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Abstract 

Background  Genome-wide association studies have identified numerous human host genetic risk variants that 
play a substantial role in the host immune response to SARS-CoV-2. Although these genetic risk variants signifi-
cantly increase the severity of COVID-19, their influence on body systems is poorly understood. Therefore, we aim to 
interpret the biological mechanisms and pathways associated with the genetic risk factors and immune responses in 
severe COVID-19. We perform a deep analysis of previously identified risk variants and infer the hidden interactions 
between their molecular networks through disease mapping and the similarity of the molecular functions between 
constructed networks.

Results  We designed a four-stage computational workflow for systematic genetic analysis of the risk variants. We 
integrated the molecular profiles of the risk factors with associated diseases, then constructed protein–protein 
interaction networks. We identified 24 protein–protein interaction networks with 939 interactions derived from 109 
filtered risk variants in 60 risk genes and 56 proteins. The majority of molecular functions, interactions and pathways 
are involved in immune responses; several interactions and pathways are related to the metabolic and cardiovascular 
systems, which could lead to multi-organ complications and dysfunction.

Conclusions  This study highlights the importance of analyzing molecular interactions and pathways to understand 
the heterogeneous susceptibility of the host immune response to SARS-CoV-2. We propose new insights into patho-
genicity analysis of infections by including genetic risk information as essential factors to predict future complications 
during and after infection. This approach may assist more precise clinical decisions and accurate treatment plans to 
reduce COVID-19 complications.

Keywords  Severe COVID-19, Host risk variants, GWAS, Genetic risk factor analysis, Molecular networks analysis, 
Disease mapping, Statistical analysis

Background
Immune-mediated inflammatory lung damage is 
caused by severe COVID-19 infections. Following 
SARS-CoV-2 infection, host genetic variations con-
tribute to the development of illnesses that require 
critical care or hospitalization [1, 2]. Genome-wide 
association studies (GWAS) have been conducted to 
identify and validate risk genetic variants that signifi-
cantly impact the severity of COVID-19 among dif-
ferent populations [3, 4]. These studies compared the 
genomes of patients with severe infections to those of 
uninfected or mildly affected individuals in order to 
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understand the heterogeneity of the immune responses 
observed among patients with COVID-19 and discover 
the underlying disease mechanisms. Although GWAS 
can be leveraged to determine the associations between 
genetic variants and the severity of COVID-19, most of 
the risk variants identified are located in non-coding 
loci. Some of these studies applied statistical analy-
ses such as Mendelian Randomization (MR) [5] and 
co-localization [6]. Such approaches help in identify-
ing novel genetic variants in various loci in the host 
human genome that are associated with the severity of 
COVID-19 and respiratory failure [6, 7]. Although non-
coding variants cannot be directly interpreted, these 
loci often surround multiple genes. Hence, researchers 
can infer the effects of these loci on gene expression by 
integrating multi-omics data [8].

Although previous studies have identified risk variants 
associated with severe COVID-19, the biological func-
tions and pathways of most identified risk variants and 
their impacts on the immune system are poorly explained 
[9, 10]. Such pathways can be interpreted by constructing 
molecular networks for omics identified as risk factors 
for severe COVID-19. For instance, various immunologi-
cal studies concentrated on examining the susceptibility 
of the immune system response to SARS-Cov-2. Two 
studies have examined the effects of variants in develop-
ing severe COVID-19 by analyzing the function of active 
proteins of Cytokines response and identifying genetic 
factors in the interferon circuit during infection [10, 11]. 
The studies have demonstrated that interferons (IFN-
I) play vital roles in the governance of the pathogenesis 
of COVID-19. The genetic analysis that has been found 
in the enrichment of (IFN-I) genes and autoantibodies 
assists doctors in stating and determining the individuals 
who are at the critical stage of life-threatening COVID-
19 [10, 12, 13].Furthermore, functional enrichment anal-
ysis can be applied to estimate the molecular function of 
each risk factor and its contribution to the constructed 
network. However, there has been no combined analysis 
of the interactions between all of the proteins in these 
networks; thus, the interactions or links between these 
risk factors remain unknown. Hence, mapping genetic 
risk variants with related diseases and biomarkers is vital 
to discover and predict possible missing interactions and 
expand the networks [14].

Thus, in this paper, we aim to further interpret the bio-
logical mechanisms and molecular pathways involved in 
the pathogenicity of severe COVID-19 by analyzing iden-
tified risk variants and inferring the hidden interactions 
between these molecular networks based on disease 
mapping. A computational analysis workflow is designed 
to retrieve genetic risk variants from several biological 
public resources and available platforms and annotate 
these risk variants with features to provide deeper insight 
into each risk variant. We adopted a disease-variant-net-
work mapping approach to perform enrichment analysis 
and identify the similarity between molecular functions 
and networks, connect the constructed networks, and 
infer the invisible links between the constructed pro-
tein–protein interaction (PPI) networks. Finally, we map 
the genetic features and shared biological pathways of 
the phenotype of the host response to SARS-CoV-2. 
This analysis identified relevant host genetic factors that 
are involved in the progression of severe COVID-19 and 
also related to other diseases, such as metabolic diseases. 
Thus, this work could help clinicians to identify the hid-
den genetic factors that influence severe outcomes before 
symptoms appear and provide more intensive or timely 
treatment to reduce disease complications. A general 
overview of the study is visualized in the following flow 
diagram to illustrate our analysis concept is shown in 
Fig. 1.

Results
Distribution of the chromosomal location of risk variants
The distribution of the 109 risk variants after filtration 
on the human chromosomes is presented in Fig. 2. The 
ideogram shows chromosomes 1-9, 11, 12, 15, 17, and 
19-X contain 109 risk variants with different types of 
variant function such as intergenic, intronic, and tran-
script variants that are distributed in 60 genes in the 
host genome. We found two gene clusters that have 
an impact on severe outcomes of COVID-19. The first 
gene cluster contains C4BPA, LOC107985251, CFH, 
and CD55 located on chromosome 1q31.3-1q.32.2. The 
loci hold cluster of risk genes are related to immune 
responses and chemokine and cytokine activity. This 
cluster contains the regulatory variants rs61821041 
and rs61821114, which contribute to downregula-
tion of CD55. Furthermore, rs45574833 is associated 

(See figure on next page.)
Fig. 1  Flow diagram of the study overview. (A) The first step: extracting genetic risk factors of severe COVID-19, by parsing articles and extracting 
risk factors. such as Variants, Genes, proteins, related diseases, pathways, and interactions. (B) The second step: annotating the genetic risk factors 
of severe COVID-19 to complete the genetic profiles of identified risk variants from public datasets and platforms. (C) The third step: analyzing 
molecular functions of risk factors of severe COVID-19 using gene ontology and Gene Card platforms. (D) The fourth step: constructing molecular 
networks and identifying functions and pathways between risk factors and other molecules from public datasets and platforms. (E) The fifth step: 
mapping constructed networks of severe COVID-19 with other diseases via shared risk variants using GWAS catalog, ClinGen., and other public 
resources
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Fig. 1  (See legend on previous page.)
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with atypical hemolytic uremic syndrome, a condition 
in which thrombi develop in tiny blood arteries in the 
kidneys. The regulator of complement activation (RCA) 
contains many tandemly clustered genes with homolo-
gous immune system activities, which are downregu-
lated during COVID-19 infection [15]. In addition, the 
second cluster of genes: SCN5A, LZTFL1, SLC6A20, 

FYCO1, CCR9, CXCR6, and XCR1 located on 3p21.31 
and 3p22.2 are related to innate immune system activi-
ties. For instance, SCN5A in human macrophages func-
tions as a pathogen sensor and modulates antiviral 
responses and defense [16], the cluster is carried by 50% 
of South Asian and 16% of European populations, and 
was previously associated with severe COVID-19 and 

Fig. 2  Chromosomal loci and functional consequences of the 109 genetic risk variants. Autosomal loci of the 60 risk genes associated with severe 
COVID-19: each dot represents a risk variant, and the dots in the same horizontal line represent the same risk variant but in different genes. The 
colors of the dots represent risk genes
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immune dysfunction inherited from Neanderthals [17, 
18]. Therefore, our investigation further emphasizes 
that this cluster is associated with severe COVID-19.

Moreover, the ideogram of the chromosomal locations 
of identified risk variants associated with severe COVID-
19 illustrates that three haplotypes are located on chro-
mosomes 9, 11, and X. Our investigation, we found that 
these haplotypes influence the immune response and 
metabolic system. Loci 9q34.3 holds a haplotype that 
contains six risk variants located in the ABO gene. This 
haplotype interacts with FUT1-6 and FUT and nega-
tively influences the biosynthesis of the components of 
the blood group systems during COVID-19 infection. 
Additionally, a second IFITM3 haplotype on chromo-
some 11 was previously associated with higher severity 
of HIV, Dengue, Ebola, and influenza infections. IFITM3 
is an immune effector protein that is essential for both 
controlling cytokine production and limiting viral rep-
lication. The last haplotype shown on the ideogram is 
located in the TLR7 gene on chromosome X.

In addition, a group of risk variants located within the 
21q22.11-21q22.3 loci influence down-regulation of the 
activity of the IFNAR2 and MX1 genes, which regulate 
the function of the interferon receptors and B cell-acti-
vating factor receptors that are involved in the immune 
response to viruses.

Furthermore, we found that a group of variants on 
chromosome 1 (rs1202980, rs60220284, and rs45574833) 
located in the C4BPA, LOC107985251, and TRIM46 
genes are related to breast cancer. Additionally, the 
rs4341 and rs4343 risk variants located in the AEC gene 
on chromosome 17 are related to Alzheimer disease and 
hypertension. Moreover, rs429358 and rs481778 located 
in APOE and PLEKHA4 genes on chromosome 19 are 
related to Alzheimer disease. More explanation of dis-
ease-variant mapping is provided in the supplementary 
materials.

At the level of single polymorphisms related to severe 
COVID-19, most chromosomes hold risk variants 
related to the blood and immune system that impact the 
immune response and increase the severity of COVID-
19 during infection. For example, the risk variants found 
on chromosome 2 are related to the innate immune sys-
tem, which is the first step of defense and interaction. In 
addition, some risk variants impact the level of biomark-
ers in blood. For example, the risk variants on chromo-
some 1 increase blood pressure during infection, so the 
biomarker (D-dimer) level increases. Furthermore, some 
of these variants influence metabolic pathways that affect 
body systems. For instance, the risk variant on chromo-
some 3 negatively impacts glucose metabolism pathways. 
Also, the length of the chromosome, gene size, and over-
lapping might affect variant distribution by chromosome.

Statistical analysis on the curated dataset of genetic risk 
variants of severe COVID‑19 outcomes
In an initial analysis, our curated dataset of risk genetic 
variants of severe COVID-19 outcomes was analyzed 
with the list of risk variants with their reported effects. 
The data has 109 risk variants with 16 rare variants with 
minor allele frequencies (MAF) less than 0.01 and 93 
common variants, as reported in the reviewed papers. 
Most of the reviewed papers reported MAF, P value, and 
other features. However, not all reviewed articles pro-
vided the odd ratio (OR) values of variants reported risk 
variants. Around 50% of the genetic effects of risk vari-
ants are not reported in the reviewed articles and need 
to be calculated. Thus, we re-estimated the additive effect 
of risk variants by calculating a new OR value for all risk 
variants using the reported OR and the MAF of each risk 
variant. Moreover, the association between the MAFs 
and genetic effects of risk variants of severe COVID-19 is 
visualized and explained in Additional file 1.

The associations between risk variants and their effects 
in developing severe outcomes of COVID-19 per gene 
were established using an additive genetic model estimat-
ing the OR of severe COVID-19. The cumulative values of 
reported OR and MAF of the accumulated risk alleles in 
a particular gene were calculated and used as a combined 
effect to estimate the additive effects per gene. Figure  3 
shows a scatter plot of the additive effects of risk variants 
on severe COVID-19 outcomes per gene. Moreover, the 
statistical method for estimating the genetic effects of 
severe COVID-19 is explained in Additional file 1.

Enrichment analysis of genetic risk factors for severe 
COVID‑19
Our curated dataset represents variant profiles that 
provide descriptive information on risk variants. In our 
analysis, we named each variant associated with severe 
COVID-19 in the list as a risk variant and its host gene, 
as a risk gene causally associated with increased mortal-
ity in COVID-19. Furthermore, we named the proteins 
encoded by risk genes risk proteins. The list of genetic 
risk variants associated with severe COVID-19 is dis-
played in Additional file  2: Table  S1. Below, we present 
the enrichment analysis of the genetic risk factors asso-
ciated with the severity of COVID-19 at different levels: 
variants, genes, and proteins.

Variant level: COVID‑19 risk variants and disease association
We found 46 risk variants in coding regions and 63 
located in non-coding regions. In non-coding regions, 
three variants are located in the intergenic region 
between genes. Fifty-two of the 63 non-coding region 
variants are intronic variants, and the remainder are tran-
script variants occurring within intron regions [19, 20]. 
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The distribution of the functional consequences of 109 
filtered risk variants in human DNA is shown in Fig. 4.

Table 1 displays the variant-disease associations for 41 
risk variants. Seven risk variants are related to metabolic 
disorders such as diabetes mellitus, hyperglycemia, and 
blood protein levels. Three of the intron variants have an 
impact on ABO protein synthesis, which influences the 
red cell count and is associated with metabolic diseases 
such as diabetes and venous thromboembolism (VTE) 
[21, 22]. The rs12683493 risk variant changes glycosyla-
tion and causes von Willebrand disease [22, 23].

Moreover, four risk variants are linked with cardiovas-
cular disorders such as cardiac arrhythmia, long QT syn-
drome, and triple vessel diseases. Three risk variants are 
associated with immune dysfunction; for example, white 
blood cell disorders, complete blood count disorders, 
and rheumatoid arthritis. Three risk variants are mapped 
to gastrointestinal diseases, such as Crohn’s disease and 
inflammatory bowel disease. Four risk variants are asso-
ciated with cancer such as prostate cancer and Kaposi’s 
sarcoma. Another five risk variants are related to severe 
symptoms in infectious diseases namely, tuberculosis and 

severe influenza. One variant is related to respiratory dis-
orders and mapped to severe asthma.

Gene level: COVID‑19 risk genes and disease association
The results of gene set analysis of the COVID-19 risk 
genes are shown in Fig. 5. The gene expression of the top 
ten ranked systems in normal tissues and cells derived 
from our enrichment analysis of the risk gene set is 
shown in the bar chart in Fig.  5A. Most of these risk 
genes are highly expressed in blood cells in the hemat-
opoietic system, with a ranked score of 3.5 related to the 
immune response and viral interaction. The second sys-
tem is the musculoskeletal system with a ranked score 
of 3, with some of the risk variants involved in blood cir-
culation. The other three related systems are the renal, 
reproductive, and neuro systems and are approximately 
similar with ranked scores of 2.5. The risk genes for the 
respiratory system and the lungs only have a ranked score 
of 1.5.

Screening the list of risk genes can help to compre-
hend the organs and systems affected in severe COVID-
19. However, the presence of gene expression does not 

Fig. 3  The additive effects of common risk variants on severe COVID-19 outcome per genes. The scatter plot shows the additive effects of common 
risk variants on severe COVID-19 outcomes per gene. Each point corresponds to the additive effect of the risk gene that has been calculated based 
on cumulative values of reported ORs and MAF. Each gene hosts at least one reported risk variant
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necessarily mean that the gene is connected function-
ally to a network related to its expressed system or tis-
sue. For example, three genes out of 60 risk genes are 
RNA-encoding genes affiliated with the ncRNA class 
LOC105378861, LOC107986083, and LOC107985251. 
The phenotype of LOC105378861 is related to the levels 
of tissue factor activity in blood and increased D-dimer 
levels in patients with COVID-19 [24]. However, no 
information is available about LOC107986083 and 
LOC107985251.

Figure 5B illustrates the number of risk genes that are 
enriched in human compartments and tissues. Mainly, 
most risk genes are enriched in the immune system and 
are located on the cell surface and related to the receptor 
of type I interferon or viral assembly compartments.

The results of the risk gene analysis with regard to 
disease associations are illustrated in Fig.  6. The top 
most-enriched risk genes mapped to disease based on 
the Mendelian Inheritance in Man (OMIM) database 
[25]. Inherited Alzheimer disease was the top disease 
that mapped to the risk genes, followed by long QT 

syndrome, myocardial infections, metabolic diseases, and 
lung dysfunction.

Protein level: COVID‑19 risk proteins and molecular 
functional analysis
We found 56 proteins involved in the development of 
severe COVID-19. We applied GO enrichment analysis 
of the risk proteins derived from our dataset after elimi-
nating three genes that did not encode proteins. This 
analysis showed 24 proteins are involved in the immune 
system.

Figure 7A shows the risk proteins are mainly enriched 
in the following biological processes: negative regu-
lation of complement activation, response to inter-
feron-beta, type I interferon signaling pathways, and 
cellular response to type I interferon. In terms of molecu-
lar function, Fig. 7B illustrates the risk proteins are highly 
enriched in peptidyl-dipeptidase activity, and chemokine 
binding with high false discovery rate (FDR) scores; these 
activities are involved in the immune system response. 
In addition, the results of the enrichment analysis of risk 

Fig. 4  Distribution of functional consequences of the 109 genetic risk variants in the human genome. The height of each bar represents the total 
number of risk variants in genetic regions, and the light gray color illustrates the number of risk variants associated with other diseases
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proteins in terms of cellular components are shown in 
Fig.  7C. The risk proteins are enriched in blood micro-
particles. Furthermore, the clustering trees summa-
rize the correlation between the significant molecular 

pathways and functions. The pathways with many shared 
risk proteins cluster together in one branch. More signifi-
cant P values are indicated by larger circles.

Table 1  List of the risk variants for severe COVID-19 and their associated diseases and biomarkers

Risk variants Chrom. Diseases and biomarkers Related system

rs45574833 1 Atypical Hemolytic Uremic Syndrome (AHUS) Renal system

rs147149459 3 Hyperglycinuria Neuron system

rs7626962 3 Heart disease, and Cardiac arrhythmia, Cardiovascular phenotype, and 
Congenital long QT syndrome

Cardiovascular system

rs61756766 4 High level of white blood cell count procedure biomarker Immune and hematopoietic systems

rs13168774 ,rs35652899, 
rs8176746, rs150892504

5 Asthma, and Systemic primary carnitine deficiency (CDSP) Respiratory and metabolic systems

rs1800795 7 Alzheimer’s disease, Rheumatoid arthritis, KAPOSI Sarcoma, Diabetes 
mellitus type 1 and 2

Neuron and metabolic systems

rs495828 9 Three-vessel disease (3VD) Cardiovascular system

rs505922 9 Diabetes mellitus Non-insulin-dependent, and high level of red blood 
cell count

Metabolic system

rs12683493 9 Mean Corpuscular Hemoglobin Concentration (MCHC) Hematopoietic system

rs657152 9 Venous thromboembolism, and low level of thyroid stimulating 
hormone

Hematopoietic system

rs6127099 9 Von Willebrand disease (VWD) Hematopoietic system

rs12252 11 Severe influenza, hypercholesterolemia, dengue fever, pneumonia, 
hepatoma, HIV-1 infection

Immune system

rs34481144, rs6598045 11 Severe influenza Immune system

rs143359233 11 Suntan Integumentary systems

rs4883215 12 Alzheimer’s disease Neuron system

rs669 12 Alzheimer’s disease, and Alpha-2-Macroglobulin polymorphism Neuron system

rs4767027 12 Related to level of blood protein biomarker Hematopoietic system

rs8039305, rs769208985 15 Hypertension Circulatory systems

rs72711165 17 Ichthyosis and Lamellar ichthyosis Integumentary systems

rs4343 17 Alzheimer’s disease, high serum albumin level, Myocardial infarction, 
and renal tubular dysgenesis of genetic origin

Neuron and metabolic systems

rs4341 17 Diabetes and hypertension, renal tubular dysgenesis of genetic origin Metabolic and circulatory systems

rs429358 19 Alzheimer disease, hyperlipoproteinemia Neuron system

rs1405655 19 Diabetes mellitus non-insulin-dependent, Inflammatory bowel dis-
eases, and Tuberculosis (TB)

Immune and metabolic systems

rs2109069 19 Idiopathic pulmonary fibrosis Respiratory system

rs12610495 19 Lung Diseases Interstitial Respiratory system

rs74956615 19 Rheumatoid arthritis, Cholangitis sclerosing, Ulcerative colitis, Crohn 
disease, Psoriasis, and Ankylosing spondylitis

Metabolic and integumentary systems

rs138763430 20 Glomerular Filtration Rate, Vitamin D3 , Parathyroid hormone biomark-
ers

Hematopoietic and metabolic systems

rs2070788 21 Cardiac arrhythmia, Atrial fibrillation, Long QT syndrome, Cardiovascu-
lar phenotype, Jervell and Lange-Nielsen syndrome 2

Cardiovascular system

rs114363287 21 Severe influenza due to influenza A virus subtype H7N9 Immune system

rs11702475 21 Prostate carcinoma Reproductive system

rs11385942 22 Immunodeficiency Immune system

rs200553089, rs2042915990 X Immunodeficiency Immune system

rs2074192 X Cardiovascular diseases, Essential hypertension Cardiovascular and circulatory systems

rs2285666 X Diabetes mellitus non-insulin-dependent, Hypertensive disease, Dys-
lipidemias, Orthostatic hypertension

Metabolic and circulatory systems

rs2106809 X Essential Hypertension Circulatory systems
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Fig. 5  Risk gene set enrichment analysis of the 60 risk genes related to severe COVID-19. A The top ten ranked gene expression scores in human 
normal tissues and systems: the vertical axes represent the top ten systems based on ranked scores. Each bar represents a system, and the slots 
inside the bar represent the percentage of the risk genes expressed in various human tissues or cells based on the ranked gene expression scores. 
The horizontal axes represent the ranked score from 0 to 5. B The top ten human compartments and tissues with the highest numbers of enriched 
risk genes based on gene ontology analysis

Fig. 6  Gene set and disease analysis of the 60 risk genes related to the severity of COVID-19 outcomes. The top diseases were mapped to the risk 
genes based on the OMIM and Alliance-DISEASES databases. The circle size represents the number of genes associated with the disease, and the 
range of colors (high-significant level: red, low-significant level: green) represents the FDR scores for the disease associations
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Fig. 7  GO enrichment analyses of the 56 risk proteins related to severe COVID-19 outcomes. A The top ten significant biological processes and 
hierarchical correlation clustering trees of the biological processes enriched with the risk proteins. B The top ten significant molecular functions and 
hierarchical correlation clustering trees of the molecular functions enriched with the risk proteins. C The top ten significant cellular components and 
hierarchical correlation clustering trees of the cellular components enriched with the risk proteins
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Table  2 displays the groups of risk proteins involved 
in biological process pathways related to immune and 
metabolic activities that contribute to the development of 
severe COVID-19 symptoms.

Summary of the enrichment analysis of risk factors 
for severe COVID‑19
In summary, after applying a comprehensive enrichment 
analysis of our curated dataset of 109 risk variants associ-
ated with severe COVID-19 at different levels (variants, 
genes, and proteins), we mapped the genetic factors to 
related diseases to infer the relationships between severe 
COVID-19 and future complications. Based on the chro-
mosomal distribution and risk variant-disease mapping, 
we identified three clusters of genes related to immune, 
hematopoietic, and metabolic dysfunction. Further-
more, three haplotypes contribute to hematopoietic and 
immune system complications. We found a haplotype of 
contiguous variants that contribute to regulatory func-
tions or are associated with other diseases that cause 
severe COVID-19 symptoms. Six risk variants are located 
within contiguous loci in ABO involved in glycosylation 
metabolism. In addition, it is notable that the TMRSS2 
and ACE2 receptors contain a massive number of contig-
uous variants that may increase the susceptibility of host 
cells to viral infection. Numerous groups of variants on 
chromosomes 21 and X influence the antigenic response 
of SARS-CoV-2 variants. Moreover, polymorphisms 
have an influence on host immune recognition and the 
susceptibility and intensity of the immune response to 
the SARS-CoV-2 virus [7, 24, 26–29]. Hence, we applied 
enrichment analysis on the set of host risk variants to 
evaluate gene differentiation and discover biomarkers 
for tissues and cells from the set. The results show that 
most genes are expressed in both the hematopoietic and 
immune systems. Furthermore, the molecular functions 
and biological processes of the list of proteins encoded 
by risk genes illustrate these proteins are involved in 
immune responses and metabolic activities.

Molecular network construction and integration
We eliminated four genes that did not encode proteins. 
Then, we constructed protein–protein interaction net-
works for 56 risk proteins that contain a total of 939 
interacting proteins, including 48 risk proteins with 
939 interactions, and seven orphan proteins that did 
not interact with any protein. We integrated all con-
structed networks for the risk proteins and obtained 
24 connected PPI networks and seven orphan proteins. 
In addition, Table  3 displays the main systems and 
host tissues involved in the constructed networks and 
affected by the risk factors for severe COVID-19. More 

details of the PPI networks and related functions are 
displayed in Additional file 3.

Based on the functional analysis above, most net-
works are related to the blood and immune systems. 
However, there is no apparent interaction that connects 
the proteins in these networks, which points to a miss-
ing interaction or link. Thus, to highlight such missing 
links, we adopted another approach to correlate the 
constructed networks with common diseases that are 
related to the risk variants hosted in these networks.

Figure  8 illustrates the 24 PPI constructed based on 
the results of the risk variant-disease mapping in order 
to indirectly infer the common molecular functions 
between the constructed PPI networks. The variant-
disease mapping is listed in Additional file 2: Table S2.

According to our investigation of the 24 constructed 
PPI networks, we infer that the molecular functions of 
the risk protein interactions are involved in three main 
host systems: the immune, metabolic, and cardiovascu-
lar systems.

In terms of risk variant mapping, Networks 2, 7, and 
21 have a common risk variant rs13168774 located 
on chromosome 5 and associated with respiratory 
inflammation and metabolic disorders. Moreover, Net-
works 18, 19, 23, and 24 have a common risk variant 
rs11385942. These networks have common molecular 
functions related to immune responses. With reference 
to the similarity of biological processes and molecular 
functions between networks, Networks 1, 2, 9, 10, 15, 
16, and 19-24 are related to the immune and hemat-
opoietic systems. Networks 3, 7, 13, 14, and 17 are 
related to the metabolic system. Networks 4, 5, 17, and 
18 are related to the cardiovascular system. Networks 3 
and 17 are related to the urinary system. Network 11 is 
related to the nervous system. Network 12 is related to 
the endomembrane system.

Based on the evidence gleaned from the molecular 
function analysis of the constructed networks and risk 
variant-disease mapping, we inferred the hidden PPIs 
between unconnected networks. The molecular func-
tion analysis revealed several hidden pathways. For 
example, we found unconnected Networks 1-3, 6-10, 
and 12-24 have similar molecular functions and biolog-
ical processes related to the immune system. In addi-
tion, we inferred unconnected Networks 1-5, 13, 14, 
and 17-16 share common pathways related to the cardi-
ovascular system and diseases. Moreover, Networks 1, 
3, and 11 have common functions and diseases related 
to the neuron system. Furthermore, based on the dis-
ease mapping similarity, we derived that unconnected 
Networks 1-3, 15-17, and 21 have pathways related to 
the renal system. Thus, we infer hidden interactions 
could connect these networks.
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Table 2  Main host biological processes associated with the 56 risk proteins that contribute to the development of severe COVID-19

Number of 
risk protein

High level GO biological process category Risk protein list

24 Immune system process CFH, OAS1, TYK2, ITGA4, COLEC11, C4BPA, C3, APOE, NR1H2, IL6, FURIN, 
IFITM3, MX1, IFNAR2, ACE, TNFRSF13C, GYG1, CXCR6, A2M, CD55, TLR7, 
NOTCH4, HLA-G, MAPT

22 Response to stress CFH, OAS1, BRF2, TYK2, F3, COLEC11, C4BPA, C3, APOE, ACE2, NR1H2, IL6, FURIN, 
IFITM3, MX1, IFNAR2, CXCR6, A2M, CD55, TLR7, HLA-G, MAPT

22 Response to external stimulus CFH, CYP24A1, OAS1, TYK2, ITGA4, F3, COLEC11, C4BPA, C3, APOE, ACE2, NR1H2, 
IL6, FURIN, IFITM3, MX1, IFNAR2, CXCR6, A2M, CD55, TLR7, HLA-G

21 Immune response CFH, OAS1, TYK2, ITGA4, COLEC11, C4BPA, C3, APOE, NR1H2, IL6, FURIN, IFITM3, 
MX1, IFNAR2, TNFRSF13C, GYG1, CXCR6, A2M, CD55, TLR7, HLA-G

21 Regulation of response to stimulus CFH, OAS1, PLEKHA4, ITGA4, F3, COLEC11, C4BPA, C3, APOE, ACE2, NR1H2, IL6, 
FURIN, IFNAR2, A2M, SCN5A, CD55, TLR7, NOTCH4, HLA-G, MAPT

18 Regulation of signaling OAS1, PLEKHA4, F3, C3, APOE, ACE2, NR1H2, IL6, FURIN, IFNAR2, TMEM65, GRM5, 
A2M, CD55, TLR7, NOTCH4, HLA-G, MAPT

18 Biological process involved in interspecies interaction 
between organisms

CFH, OAS1, TYK2, COLEC11, C4BPA, C3, APOE, ACE2, NR1H2, IL6, IFITM3, MX1, 
IFNAR2, A2M TMPRSS2, CD55, TLR7, HLA-G

18 Regulation of multicellular organismal process OAS1, F3, C3, APOE, ACE2, NR1H2, IL6, FURIN, ACE, TMEM65, A2M, KCNE1, 
SCN5A, CD55, TLR7, NOTCH4, HLA-G, MAPT

16 Regulation of immune system process CFH, OAS1, ITGA4, COLEC11, C4BPA, C3, APOE, NR1H2, IL6, FURIN, IFNAR2, 
TNFRSF13C, A2M, CD55, TLR7, HLA-G

16 Response to biotic stimulus CFH, OAS1, TYK2, COLEC11, C4BPA, C3, APOE, NR1H2, IL6, IFITM3, MX1, IFNAR2, 
A2M ,CD55, TLR7, HLA-G

16 Response to other organism CFH, OAS1, TYK2, COLEC11, C4BPA, C3, APOE, NR1H2, IL6, IFITM3, MX1, IFNAR2, 
A2M, CD55, TLR7, HLA-G

16 Regulation of biological quality OAS1, F3, APOE, ACE2, NR1H2, IL6, FURIN, MX1, ACE, GRM5, CXCR6, A2M, KCNE1, 
SCN5A, CD55, MAPT

15 Regulation of localization ITGA4, F3, AHNAK, C3, APOE, ACE2, NR1H2, IL6, FURIN, ACE, LZTFL1, GRM5, 
KCNE1, SCN5A, MAPT

15 Regulation of molecular function OAS1, ITGA4, F3, AHNAK, C3, APOE, ACE2, NR1H2, IL6, FURIN, ACE, GRM5, A2M, 
KCNE1, MAPT

12 Cellular localization ITGA4, C3, APOE, MX1, GYG1, LZTFL1, A2M , KCNE1, SCN5A, CD55, CCHCR1, 
MAPT

11 Anatomical structure morphogenesis PLEKHA4, ITGA4, F3, C3, APOE, IL6, FURIN, SCN5A, NOTCH4, HLA-G, MAPT

11 Macromolecule localization ITGA4, C3, APOE, NR1H2, IL6, FURIN, ACE, LZTFL1, KCNE1, CCHCR1, MAPT

10 Immune effector process CFH, COLEC11, C4BPA, C3, IL6, ACE, GYG1, A2M, CD55, HLA-G

10 System process APOE, ACE2, NR1H2, ACE, SLC6A20, TMEM65, GRM5, KCNE1, SCN5A, MAPT

10 Cell population proliferation ITGA4, F3, APOE, ACE2, IL6, ACE, TNFRSF13C, SCN5A, CD55, HLA-G

10 Cellular component biogenesis OAS1, BRF2, APOE, ACE2, NR1H2, MX1, ACE, LZTFL1, HLA-G, MAPT

9 Regulation of developmental process PLEKHA4, F3, C3, APOE, NR1H2, IL6, NOTCH4, HLA-G, MAPT

8 Leukocyte activation ITGA4, C3, IL6, TNFRSF13C,GYG1, CD55, HLA-G, MAPT

7 Biological adhesion ITGA4, ACE2, IL6, TNFRSF13C, CD55, NOTCH4, HLA-G

7 Catabolic process CYP24A1, C4BPA, APOE, IL6, FURIN, ACE, MAPT

7 Response to endogenous stimulus ITGA4, APOE, IL6, FURIN, GRM5, KCNE1, MAPT

7 Anatomical structure formation involved in morphogenesis ITGA4, F3, C3, IL6, FURIN, NOTCH4, HLA-G

6 Locomotion ITGA4, F3, APOE, IL6, ACE, CXCR6

6 Activation of immune response CFH, COLEC11, C4BPA, C3, A2M, CD55

6 Cell adhesion ITGA4, IL6, TNFRSF13C, CD55, NOTCH4, HLA-G

6 Regulation of cell adhesion ITGA4, IL6, TNFRSF13C, CD55, NOTCH4, HLA-G

6 Cell motility ITGA4, F3, APOE, IL6, ACE, CXCR6

6 Localization of cell ITGA4, F3, APOE, IL6, ACE, CXCR6

5 Immune system development ITGA4, IL6, ACE, NOTCH4, HLA-G

5 Regulation of locomotion ITGA4, F3, APOE, IL6, ACE

5 Regulation of cellular component biogenesis APOE, ACE2, NR1H2, ACE, MAPT

4 Cell killing CFH, C3, CD55, HLA-G
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Molecular pathways of constructed networks
Out of the 24 constructed networks, we analyzed the 
pathways in Network 1, the largest network that has the 
highest number of risk proteins (n = 16) and pathways 
related to the host immune system and contains 511 
interactions. Based on the top ten functional pathways 
of Network 1, we found that eight of the ten molecular 
pathways in Network 1 are related to cytokine signaling 
and responses in the immune system and SARS-CoV-2 
responses in the innate immune system. The remaining 
three pathways are related to Influenza A, measles, and 
Hepatitis C infections. Figure  9 shows the molecular 
pathways for the risk factors from Network 1; this net-
work is related to the immune system, which confirms 
that the majority of pathways in Network 1 are related to 
immune responses. Moreover, the functional pathways in 
Network 2 contain five risk proteins and 75 interactions 
that are mainly related to the innate immune system. We 
found that Network 2 has eight significant pathways with 
P values higher than 2.6e−13 related to the complement 
and coagulation cascade pathways. The complement 

system is a central component of the innate immune 
system.

However, some constructed networks are not related 
to the immune system. For instance, Network 3 contains 
three risk proteins and 27 interactions and is related to 
the metabolic and renin-angiotensin systems, which play 
an essential role in the regulatory functions and pro-
cesses of renal, cardiac, and vascular metabolism and 
physiology. We found that Network 3 has five significant 
pathways with P values < 5e−08 related to peptide hor-
mone metabolism and protein digestion and absorption, 
which are involved in metabolic processes and systems. 
In addition, Network 4 contains three risk proteins and 
27 interactions related to the cardiovascular system. We 
found that all top ten pathways in Network 4 are involved 
NOTCH signaling and the intracellular domain of 
NOTCH regulates transcription of genes related to car-
diac development. Figure  10 shows the molecular path-
ways of the remaining constructed Networks 2-24. More 
details of the molecular pathways between the proteins 
in these networks and pathway analysis of the remaining 

Table 2  (continued)

Number of 
risk protein

High level GO biological process category Risk protein list

4 Behavior APOE, ACE2, GRM5, MAPT

4 Maintenance of location C3, APOE, NR1H2, IL6

3 Reproduction GOLGA3, C3, ACE

3 Reproductive process GOLGA3, C3, ACE

3 Growth ITGA4, APOE, MAPT

3 Production of molecular mediator of immune response IL6, CD55, HLA-G

3 Developmental process involved in reproduction GOLGA3, C3, ACE

3 Cell growth ITGA4, APOE, MAPT

3 Regulation of cell killing CFH, CD55, HLA-G

3 Taxis F3, IL6, CXCR6

3 Hormone metabolic process ACE2, FURIN, ACE

3 Developmental growth ITGA4, APOE, MAPT

3 Complement-dependent cytotoxicity CFH, C3, CD55

3 Regulation of hemostasis F3, APOE, A2M

2 Multi-organism process GOLGA3, ACE

2 Locomotory behavior APOE, GRM5

2 Response to abiotic stimulus TLR7, MAPT

2 Antigen processing and presentation ACE, HLA-G

2 Sexual reproduction GOLGA3, ACE

2 Multicellular organism reproduction GOLGA3, ACE

2 Regulation of growth APOE,MAPT

2 Multi-organism reproductive process GOLGA3, ACE

2 Multicellular organismal reproductive process GOLGA3, ACE

2 Leukocyte migration ITGA4, IL6

2 Protein activation cascade F3, A2M

2 Regulation of plasma lipoprotein particle levels APOE, NR1H2
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constructed networks are demonstrated in Additional 
files 3 and 4.

Host genetic risk factors and the SARS‑CoV‑2 pathway
After applying molecular function enrichment analy-
sis and disease mapping to risk factors related to severe 
COVID-19, we found that the majority of pathways are 
related to the immune system, which suggests that the 
risk factors associated with COVID-19 are mostly present 
in proteins involved in the immune system. A minority 
of networks that have three or more risk proteins, such 
as Networks 3 and 4, are related to the metabolic and 
cardiovascular systems. This evidence indicates that the 
genetic risk factors associated with severe COVID-19 are 
involved in different host systems that cause multi-organ 
dysfunctions.

Figure 11 shows the location of the risk proteins in the 
main host-virus pathway, which contains ten risk pro-
teins from different constructed molecular networks. For 
instance, IL-6, TLR7, OAS, and IFNAR from Network 1 
and TMPRSS2 from Network 20 are mainly related to 
immune system and cytokine and interferon signaling. In 
addition, ACE and ACE2 from Network 3 are related to 
the metabolic system and processes.

Discussion
The limited understanding of biological mechanisms 
and the impact of host genetic risk factors on severe 
COVID-19 has led researchers to identify genetic risk 
variants and analyze their influence on the develop-
ment of severe symptoms. Our study is analogous 
to the molecular network analysis studies of protein 
interactions derived from risk variants identified from 
GWAS and statistical summaries conducted among dif-
ferent populations [3, 30, 31].

Moreover, the use of molecular networks has facili-
tated progress in many areas of biomedical science, 
such as understanding and linking the functional 
molecular interactions between proteins with poten-
tial targets that could lead to drug development. This 
straightforward and effective concept allows us to 
extract the core relationships between host genes and 
proteins and it also helps to identify and predict inter-
actions between drugs, study the comorbidity of dis-
ease, and discover essential associations. Thus, we 
constructed the PPI networks for risk proteins associ-
ated with severe COVID-19 and inferred the hidden 
interaction based on disease mapping and GO func-
tional analysis.

Table 3  Summary of the 24 molecular networks constructed using the genetic risk factors for severe COVID-19

Network ID Risk variants Risk protein Host protein PPI Main related system Main related tissues and cells

1 24 16 117 511 Immune system Blood cells

2 7 5 37 75 Innate immune system Liver and digestive gland

3 14 3 15 27 Renin-angiotensin and metabolomic systems Kidney and viscus tissue

4 1 3 11 27 Vascular system Heart and viscus tissue

5 1 1 11 13 Cardiovascular system Cardiac muscle fiber and heart tissue

6 1 1 11 55 Ribosomal protein Pituitary gland tumor cell

7 4 1 11 33 Metabolic system Kidney, heart, liver and adipose

8 1 1 11 19 Hematopoietic system Natural killer cell and blood cells

9 1 1 11 28 Metabolic system Muscle tissue

10 1 1 11 19 Immune system Blood and natural killer cells

11 1 1 11 38 Central nervous system Cerebral cortex and brain tissue

12 3 1 11 12 Endomembrane system Ovary and testis tissue

13 7 1 8 24 Metabolic system Esophagus tissue

14 2 2 8 11 Metabolic system Liver

15 1 1 7 14 Innate Immune system Low tissue specificity

16 7 1 6 13 Immune system Lymphoid tissue in B-cells

17 1 1 5 7 Urinary and cardiovascular systems Kidney and heart tissue

18 1 1 5 6 Cardiovascular system Heart and skeletal muscle

19 1 1 3 2 Immune system Blood cells

20 25 1 2 1 Immune system VCaP cell

21 2 1 2 1 Immune system Kidney and small intestine

22 1 1 2 1 Immune and hematopoietic systems Blood cells

23 1 1 2 1 Immune and hematopoietic systems Blood cells

24 1 1 2 1 Immune and hematopoietic systems Blood cells
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Our results are in general agreement with previ-
ous association studies of host genetic variants related 
to severe symptoms during COVID-19 infection. We 
showed that the identified genetic risk variants and their 
molecular functions are involved in several activities, 
mainly related to the immune system, along with notable 
relationships to the metabolic and hematologic systems. 
These systems react to viruses and prevent the host from 
developing severe symptoms during infection, thus the 
risk variants could lead to multi-organ dysfunction since 
these systems are involved in the activities of numerous 
genes expressed in various organs in the human body. 
Following SARS-CoV-2 infection, the host body acti-
vates a complex regulatory system of innate responses to 
defend against the virus. We found that 14 out of the 22 
PPI networks influence cytokine and chemokine signal-
ing; for example, risk factors in the pro-inflammatory 
cytokine genes IL-6 and IL-10 contribute to the process 
of pathological pain activities in the immune system. 
In addition, some risk proteins such as APOE, CD55, 
C4BPA, and CFH are involved in severe changes in the 
interferon alpha/beta signaling pathways, which play a 

vital function in the host immune response to viruses and 
help to prevent SARS-CoV-2 infection.

Although the majority of biological pathways and 
activities between the constructed networks are related 
to the immune system, we observed noticeable biologi-
cal pathways that negatively contribute to the metabolic 
and hematopoietic systems, and development of multi-
organ dysfunction such as heart attack, liver and kidney 
injury, and lung inflammation. We found that 6 out of 22 
constructed networks are centrally related to the renin-
angiotensin-aldosterone system (RAAS) that regulates 
the production of the hormone angiotensin II. This hor-
mone binds to its receptors in the human host tissue and 
has various impacts on several organ activities, such as 
stimulating vasal construction in the arterioles and pro-
moting sodium reabsorption in the kidneys [32].

Moreover, the RAAS contributes to the central nerv-
ous system, which suggests that angiotensin II could have 
effects on the brain. For example, angiotensin II stimu-
lates thirst by acting on the hypothalamus. Furthermore, 
angiotensin II reduces the baroreceptor response to 
increased blood pressure, so that this response would not 

Fig. 8  Molecular networks of the 56 risk proteins mapped with the 109 risk variant-disease associations. The red nodes represent COVID-19 risk 
proteins. The gray nodes represent human proteins that interact with risk proteins. A Twenty-four connected networks. Each connected network 
has at least one interaction with another protein. Networks 1 to 3 contain more than one risk protein, and Networks 4 to 22 are isolated networks 
has one risk protein. B Seven orphan risk proteins did not have any protein interaction with other human proteins. The dashed lines link risk variants 
with linked networks. The different colors of squares illustrate the disease mapping based on the risk variant-disease mapping and the similarity of 
the molecular functions between the constructed networks
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Fig. 9  Molecular pathways between the 16 genetic risk proteins of severe COVID-19 in Network 1. The top ten significant molecular pathways 
between the genetic risk proteins and other host proteins are mainly connected to the host immune system. Network 1 is the largest network and 
contains the highest number of risk proteins compared to other networks
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counteract the effect of RAAS. Overall, the effects of the 
RAAS on metabolic and blood systems lead to increased 
blood volume and pressure. Also, some of the risk pro-
teins for severe COVID-19 are present in components of 
the RAAS that are used as clinical biomarkers related to 
the hematopoietic system. In addition, some biomarkers 
of RAAS such as ACE are affected by risk variants located 
in ACE2 [33, 34]. These risk variants downregulate ACE2 
expression, which affects the ACE inhibitor and brady-
kinin pathways and increases activities of multiple patho-
physiological pathways that contribute to cardiovascular 
disease. Furthermore, hypertension is caused by inappro-
priate activation of the RAAS. Hence, this system is often 
a target for antihypertensive drugs and the levels of some 
RAAS proteins are used as medical blood markers dur-
ing diagnosis of COVID-19 [35–37]. Thus, taking genetic 
risk factors into account during the diagnosis of patients 
with COVID-19 could help to prevent organ complica-
tions by enabling future complications to be predicted 
at an early stage based on genetic analysis of risk factors. 
This suggestion is based on our deep systematic analysis 
workflow of all genetic risk factors associated with severe 
COVID-19 from scientific articles and medical reports 
published during the last two years. Overall, our enrich-
ment analysis and construct PPI networks of genetic risk 
factors. associated with severe COVID-19 support the 

value of personalized medicine approaches to predict 
future complications and organ dysfunction during or 
after infection among patients with COVID-19.

Conclusion
In conclusion, our study highlights the potential of study-
ing the molecular functions and interactions of genetic 
risk factors to identify significant biological mechanisms 
and pathogenicity pathways that are involved in the 
development of severe COVID-19 outcomes. Moreo-
ver, the study emphasizes the importance of inferring 
the hidden interactions between networks based on 
the disease and functional similarity between the net-
works. We found most of the pathways discovered, and 
hence the associated risk factors, are mainly related to 
the immune system with a notable number of pathways 
related to the metabolic and cardiovascular systems. This 
evidence reveals the genetic risk factors associated with 
COVID-19 are involved in several pathways that cause 
multi-organ dysfunction in different systems. This work 
underscores the importance of analyzing the molecu-
lar interactions and pathways between the SARS-CoV-2 
virus and the host to understand the heterogeneous sus-
ceptibility of the immune response. This study proposes 
new insights into pathogenicity analysis of infections by 
including risk genetic information as essential factors to 

Fig. 10  Overview of the molecular pathways of the risk proteins in the constructed networks related to the host metabolic, cardiovascular, and 
other systems. The figure demonstrates the significant pathways related to severe COVID-19 outcomes. More details of the remaining constructed 
networks are provided in Additional file 4
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Fig. 11  Host-SARS-CoV-2 pathogen interaction pathway in COVID-19. The location of the 56 genetic risk proteins in the main molecular pathway 
involved in the host response to SARS-CoV-2 derived from KEEG database. The proteins involved in this pathway are components of different 
constructed molecular networks, such as Network 1, 3, and 20
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support individualised clinical treatment plans and pre-
dict future complications during and after infection.

Materials and methods
We designed a computational workflow to apply a deep 
systematic analysis of identified variants related to severe 
COVID-19 outcomes that were reported in 35 published 
works from December 2019 to 2021. These 35 studies 
were identified from the PubMed search engine using 
keywords queries such as “Severe-COVID-19”. The 125 
variants were retrieved from these genetic studies using 
text mining algorithms and we validated the final list of 
risk variants manually. The list of risk variants passed 
through four phases: deep enrichment analysis of the 
molecular functions and pathways the risk factors are 
involved in, and construction of molecular networks to 
understand the pathogenicity and mechanisms that lead 
to severe COVID-19 outcomes.

Characteristic of retrieved dataset of COVID‑19 risk factors
From GWAS studies of all loci in the host human genome 
with a sample size more than or equal 500 [3, 7, 24, 26–
28, 30, 38, 39], we retrieved and listed the genetic vari-
ants associated with severe COVID-19 in any population 
with P values < 5× 10

−5 or risk variants mentioned as 
significant in review studies. Most of the retrieved arti-
cles were case-control studies of the genome sequences 
patients with COVID-19. The papers included patients 
of Chinese, European, Middle-Eastern, and other eth-
nicities, with different symptoms and comorbidities, 
with an approximate average age of 63 for males and 58 
for females. The youngest patient was only two-years-
old, and the oldest was an 85-year-old man. Most papers 
classified the patients into six levels of severity: asympto-
matic, mild, moderate, severe, critical, and deceased. Two 
articles conducted GWAS with controls who had mild/
moderate symptoms to avoid type II error. Most variants 

identified in GWAS or statistical analysis had 95% sig-
nificance and above. However, not all retrieved papers 
mentioned the P values for the identified variants. Since 
the final number of filtered variants was relatively small 
and not all papers indicated P values, we neglected the 
condition of significance. In our analysis, we called each 
variant causally associated with severe COVID-19 a risk 
variant and its host gene, a risk gene. Furthermore, we 
called the proteins encoded by risk genes risk proteins.

Computational workflow
A general overview of the phases involved in our compu-
tational network analysis workflow is shown in Fig.  12. 
Our workflow contains four phases: data curation and 
annotation, functional enrichment analysis of risk fac-
tors, molecular network construction and integration of 
risk factors, and molecular network analysis and mapping 
based on related diseases and the similarity of ontologies 
of the risk factor pathways and their molecular functions.

Phase 1: data curation and annotation
In phase one, we retrieved 125 risk genetic variants asso-
ciated with severe COVID-19 from GWAS studies and 
statistical genetic studies based on GWAS reports. After 
quality control and removing duplicates, 109 risk variants 
were annotated using known databases. The dbSNP data-
base [40] was used to identify the chromosomal location 
of the risk variants based on the CRCh 38 human refer-
ence genome for consistency purposes and Ensembl [41] 
was used to retrieve genomic information and the types 
of the variants.

In addition, the profiles of the 109 genetic risk variants 
were mapped to 60 genes using the GeneCards platform 
[42, 43]. Then, the risk variants were mapped to related 
diseases using ClinVar [44], Online OMIM [25], and 
MalaCards databases [45] to complete the profile of each 
variant to give intensive information.

Fig. 12  Computational network analysis workflow. The four-stage implemented workflow: (A) data curation and annotation, (B) functional 
enrichment analysis of risk factors, (C) molecular network construction and integration of risk factors, and (D) molecular network analysis and 
mapping
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The curated dataset of genetic risk factors for severe 
COVID-19 contains 109 risk variants, 60 risk genes, 
and 56 proteins, and other features that provide a fin-
gerprint of each risk factor related to the severity of 
COVID-19. Eleven annotations were used to describe 
the risk variants, including the main features (rs ID, 
chromosomal location, functional consequence, 
host gene, P value, related diseases, and references). 
The curated dataset is provided in Additional file  2: 
Table S1.

Phase 2: functional enrichment analysis of risk factors
In phase two, enrichment functional analyses were 
applied on our curated dataset using Gene Ontology 
(GO) [46] on the risk variants, genes, and proteins to 
obtain enriched information describing the molecular 
functions and processes of the genetic risk genetic fac-
tors related to severe COVID-19.

In terms of risk variant analyses, we used the Ensembl 
[41] and VarElect [47] platforms to identify the struc-
ture and functional consequences of the risk variants to 
obtain the functional distribution and characteristics of 
the risk variants.

At the risk gene level, we applied expression-based 
analysis using GeneAnalytics [48], which relies on 
LifeMap Discovery [49] to identify gene associa-
tions with tissues and cells. The matching scores for 
gene expression in different normal tissues and cells 
were calculated with a search for maximum similar-
ity between expression vectors [48]. The ranked scores 
for enriched risk genes were calculated using LifeMap 
discovery by integrating gene annotations from sci-
entific publications, as well as bioinformatic data. A 
matching score was assigned to each risk gene based 
on their annotations in the data. The overall score 
depends on the number of matches for each risk gene. 
Moreover, we assessed the matching quality by catego-
rizing the results as high-, medium-, and low-quality 
matches; only high-quality matches were considered in 
the analysis. The distribution of the matching qualities 
across the list of results is also presented to provide an 
easy assessment. Then, we applied functional enrich-
ment analysis to the list of risk genes related to severe 
COVID-19 outcomes using GO terms and GeneAnalyt-
ics [40, 48]. We used ShinyGo [50] to analyze the ontol-
ogies of the compartments and tissues of the risk genes 
and associated diseases based on a 0.05 FDR cutoff and 
minimum and maximum pathway size of 2-2000.

In terms of risk protein analyses, we used STRING 11.5 
[51] and ShinyGo [50] to identify molecular functions 
and biological pathways associated with the 56 risk pro-
teins based on a threshold of FER equal 0.05.

Phase 3: molecular network construction and integration
In phase three, we constructed and analyzed the PPI net-
works of the 56 risk proteins using the STRING 11.5 data-
base [51, 52]. All constructed networks are full STRING 
networks, which means the edges between proteins indi-
cate both functional and physical associations. Having a 
functional association means that the proteins have the 
same function, while having physical associations indicate 
common molecular components that link the proteins. We 
considered all active sources of protein interactions that 
are reported in the literature, validated experimentally, and 
retrieved from public databases such as GeneCards for gene 
interpretations, Reactome [53], and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [54, 55] for gene pathways.

Furthermore, all retrieved interactions satisfy the cri-
terion of having an interaction score of at least 0.9 to 
guarantee that the associated interaction is sufficiently 
significant to enhance further analysis. We constructed 
the top ten interactions for each risk protein based on the 
highest significant P values among all PPI candidates to 
limit the network outputs and avoid unclean networks 
with unnecessary interfering links for more effective net-
work visualization.

Then we integrated the PPI networks constructed for the 
56 risk proteins with the 109 risk variants. Visualization of 
the integrated data using Cytoscape [56] generated 24 PPI 
networks and seven orphan proteins. Then we mapped the 
unconnected networks based on their common risk vari-
ants or the similarity of their molecular functions using 
GO, STRING database [51, 52], and GeneCards.

Phase 4: molecular network pathway analysis and disease 
mapping
Finally in phase four, we analyzed the molecular network 
pathways to identify pathogenicity and pathways that 
related to severe outcomes of COVID-19 using Reactome 
[53] and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [54, 55]. In addition, we mapped the correla-
tion between disease-variant-network to find similarity 
and shared biological pathways between related disease 
and the molecular functions of the constructed networks 
using the ClinVar [44], PathCards [57], and MalaCards 
platforms. Then, we linked the outputs to infer the hid-
den connections between the constructed networks 
based on disease mapping, network molecular functions, 
gene ontology analysis, and pathway similarity.
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pQTL		�  Protein quantitative trait loci
3-UTR​		�  3′ Untranslated region
FDR		�  False discovery rate
PPI		�  Protein–protein interaction
TF		�  Transcription factor
GO		�  Gene ontology
KEGG		�  Kyoto encyclopedia of genes and genomes
MHC		�  Major histocompatibility complex
bHLH		�  Basic helix-loop-helix
SLE		�  Systemic lupus erythematosus
AGS		�  Aicardi–Goutières syndrome
BLS1		�  Bare lymphocyte syndrome, type I
ASCVD		�  Development of atherosclerotic cardiovascular 

disease
CAD		�  Coronary artery disease
VTE		�  Venous thromboembolism
TSH		�  Thyroid-stimulating hormone
MCHC		�  Mean corpuscular hemoglobin concentration
RBC		�  Red blood cell
HUS		�  Hemolytic uremic syndrome
LQTS		�  Long QT syndrome
ICH		�  Intracerebral hemorrhage
PTH		�  Parathyroid hormone
RTD		�  Renal tubular dysgenesis
RCA​		�  Regulator of complement activation
RAAS		�  Renin–angiotensin–aldosterone system
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