictions are influenced, too. System-parameter #2 shows an increased

deviation from the reference values (dashed line), while the fifth-order plain polynomial-
model is closer to reference for this parameter.
For evaluation of the available prediction accuracy, a new dataset of random input was

created, the FEA was conducted and the available models were applied to predict the
outcome. Figure 30 shows the resulting relative error for all three models. All models
predict values close to the FE-calculated numbers. In direct comparison, the accuracy of
theRidge-Regression is less than the others in bothqualitymeasures. Theplain polynomial
model performs slightly better than the exponential model does. Table 7 gives the figure
of the score and�rel. for themodels. Despite of these numbers, it had been shown that the
polynomialmodel overfitswithunphysical predictions and it usesmoremodel-parameters
ntotal and with this requires more data for reliable LSF. Therefore, the exponential model
represents the better trade-off in this sample case.
This sample problem should also be approached by a Neural-Network-model to figure

out features and obstacles of NNs. Finding out the right values for the number of hid-
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Table 7 Comparison of quality measures for plate

Poly Ridge Exp

Score 0.999963 0.999808 0.999948

�rel. 1.2 2.0 1.3

Fig. 31 Scores vs. fitting-run for several NN-fitting runs for different values of odf

den layers, perceptrons per layer and activation function for a neural network are not
straightforward. Some rules of thumb and strategies are described in [8,10]. For this case
the tanh-function was selected for activation, as the underlying problem is non-linear
with steep gradients. A number of two layers and three perceptrons per layer turned
out to be efficient. The model was built and trained using the Tensorflow-package, [11].
The software reported a total number of 34 trainable parameters for the whole network.
The NN-Regularization was kept fix to a value of α = 0.001 and no further tuning of
NN-Model parameters was conducted.
It was already mentioned, that training of a NN requires an initialization of the model-

parameters by Random-Values. This initialization may have an influence to the trained
model. Figure 31 shows the score reached for different odf for 15 training runs with
unchanged model parameters. Additionally, the random intitialization was kept constant
between the different odf -values for each run. The effect of the initialization can be
identified at run 2 and 15. The scores for all odf -values are reduced.With higher values for
odf the effect of the initialization is reduced significantly. For higher over-determination
values, the score gets closer to the optimumand is less influenced by the starting condition.
The odf -convergence of the model is given in Fig. 32. For each odf -step the maximum

score from the 15 runs was selected. The scores of two additional training-runs using an
unrestricted random initialization is depicted in Fig. 33. For values odf > 4 the stochastic
influence of the training procedure is relevant for the prediction accuracy and a definition
of a “recommended” value is not reasonable.
Figure 34 shows a comparison of relative errors for NN and Exponential-model in

analogy to Fig. 30. The exponential model-predictions are obviously closer to the NN-
predictions. Which demonstrates the higher prediction accuracy for that model.
Finally, the model performance can be evaluated by the sensitivity comparison shown

in Fig. 35.
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Fig. 32 Score vs. odf for the run in Fig. 31

Fig. 33 Score vs. odf for two other runs

Fig. 34 Rel. error for comparison of NN vs. EQ Poly = 3 and Exp = 3 model

The characteristic variations are predicted close to the dashed comparison-lines. This
is also valid for the system-parameters which were predicted unphysically by the pure
polynomial models. Compared to the right plot of Fig. 28 the exponential model is closer
to the validation data.

Conclusions
An, with respect to [2], improved automated calculation procedure was created and
described. It is based on a numerical experiment to create stochastic data. The proce-
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Fig. 35 Rel. sensitivity for the NN-model

dure is versatile and does not rely on a certain underlying numerical software package.
For this study were applied

• two FEA-software tools and
• three meshing strategies

to investigate three different mechanical systems. The FE-models were set up parametric
by nsys arbitrary selected system-parameter. The numerical models lead to a dataset with
ncalc characteristic values related to the input parameters the for the model. All datasets
were analyzed with different model approaches.
The matrix-based polynomial-model equation from [2] was expanded by a third order

term. In order to gain capabilities in modeling of high gradient data, an Exponential
function-based matrix-model up to third order was introduced. These models were com-
pared to functions provided by commonly used ML-toolboxes. It was found that the
matrix-polynomial grey box model is identical to a LinearRegression-algorithm method
in combination with a certain pre-processing of the input data, see (11). From that it can
be stated that ML can be evaluated as strongly related to classical system-identification
methods. Some differences in nomenclature were illustrated.
Limitations in achievable prediction accuracy for the brakediskmodel revealed, that the

initial numerical experiment-step is of fundamental relevance for the finalmodel accuracy.
Leading to the conclusion, that the whole procedure, especially the meshing step, must
be capable to deliver finely granulated results. Also, slight changes to small modifications
have to be visible in the output. For an evaluation of the FEA-accuracy, the conclusion can
be drawn, that a two step method is advisable. First to do a mesh study on the unchanged
geometry for definition of a required mesh density. Followed by a geometry variation
study. With this, an impression of the max. available accuracy can be reached.
The parameter identification-step, resp. model training in ML-terminology, requires

enough data-samples to be reliable. For measuring this the odf was introduced. Based
on high quality characteristic data in combination with up to third order polynomial-
model-equations, fast convergence and a required odf ≥ 2 was identified. For the higher
polynomial order and the exponential-function based models an odf ≥ 8 − 10 is rec-
ommended for the investigated cases. This information is of real importance for practical
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application, as it defines theminimumnumber of ncalc to be performed via FEA for getting
the training data. An additional number of data datasets for validation is also required, to
judge the model as valid or overfitting. According to (10) this may lead to a large number
of calculations to be done in advance of the identification-step.
With the aim of a high prediction accuracy the RSME-score was identified as not being

sufficient as quality metric. The maximum, relative deviation �rel calculated from iden-
tification and validation-datasets is more meaningful in this context. Especially Fig. 13
depicts this conclusion. The specific behavior for that model at odf = 10 also indicates
the noisy error of the underlying input-data.
Different models were investigated regarding their prediction accuracy. Unsurprisingly,

an adequate model has to be selected for the related test-cases. Polynomial-models are
simple in application and can be easily expanded to high-order equations. But higher order
models combine two disadvantages: They need a higher number of training datasets to
gain the found odf = 8 − 10 and they tend to overfit the data leading to unphysical
predictions caused by small system-parameter variations.
ML-toolboxes provide function, e. g. Ridge-Regression, to reduce overfitting-tendency.

These functions do this by the introduction of newmodel-parameter, which are unknown
in advance and have to be identified during tuning of the model. For certain problems,
especially when including high gradients, the exponential-equation based model delivers
an efficient trade-off. The “polynomial explosion” [8] of ntotal is avoided and sufficient
prediction accuracy was reached.
Application of neural-network models has turned out to be ambivalent in the scope of

this study. The prediction capabilities are powerful. A 34-parameter model is capable to
predict themain features of the last sample problem.Compared to the 252-parameter pure
polynomial prediction, the result is closer to physical effects. But there are different newly
introduced model parameter (namely regularization and activation-function) that have
to be defined by the user with an additional model tuning step. Another disadvantage of
neural networks lies in the random-influence to the prediction accuracy. This introduces
an additional uncertainty and error source to the prediction result. To reduce this effect a
number of training runs has to be done and the best of the runs has to be chosen. This, in
combination with the additional model parameters, reduces the efficiency of less model
parameters in the neural network model-layers significantly.
Finally, it is concluded that model generation represents a trade-off between accuracy

and effort. A customized analytical model will most probably deliver higher accuracy,
while a well trained NN-model may deliver acceptable accuracy for less cost but with
some uncertainty about the random initialization.
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