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Abstract
This study aims to assess the effect of familial structures on the still-missing heritability estimate and prediction 
accuracy of Type 2 Diabetes (T2D) using pedigree estimated risk values (ERV) and genomic ERV. We used 11,818 
individuals (T2D cases: 2,210) with genotype (649,932 SNPs) and pedigree information from the ongoing periodic 
cohort study of the Iranian population project. We considered three different familial structure scenarios, including 
(i) all families, (ii) all families with ≥ 1 generation, and (iii) families with ≥ 1 generation in which both case and 
control individuals are presented. Comprehensive simulation strategies were implemented to quantify the 
difference between estimates of h2 and h2

SNP . A proportion of still-missing heritability in T2D could be explained 
by overestimation of pedigree-based heritability due to the presence of families with individuals having only 
one of the two disease statuses. Our research findings underscore the significance of including families with only 
case/control individuals in cohort studies. The presence of such family structures (as observed in scenarios i and 
ii) contributes to a more accurate estimation of disease heritability, addressing the underestimation that was 
previously overlooked in prior research. However, when predicting disease risk, the absence of these families (as 
seen in scenario iii) can yield the highest prediction accuracy and the strongest correlation with Polygenic Risk 
Scores. Our findings represent the first evidence of the important contribution of familial structure for heritability 
estimations and genomic prediction studies in T2D.
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Introduction
The genetic architecture of complex traits and our abil-
ity to map the genes responsible for disease risk have 
become fundamental topics of study in human genet-
ics. Sharing of common genetic risk factors (e.g., single 
nucleotide polymorphism or SNP) in relatives results in 
an increase in the risk of the disorder of those affected. 
By accepting this fundamental definition, heritability 
(h2) is formally defined as the proportion of variation 
in a particular trait attributable to genetic factors [1]. 
Reported results from genome-wide association stud-
ies (GWAS) provided associated SNPs that can be used 
to determine the proportion of variance explained by 
these loci together (h2GWA ). The difference between the 
heritability captured by these known associated SNPs 
and the one predicted by traditional genetic epidemiol-
ogy studies is known as missing heritability [2]. The ear-
lier GWASs were underpowered to detect the underlying 
common genetic variants, and the number of significant 
associations increased with the increase in sample sizes. 
By combining quantitative and population genetic con-
cepts, new statistical methods were introduced by using 
genome-wide marker data simultaneously to evaluate 
the contribution of common SNPs (with a MAF ≥ 0.01 
or 0.05) to variance, h2SNP , [3–5]. These polygenic anal-
yses have been successful in identifying hidden herita-
bility, which is known as the difference between h2GWA  
andh2SNP . h2GWA  can become closer to h2SNP  by increas-
ing the sample size of the studied population. For most 
diseases the difference between h2 and h2SNP remains to 
be captured and considered as the still-missing heritabil-
ity. Many possible explanations are represented for this 
part of missing, i.e., rare and structural genetic variants, 
dominance effects, and epistasis. Shared familial environ-
mental factors can induce overestimation of heritability, 
and this phenomenon can explain some part of still-miss-
ing heritability.

Heritability estimates help predict the trait of interest 
using prediction models [6]. Different approaches can be 
applied to predict the genetic risk of diseases in humans, 
including (i) pedigree Estimated Risk Values (ERV), 
which are referred to as “Estimated Breeding Values” or 
“EBV” in animal and plant breeding [7], (ii) Genomic 
ERV (GERV), known as “Genomic EBV” or “GEBV” in 
animal and plant breeding [8], and (iii) Polygenic Risk 
Scores or PRS [9]. ERV predicts an individual’s genetic 
risk for a specific trait based on its phenotype, the pheno-
typic data of its ancestors and relatives, and the pedigree 
information [7]. GERV is a prediction of the genetic risk 
of an individual for a specific trait using genome-wide 
genetic information [8]. GERV is calculated by summing 
up the effects of individual SNPs across the genome [10]. 
These SNP effects are estimated from a reference popula-
tion, including large datasets of individuals with known 

phenotypes and genotypes [11]. In contrast, PRS pre-
dicts an individual’s genetic risk of developing a disease 
or a trait that utilizes a subset of genetic variants [9]. This 
approach uses SNPs and combining them into a score 
that reflects the individual’s genetic risk for that trait [12]. 
The risk of T2D has already been predicted in different 
populations using PRS [13–15].

In the GERV approach, the most common method to 
estimate prediction accuracy is to obtain the correlation 
between the predicted values and the actual phenotypic 
values in the testing dataset [16]. Several factors affect 
genomic prediction accuracy, including linkage disequi-
librium (LD) between markers [16], statistical model [17], 
marker density [3], training population size and compo-
sition [18], heritability [19], and genetic architecture of 
the target trait [20]. Recently, training population com-
position has received considerable attention [18, 21]. It 
was shown that training populations with high diversity 
closely related to the target population which the testing 
set belongs to could improve prediction accuracies [18]. 
Despite multiple optimization strategies proposed to gain 
higher genomic prediction accuracy, the effect of familial 
structure has not been well investigated. This study aims 
to investigate the effect of familial structures on the still-
missing heritability estimate and prediction accuracy of 
T2D using ERV and GERV. We analyzed different familial 
structure scenarios, as a possible contributing factor for 
still-missing heritability, to investigate the best popula-
tion composition with the lowest still-missing heritabil-
ity and the highest genomic prediction accuracy using 
GERV. The prediction ability of T2D based on the three 
approaches, ERV, GERV, and PRS, was also compared.

Materials and methods
Study subjects
Individuals participating in the Tehran Lipid and Glu-
cose Study (TLGS), the ongoing periodic cohort study 
of the Iranian population project, were included in this 
study. The TCGS population consists of individuals from 
diverse ethnic backgrounds, providing valuable insights 
into the diversity of the Iranian population. This ethnic 
information was gathered through self-reported data 
and questionnaires detailing the birthplaces of the past 
three generations [22]. Epidemiological data on non-
communicable disorders’ risk factors has been collected 
from 15,000 participants of TLGS every three years for 
the past 25 years. All participants in the cohort study 
executed written informed consent prior to inclusion. 
TLGS participants were recruited in six phases between 
October 1, 1999, and April 1, 2018, with approximately 
three years between each phase. The first phase had 
15,005 participants, and the second phase had 3,531 new 
participants [22, 23]. Here, 14,113 individuals aged > 20 
years were selected from the dataset, of which 2,284 and 
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11 individuals with missing data on diabetes status and 
body mass index (BMI) were excluded, respectively. We 
meticulously excluded cases that might have been mis-
classified as type 2 diabetes. This involved excluding not 
only patients with Type 1 diabetes and congenital diabe-
tes but also those with monogenic diabetes, particularly 
Maturity-Onset Diabetes of the Young (MODY) [24]. 
Therefore, 11,818 individuals, with an age of 45.7 ± 16.8 
years, entered the study.

We used the TLGS standard questionnaire to col-
lect demographics, medical, and drug history informa-
tion. Weight was measured in kilograms and height in 
meters; subsequently, the BMI of participants was calcu-
lated using the formula of BMI = Weight(kg)

Height(m)2
. Moreover, 

following a 12–14  h overnight fast, blood samples were 
taken from all study participants to quantify biochemi-
cal parameters, including fasting plasma glucose (FPG) 
and 2-hour postprandial plasma glucose (2hpp). T2D was 
defined as if one of the following conditions were pres-
ent: (i) treatment with antidiabetic drugs at least once in 
6 phases, (ii) FPG was more than 126 mg/dL, or (iii) 2hpp 
was more than 200 mg/dL.

Genotyping, quality control, and imputation
All individuals were genotyped with HumanOmniEx-
press-24-v1-0 bead chip (Illumina, San Diego, CA) at 
deCODE genetic company. This bead chip provided 
649,932 SNPs with an average mean distance of 4 Kb for 
each individual, as MS Daneshpour, et al. [25] described. 
To find any problem with recorded relationship infor-
mation, a pedigree check was conducted using S.A.G.E 
(Statistical Analysis for Genetic Epidemiology) software 
v6.4 [26]. To perform a parentage check, snp1101 soft-
ware v1.0 [27] was used to find contradictory informa-
tion based on recorded parental and genotype platforms’ 
information [28]. This software checks for Mendelian 
inconsistencies and calculates the probability of cor-
rect parentage assignment. A conservative probabil-
ity threshold of approximately 0.95 was used to ensure 
strong confidence in the detected parentage relation-
ships. Any parent-offspring pairs with probabilities below 
this threshold were flagged for further investigation. We 
encountered inconsistencies in the parental information 
for a total of 132 individuals. Specifically, these incon-
sistencies pertained to the non-biological parent. To 
address this, we designated these 132 individuals as hav-
ing unknown parentage with respect to the non-biologi-
cal parent within the pedigree structure.

Quality control of individuals and genotypes was per-
formed using PLINK software v1.9 [29]. We initiated the 
quality control (QC) process for both individuals and 
markers using PLINK software. Initially, we filtered out 
SNPs and individuals with a missing rate exceeding 20% 
to eliminate low-quality data, resulting in the removal of 

770 SNPs and 11 individuals. This initial step was con-
ducted using a non-stringent threshold. Subsequently, we 
applied a more stringent criterion by setting a threshold 
of 2% to exclude SNPs and individuals with more than 2% 
missing data. This step led to the removal of 17,636 SNPs, 
but no additional individuals were excluded. In the next 
phase, we examined sex discrepancies by comparing the 
recorded sex with genetic data derived from the X chro-
mosome; no discrepancies were observed. To maintain 
the power of the study, we excluded SNPs with a minor 
allele frequency (MAF) of less than 0.05, which resulted 
in the exclusion of 72,500 SNPs. Additionally, markers 
that significantly deviated from Hardy-Weinberg equi-
librium (HWE) were excluded using a p-value threshold 
of 1e-6, leading to the removal of 1,125 SNP markers. 
We also removed individuals whose heterozygosity rates 
deviated by more than ± 3 standard deviations from the 
mean, which led to the exclusion of 317 individuals. Pop-
ulation stratification was also checked using principal 
component analysis (PCA) using R software’s SNPRel-
ate package [30]. Finally, the missing genotypes were 
imputed using Beagle software v5.4 [31].

Statistical analysis
The design of this study is shown in Fig. 1.

Familial structure scenarios
Three different scenarios were used to investigate the 
effect of familial structure on still-missing heritability 
and genomic prediction accuracy (Fig. 1). In the first sce-
nario, all families were used without any limitation (sce-
nario i). In this scenario, of 11,818, we had 1,967 persons 
within 1,591 families with zero generation and respec-
tively zero and non-zero pedigree- and genomic-based 
relatedness with the others. We evaluated the effect of 
these individuals on estimated heritability from pedigree 
and genome-wide markers in scenario ii by removing 
them from the data and comparing the results with the 
scenario i. This results in 9,851 individuals within 2,189 
families with ≥ 1 generation. Of all families represented 
in the scenario ii, we had 1,091 families (3,959 individu-
als) that only have one disease status, case or control. 
We hypothesized that presenting families with only one 
disease status may induce overestimation of heritabil-
ity in both pedigree- and genomic-based methods. This 
hypothesis is based on the understanding that heritabil-
ity is a statistical measure quantifying the proportion 
of variation in a trait within a population attributable 
to genetic differences, ranging from 0 to 1. A value of 1 
indicates that all observed variation in the trait is due 
to genetic factors, while a value of 0 suggests that the 
variation is entirely due to environmental factors. When 
all members of a family exhibit a particular disease, it 
implies that the disease is predominantly influenced by 
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genetic factors within that family, resulting in heritability 
approaching 1. Conversely, if none of the family members 
have the disease, the heritability would still approach 1, 
indicating that genetic factors are the primary contribu-
tors to the absence of the disease within the family. This 
phenomenon can lead to an overestimation of heritability 
especially in pedigree-based estimations, as this method 
assumes an additive genetic relationship of zero between 
families, while SNP-based estimations consider non-zero 
genetic relationships between individuals across families. 
This hypothesis was tested by constructing scenario iii 
through removing families with only diabetic (case) or 
non-diabetic (control) individuals from scenario ii and 

resulting in 1098 families with both disease status repre-
sented within them.

Still-missing heritability estimation
To estimate heritability based on genealogical informa-
tion (h2), a generalized linear model framework was 
implemented. Each element of the response vector 
y = {yi}  had two possible values, i.e., presence yi = 1 or 
absence yi = 0 of T2D for the ith individual. We used a 
probit link function P (yi = 1|θi) = Φ (ηi), where θ  and 
Φ are a vector of regressors and the standard normal 
cumulative distribution function, respectively, and ηi  is a 
linear predictor given by:

Fig. 1 Flowchart of population selection based on different scenarios. The overall design of this study was based on estimating of heritability based on 
models using A or G matrix computed using genealogical information or genome-wide common SNPs, respectively
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 ηi = µ +
∑

k
1xikαk + ai (1)

,where µ is an intercept, xik  is the covariate of the i th 
individual at the k th effect (i.e., sex, age, and BMI), αk  is 
the k th fixed effect, and ai  is the random genetic effect 
of the i th individual. In this model we assumed a latent 
normally distributed variable li = ηi + εi , where εi ’s 
are independent residual terms that follow the standard 
normal distribution, and a measurement model yi = 0 
if li < γ , and 1 otherwise, where γ is a threshold param-
eter, and εi  is an independent normal model residual 
with mean zero and variance set equal to one. In this 
equation, the vector of random additive genetic effect, 
a = {ai}  follows a multivariate normal distribution of 
a ∼ N(0,Aσ2

a), where A is the covariance matrix com-
puted using pedigree information and σ2

a  is an additive 
genetic variance caused by sample relatedness.

In order to estimate heritability based on genome-wide 
common SNPs (h2

SNP), we used a linear predictor given 
by:

 τi = µ +
∑

k
1xikαk + gi  (2)

,which is comparable to model (1); however, gi  is the 
random genomic effect which is assumed to have a dis-
tribution of g ∼ N(0,Gσ2

g), where G  is the genomic 
relationship matrix constructed based on the method 
proposed by J Yang, et al. [32] and σ2

g  is the genomic 
variance.

All models were fitted using the Bayesian approach 
implemented in the R package BGLR [33]. All Bayesian 
inference was conducted using a Markov chain Monte 
Carlo (MCMC) approach, Gibbs sampling. To estimate 
heritability, we ran 350,000 iterations of a Gibbs sampler, 
where the first 100,000 samples were discarded as burn-
in, and the remaining samples were thinned at a thinning 
interval of 50. Thus, 5,000 posterior samples were used 
to infer the posterior distribution features. We conducted 
convergence diagnosis of the Gibbs sampler using a crite-
rion of the accuracy of estimation of a quantile using the 
R package coda [34].

The h2 and h2
SNP  were then estimated byh2 = σ2a

σ2a+σ2e
 and 

h2
SNP =

σ2g
σ2g+σ2e

, and the still-missing heritability was calcu-
lated by subtracting h2

SNP  from h2.

T2D risk prediction accuracy using ERV and GERV
T2D risk prediction was performed using three mod-
els: (i) model (1) above, (ii) model (2) above, and (iii) a 
fixed model as control, which is comparable to model (1) 
above, but without the random genetic effect term a.

A 10-repeated 5-fold cross-validation (CV) was con-
ducted to evaluate the prediction models’ performance 
in each scenario. In each repeat, we randomly divided 

individuals into 5 subsamples. In each fold of the CV, 
each subsample was considered the testing set and oth-
ers the training set. The process followed until every 5 
subsets were placed in the testing set precisely once. The 
entire process was repeated 10 times to reduce the vari-
ance of the estimated prediction accuracy. In each CV, 
for each model, the number of iterations of the Gibbs 
sampler was 210,000, with the first 60,000 samples dis-
carded as burn-in. A thinning interval of 30 was used.

A receiver operating characteristic (ROC) analysis was 
used to compare the implemented models under differ-
ent scenarios based on the area under curve (AUC), sen-
sitivity, and specificity.

Construction and validation of T2D PRS
In the data, we calculated the PRS based on the summary 
statistics of a previous multi-ancestry GWAS conducted 
by A Mahajan, et al. [35], which is publicly available on 
the Diabetes Meta-Analysis of Trans-Ethnic association 
studies (DIAMANTE) Consortium data download web-
site (http://diagram-consortium.org/downloads.html). 
Participants in the present study were independent of the 
DIAMANTE Consortium participants. From the sum-
mary statistics data, we removed SNPs with low info-
score < 0.8, SNPs with MAF < 0.01, ambiguous SNPs, and 
SNPs on sex chromosomes.

PRSice software v2.3.3 [36] was used for PRS calcu-
lation using the commonly implemented method, LD 
clumping and p-value thresholding (C + T). As a default 
setting of the software, we adopted the additive model for 
PRS calculation, which sums up the dosage of the effec-
tive allele carried by an individual (ranging from 0 to 2). 
PRS was calculated for each individual using the follow-
ing formulae:

 
PRSi =

∑n

j
βj × Gij  (3)

where βj  is the effective allele of the j th SNP, which 
derived from DIAMANTE Consortium GWAS, as the 
base data, Gij  is the number of the effective allele of 
the j th SNP for the i th individual, Mi  is the number of 
alleles included in the PRS for the i th individual, and n  is 
the number of SNPs.

To implement C + T, LD clumping was first per-
formed using pairwise LD of r2  < 0.25 within 200  kb 
windows. Then, we calculated the PRS in the target 
data (n = 11,818) using different variant sets based on 
p-value thresholds between 1 and 5.0× 10−8, Model 1 
to Model 10, including age, sex, and the first 10 princi-
pal components (PCs), to account for population strati-
fication (Table 1). The AUC metric was implemented to 
measure the capability of the model in discriminating 
between those having and not having T2D. The value of 

http://diagram-consortium.org/downloads.html
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AUC closer to 1 is good in terms of discriminative per-
formance, and the value of AUC closer to 0.5 means the 
model’s performance is like random guessing. In addition 
to AUC, Nagelkerke’s R² was used to establish the part of 
the variance in the dependent variable that the indepen-
dent variable in each model could account for. This met-
ric gives us an understanding of the models. The better 
the value, the more the fit toward the data. The logistic 
regression models have been compared through these 
metrics and labelled from model 1 to model 2. Among 
the models, Model 2 showed the highest performance, 
with respect to AUC and Nagelkerke’s R² value being the 
largest and substantially higher than the rest (p < 0.001, 
#variants = 3026).

To compare the prediction ability of PRS, ERV, and 
GERC, we calculated Spearman’s correlation between 
estimated ERVs or GERVs and predicted PRS on the 
target under the three different scenarios for family 
structure.

Simulation study
A simulation analysis was performed based on the TLGS 
dataset to quantify the difference between estimates of 
h2 and h2

SNP  in the three familial structure scenarios. We 
randomly selected 250 SNPs from the genotype profile of 
the population and considered them as quantitative trait 
loci, assigning reference alleles as the effect alleles. The 
quantitative phenotype of each individual (yi , for the ith 
individual) with a low (0.1), moderate (0.3), and high (0.5
) heritability (h20) was simulated under an additive model 
by summing the effect sizes of all effect alleles using:

 yi =
∑

250
j=1xijβj + εi,

where xij  is the number of effect alleles carried by the 
ith individual at the jth randomly selected SNP, βj  is the 
simulated effect of the jth SNP, and εi ∼ N (εi| 0, σ2

ε) 
are i.i.d. standard normal residuals, where σ2

ε  was set to 
(1− h20) to ensure the desired level of heritability of the 
trait. Different studies have identified various numbers of 
SNPs (up to more than 400) significantly associated with 
T2D [35, 37, 38]. Based on the genetic structure of the 
disease, we assumed a total of 250 SNPs with nonzero 
effect. Among the candidate genes for T2D, a small num-
ber of them were highly replicated in T2D association 
studies [39]. Moreover, evidence from additional studies, 
such as the European and East Asian T2D GWAS meta-
analyses [40, 41], suggests that specific SNPs located near 
critical genes associated with T2D demonstrate notably 
high effect sizes. This made us decide to introduce a small 
number of SNPs as major quantitative trait loci. Conse-
quently, we assumed 70% of the additive genetic variance 
was explained by 247 SNPs with a relatively small effect, 
and the remaining 30% was explained by 3 SNPs with a 
sizable effect. The simulated yi  was sorted from big to 
small and the top yi  converted to T2D status, with the 
same prevalence as observed in our TLGS population. All 
simulation processes were repeated ten times to obtain a 
robust estimate of the heritability.

Results
Table  2 describes the number of families, cases, and 
controls along with the mean value of the covariates 
stratified by gender in different scenarios. After apply-
ing quality control, 11,818 individuals with 546,339 SNPs 
remained for further analysis of the T2D phenotype. As 
expected, the largest number of families (n = 3,780), cases 
(n = 2,210), and controls (n = 9,608) were included in the 

Table 1 Performance metrics of logistic regression models (model 1 to Model 10) based on AUC and Nagelkerke’s R². The table 
highlights each model’s discriminative ability and explanatory power, with PT7 demonstrating superior performance across both 
metrics
Model name P-value threshold #SNP AUCa Betab P-valuec Nagelkerke’s R2 d

Model 1 P < 1 94,517 0.6396 0.7 4.97E-34 0.2
Model 2 P < 0.5 70,489 0.6442 0.69 2.39E-35 0.26
Model 3 P < 0.2 44,054 0.6503 0.7 1.16E-34 0.34
Model 4 P < 0.1 29,861 0.6527 0.71 6.62E-28 0.37
Model 5 P < 0.05 20,120 0.6549 0.72 5.46E-13 0.39
Model 6 P < 0.01 8,439 0.6621 0.69 1.31E-10 0.49
Model 7 P < 0.001 3,026 0.6632 0.7 5.78E-12 0.5
Model 8 P < 1E-04 1,528 0.6574 0.69 4.72E-12 0.43
Model 9 P < 1E-06 660 0.6495 0.7 4.60E-10 0.33
Model 10 P < 5E-08 473 0.6454 0.7 7.39E-10 0.27
aAUC (Area Under the Curve): This represents the ability of the model to distinguish between positive and negative cases. A higher AUC indicates better model 
performance
bThe coefficient value for the independent variable in the logistic regression model. It indicates the direction and strength of the relationship between the 
independent variable and the outcome
cThe statistical significance of the Beta coefficient
dIndicates the proportion of variance in the dependent variable that the model explains. Higher values indicate better explanatory power
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analyses when all families, disrespecting the T2D sta-
tus of their members, were used. Using number of gen-
erations = 0 as a threshold (i.e., unrelated couples without 
children and families with one member), 1,591 families 
without pedigree relatedness were removed, resulting 
in all remaining families having pedigree relatedness. In 
contrast, the scenario in which families (generation ≥ 1) 
having both diabetic and non-diabetic had the lowest 
number of families (n = 1,098), cases (n = 1,638), and con-
trols (n = 4,254).

Heritability and still-missing heritability
Heritability and still-missing heritability estimates 
obtained by each scenario are presented in Table 3. Given 
all scenarios, h2 and h2

SNP  estimates ranged from 0.171 
to 0.529 and from 0.095 to 0.334, respectively. We esti-
mated the highest h2and h2

SNP  estimates when all families 
are included in the analysis. When families with genera-
tion = 0 were removed from the data (scenarios ii), h2 and 
h2

SNP  reduced by 15.9% and 5.1%, respectively. This shows 
that families with no information in their pedigree can 
affect h2 more than h2

SNP . Further removing families with 
only cases or only controls (scenario iii), 61.6% and 70% 
of the h2 and h2

SNP  reduced, respectively. In other words, 
from scenario ii to scenario iii, the magnitudes of h2 and 
h2

SNP  decreased by 0.274 and 0.22, respectively, demon-
strating that the families with either case-only or control-
only structures have a greater impact on the estimated h2 
compared to h2

SNP  for the studied disease. Consequently, 

in families (≥ 1 generation) having both diabetic and 
non-diabetic individuals achieved the lowest h2and h2

SNP
estimates.

Still-missing heritability ranged from 0.076 to 0.195 
among different scenarios. Family structure showed a 
noticeable effect on still-missing heritability estimates. 
The highest level of still-missing heritability was esti-
mated when families with generation = 0 were considered 
in the model. However, the lowest estimate was given by 
the families (≥ 1 generation) comprising both diabetic 
and non-diabetic individuals. To eliminate the magnitude 
of h2 for comparing the still-missing heritability esti-
mates between different family structures, the proportion 
of still-missing heritability was also represented. Inter-
estingly, the lowest estimated proportion of still-missing 
heritability was found in scenario ii, suggesting that fami-
lies with generation ≥ 1 could lead to much smaller esti-
mated proportion of still-missing heritability.

Assessment of T2D prediction
Our results indicate noticeable differences among the 
AUC, sensitivity, and specificity estimates obtained 
from different family structures applied to pedigree, 
genomic, and fixed models (Table  4). Among differ-
ent scenarios, AUC and sensitivity ranged from 0.510 
to 0.737 and 0.435 to 0.029, respectively. The highest 
AUC (0.737 ± 0.014) and sensitivity (0.435 ± 0.030) were 
given when T2D was predicted using GERV based on 
families (≥ 1 generation) comprising both diabetic and 

Table 2 Number of families, cases, and controls, T2D prevalence, and the average of covariates in each scenario
Generation size Family type No. of families

(all cases; cases & con-
trols; all controls)a

T2D 
preva-
lence (%)

Sex Caseb Controlc Age (years) BMI 
(kg/
m2)

All families All 3,780 (368; 1,235; 2,177) 23.00 Men 961 4,531 46 27.06
Women 1,249 5,077 45.35 28.57

Generation ≥ 1 All 2,189 (26; 1,098; 1,065) 20.87 Men 745 3,939 44.5 27.01
Women 956 4,211 43.88 28.32

Case/control 1,098 (0; 1,098; 0) 38.50 Men 724 2,074 45.2 27.42
Women 914 2,180 44.07 28.85

aNo. of families = the total number of families in each scenario; all controls = number of families in which all individuals are negative for T2D; cases&controls = number 
of families in which both diabetic (case) and non-diabetic (control) individuals are present; all cases = number of families in which all individuals are positive for T2D
bCase = the total number of positive individuals for T2D included in each scenario stratified by gender
cControl = the total number of negative individuals for T2D included in each scenario stratified by gender

Table 3 The estimates of additive genetic variance (σ2
a ), genomic variance (σ2

g ), heritability (h2), genomic heritability (h2
SNP),and still-

missing heritability of type-2 diabetes (T2D) under different familial structure scenarios
Generation size Family type σ2

a  (SDa) σ2
g (SD) h2 (SD) h2

SNP (SD) Still-missing heritability (%b)

All families All 0.804 (0.151) 0.444 (0.061) 0.529 (0.043) 0.334 (0.033) 0.195 (36.9%)
Generation ≥ 1 All 0.802 (0.175) 0.464 (0.069) 0.445 (0.053) 0.317 (0.032) 0.128 (28.8%)

Case/control 0.206 (0.053) 0.105 (0.026) 0.171 (0.036) 0.095 (0.021) 0.076 (44.4%)

aStandard deviation is calculated by 

√∑ n
i=1(xi−µ )2

n
, where xi  is the posterior value of the parameter from the n = 5,000 sampled iterations, µ  is the estimated 

posterior means of parameter
bProportion of still-missing heritability is calculated by 

Still−missing heritability
h2

× 100
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non-diabetic individuals. However, using the same input, 
pedigree-based T2D prediction by ERV obtained slightly 
lower AUC (0.623 ± 0.013) and sensitivity (0.425 ± 0.029). 
The fixed model gave the lowest AUC (0.510 ± 0.003) and 
sensitivity (0.029 ± 0.006) with all families as the input.

The correlations between PRS and ERV or GERV 
ranged from 0.196 to 0.224 (Table 5 and Supplementary 
file, Figure S1). Using families with generation ≥ 1 and 
having both cases and controls showed the highest cor-
relation between PRS and both GERV and ERV. In con-
trast, the lowest correlation was observed between PRS 
and ERV in both scenario i and ii.

Simulation study
Figure  2 shows the difference between estimates of h2 
and h2

SNP  in the three different familial structures based 
on our simulated data. In scenarios i and ii, the estimated 
h2

SNP  was very close to its moderate and high simulated 

heritability, while h2
SNP  was overestimated in the low 

simulated heritability estimate scenario. The simulation 
results showed an overestimation of h2 in different levels 
of simulated heritability for both scenarios i and ii. When 
only families with both case and control individuals with 
different heritabilities, scenario iii, were simulated, h2

SNP  
was underestimated. In scenario iii, the estimated h2 was 
slightly higher than the simulated low heritability of 0.1. 
However, for moderate (0.3) and high (0.5) levels of heri-
tability, the estimated h2 values were significantly lower 
than the simulated values.

Discussion
Most diseases of complex origin have a quantitative 
genetic component contributing to their phenotypic vari-
ability. However, a significant part of the genetic com-
ponent of complex phenotypes has not been discovered 
and this “still-missing heritability” [3, 39] requires special 
attention. For example, different explanations have been 
proposed for the still-missing heritability of T2D. Com-
plex traits like T2D are highly polygenic, and GWAS 
might not be sufficiently robust in capturing the rare 
genetic variants with weak effects [42]. Low-frequency 
rare variants could also explain the missing heritability 
with large effects [43]. Moreover, twin studies might have 
overestimated heritability due to genetic interactions 
[44], gene-environment interactions [45], or violation of 
environment assumptions [46]. However, extended twin 
designs, when combined with additional data from other 
family members, can effectively differentiate the effects 
of shared environment and resolve confounds related to 
gene-by-common environment interactions [47]. In con-
trast, pedigree- or SNP-based heritability estimations 
typically lack twin data and are often implemented using 
statistical models that completely ignore shared environ-
mental effects, including only additive and environmen-
tal variance components. This was the approach taken in 
our study. Consequently, our heritability estimates based 
on pedigree/SNP data may be biased due to the exclusion 
of shared variances. Nonetheless, this limitation does 
not affect our primary objective of evaluating the effect 
of population structure on the still-missing heritability 
and prediction accuracy, as we compared pedigree- and 
SNP-based without accounting for shared environment 
in both cases. It is also possible that the heritability of 
T2D has been overestimated in previous studies due to 
epigenetic effects or complex genetic interactions [44]. 
While the possible explanations for still-missing heri-
tability of T2D were widely discussed [2, 39, 42], the 
effect of familial structure on the estimate of still-missing 
heritability of T2D has not been investigated yet. In this 
study, using three different familial structure scenarios, 

Table 4 The mean (standard deviation) of area under curve 
(AUC), sensitivity and specificity of type-2 diabetes (T2D) 
prediction under different familial structure scenarios based on 
different models
Gen-
eration 
size

Family 
type

Modela AUC Sensitivity Speci-
ficity

All 
families

All (1) 0.713 
(0.011)

0.043 (0.009) 0.984 
(0.004)

(2) 0.713 
(0.011)

0.044 (0.009) 0.983 
(0.004)

Fixed 0.510 
(0.003)

0.029 (0.006) 0.990 
(0.003)

Genera-
tion ≥ 1

All (1) 0.725 
(0.013)

0.036 (0.010) 0.990 
(0.003)

(2) 0.724 
(0.013)

0.037 (0.011) 0.989 
(0.003)

Fixed 0.511 
(0.004)

0.031 (0.008) 0.992 
(0.002)

Case and 
control

(1) 0.736 
(0.014)

0.425 (0.029) 0.821 
(0.017)

(2) 0.737 
(0.014)

0.435 (0.030) 0.817 
(0.016)

Fixed 0.553 
(0.010)

0.189 (0.018) 0.917 
(0.011)

aModels (1) and (2) represents additive and genomic prediction models, 
respectively. Fixed model is comparable to model (1) but without the random 
genetic effect

Table 5 Spearman’s correlation between polygenic risk scores 
(PRS) and genomic estimated risk values (GERV) or estimated risk 
values (ERV) obtained from full models (1) and (2)a in different 
scenarios

GERV (p-value) ERV (p-value)
All families All 0.220 (4.28e− 122) 0.196 (4.20e− 96)
Generation ≥ 1 All 0.219 (1.81e− 100) 0.196 (3.74e− 80)

Case/control 0.224 (1.40e− 63) 0.210 (3.14e− 56)
a Models (1) and (2) represents pedigree-based and genomic prediction models, 
respectively
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Fig. 2 Differences between estimated heritability. The heritabilities were estimated based on genealogical information (pedigree) and genomic relation-
ship matrix (GRM) in simulation study for three different familial structures, including all families (A), all families with ≥ 1 generation (B), and families with 
≥ 1 generation in which both case control individuals are presented (C). In each plot, mean of estimated heritability based on the two different models 
was significantly differed at p-value < 0.01 (**) or 0.001 (***) based on a t-test
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we showed that the still-missing heritability and pre-
diction of T2D could be remarkably affected by familial 
structure.

It is well known that common SNPs can explain some 
proportion of the variation of the trait, and individuals 
with more genetic similarity estimated with genome-
wide allele sharing show more phenotypic similarity in 
a variance components model [3, 48]. Confounding by 
population structure can occur because of a shared envi-
ronment and significantly affect estimation models [49]. 
In this study, utilizing real data, we demonstrate that this 
confounding effect may be altered by the estimated simi-
larity between individuals based on SNPs or genealogi-
cal information. Specifically, using pedigree information 
tends to yield a significantly higher estimated heritability 
compared to SNP information, particularly when rep-
resenting families with either case-only or control-only 
structures. Although it has been proposed that for binary 
traits, such as T2D, additive variance is typically param-
eterized on an unobserved continuous liability scale to 
ensure heritability is independent of disease prevalence 
[50], our findings suggest that this method is inadequate 
for addressing family structure. Specifically, the absence 
of families with only case/control in cohort studies may 
lead to an underestimation of disease heritability in both 
pedigree-based (except in cases with low heritability) and 
SNP-based heritability estimations.

The highest still-missing heritability was observed 
when there were no limitations for families included in 
the analysis. Based on the simulation study, this rela-
tively high still-missing heritability was mainly due to 
the overestimation of h2. Another possible reason is 
that the estimated heritability of families without pedi-
gree relatedness is attributed more to the family struc-
ture than based on the genome-wide method (scenario 
i vs. scenario ii). However, removing these families (i.e., 
members without pedigree relatedness) slightly reduced 
the estimated heritability in scenario ii for the real data 
but not for the simulation study. In contrast, removing 
families with only case or only control structure drasti-
cally reduced the estimated heritability based on both the 
pedigree and genome-wide methods on both the simu-
lated data and the real data. In other words, cohorts with 
a high proportion of families with only case and control 
structure may be susceptible to overestimation of heri-
tability, especially for pedigree-based heritability estima-
tion. We also cannot ignore the potential confounding 
effect of sample size in our study. The sample size of the 
different scenarios was not comparable, and with a larger 
sample size, there is a greater chance of capturing a rep-
resentative amount of genomic or genetic variation in 
the population [51, 52]. Therefore, we suggest that fur-
ther investigation of the familial structure effect on the 

still-missing heritability using scenarios with comparable 
sample sizes is important in future studies.

We show that familial structure can impact the predic-
tive ability of the fixed, genetic, and genomic prediction 
models for T2D. Families with both cases and controls 
obtained higher sensitivity and lower specificity com-
pared to the all-families scenario. One explanation for the 
differences in the T2D predictive ability based on differ-
ent training subsets could be disease prevalence. When 
disease prevalence is high, like our scenario of families 
having both cases and controls, genomic prediction mod-
els tend to have higher sensitivity but lower specificity 
[53]. This is because the model may identify many indi-
viduals at high risk for the disease, even if they are not, 
to capture as many true positives as possible. However, 
this strategy may also result in a high false positive rate, 
reducing the model’s specificity [53]. Conversely, when 
disease prevalence is low, such presented in scenarios 
i and ii; genomic prediction models tend to have high 
specificity but low sensitivity [53]. This is because the 
model may be more conservative in its predictions, only 
identifying individuals at high risk if they have a strong 
genetic signal for the disease. However, this strategy may 
also result in a high false negative rate, reducing the sen-
sitivity of the model. The impact of disease prevalence on 
AUC is less straightforward and may depend on the spe-
cific characteristics of the genomic prediction model and 
the disease being studied. In general, however, as disease 
prevalence increases, the AUC and accuracy of the model 
may also increase as the model has more information on 
the disease and can make more accurate predictions [54].

Another explanation for the differences in the T2D pre-
dictive ability by different subsets could be attributed to 
environmental factors. A study by AV Khera, et al. [55] 
investigated the prediction accuracy of a polygenic risk 
score for coronary artery disease in different racial and 
ethnic groups in the United States. The authors found 
that the risk score had variable performance across differ-
ent groups, with higher performance in white individuals 
and lower in Hispanic and African American individu-
als. The authors suggested that this could be due to envi-
ronmental factors such as lifestyle and healthcare access 
to some extent. Therefore, in our study, some unknown 
environmental effects might affect the T2D genomic pre-
diction performance in some subsets of our population.

We cannot ignore the effect of sample size on genomic 
prediction performance. The relationship between 
sample size and genomic prediction accuracy can be 
explained by larger sample sizes providing more infor-
mation on the genetic architecture of the trait being pre-
dicted. This additional information reduces the noise in 
the data and allows for a more accurate estimation of the 
effects of individual markers on the trait [16]. In contrast, 
as the sample size decreases as presented in scenario i to 
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scenario iii, genomic and genetic prediction performance 
increases. This suggests that family structure may play an 
important role in prediction accuracy alongside disease 
prevalence. While increasing sample size can improve 
prediction accuracy up to a certain point, it is also essen-
tial to consider other factors, such as genetic diversity 
and marker density, when designing genomic prediction 
studies.

PRSs are a popular tool to estimate the risk of devel-
oping a specific common disease condition. However, 
PRS estimates in samples of unrelated participants can 
be affected by population stratification, assortative mat-
ing, and environmentally-mediated parental genetic 
effects [56, 57]. We show that the family structure can 
be a potential factor for the interpretation of PRS predic-
tion. For instance, the highest correlation between T2D 
PRS and GERVs/ERVs was observed when families with 
both cases and control structure were used for estimating 
genetic/genomic risk values.

In conclusion, our study reveals that familial structure 
can play a significant role in the estimate of missing heri-
tability of complex genetic diseases with the occurrence 
of case or control, such as T2D, and their genomic pre-
diction performance. Specifically, our study shows that 
families with only case/control structure could overes-
timate pedigree-based heritability, resulting in a higher 
still-missing heritability estimate. Additionally, incorpo-
rating information about families containing both cases 
and controls can improve the performance of genomic 
prediction models in T2D. Our findings emphasize the 
importance of considering the familial structure for heri-
tability estimations and genomic prediction studies in 
other diseases with the case/control outcome. Overall, 
our study highlights the need for further research on the 
impact of familial structure on genomic prediction and 
missing heritability.
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