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Abstract

Background: The field of pharmacogenomics focuses on the way a person’s genome affects his or her response to
a certain dose of a specified medication. The main aim is to utilize this information to guide and personalize the
treatment in a way that maximizes the clinical benefits and minimizes the risks for the patients, thus fulfilling the
promises of personalized medicine. Technological advances in genome sequencing, combined with the
development of improved computational methods for the efficient analysis of the huge amount of generated data,
have allowed the fast and inexpensive sequencing of a patient's genome, hence rendering its incorporation into
clinical routine practice a realistic possibility.

Methods: This study exploited thoroughly characterized in functional level SNVs within genes involved in drug
metabolism and transport, to train a classifier that would categorize novel variants according to their expected
effect on protein functionality. This categorization is based on the available in silico prediction and/or conservation
scores, which are selected with the use of recursive feature elimination process. Toward this end, information
regarding 190 pharmacovariants was leveraged, alongside with 4 machine learning algorithms, namely AdaBoost,
XGBoost, multinomial logistic regression, and random forest, of which the performance was assessed through 5-fold
cross validation.

Results: All models achieved similar performance toward making informed conclusions, with RF model achieving
the highest accuracy (85%, 95% Cl: 0.79, 0.90), as well as improved overall performance (precision 85%, sensitivity
84%, specificity 94%) and being used for subsequent analyses. When applied on real world WGS data, the selected
RF model identified 2 missense variants, expected to lead to decreased function proteins and 1 to increased. As
expected, a greater number of variants were highlighted when the approach was used on NGS data derived from
targeted resequencing of coding regions. Specifically, 71 variants (out of 156 with sufficient annotation information)
were classified as to “Decreased function,” 41 variants as “No” function proteins, and 1 variant in “Increased
function.”

* Correspondence: gpatrinos@upatras.gr

"Maria-Theodora Pandi and Maria Koromina contributed equally to this work.
“Laboratory of Pharmacogenomics and Individualized Therapy, Department
of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
6Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain,
United Arab Emirates

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-021-00352-1&domain=pdf
http://orcid.org/0000-0002-0519-7776
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:gpatrinos@upatras.gr

Pandi et al. Human Genomics (2021) 15:51

Page 2 of 13

Conclusion: Overall, the proposed RF-based classification model holds promise to lead to an extremely useful
variant prioritization and act as a scoring tool with interesting clinical applications in the fields of

pharmacogenomics and personalized medicine.

Keywords: Machine learning, Computational approaches, Functional prediction, Pharmacogenomic variants

Background

Various patient-specific factors (i.e., ethnicity, age, co-
existing conditions, co-administered medications) have
been associated with deviations between the expected
and the observed effects owing to a specific medication.
In addition, a significant percentage of these differential
drug responses has been attributed to genetic variants
located in genes involved in the processes of pharmaco-
kinetics, pharmacodynamics, or even in genes coding for
enzymes of the immune system (i.e., HLA genes), com-
monly described as pharmacogenes [1-3]. This genetic-
ally determined diversity of drug effects, as well as its
exploitation toward tailoring the medication scheme is
the primary focus of pharmacogenomics (PGx), and an
integral component of personalized medicine. To this
end, genotyping platforms, such as DMET™ plus by Affy-
metrix, can be used to detect well-characterized, com-
mon genetic variants [4]. Alternatively, next-generation
sequencing (NGS), either whole exome sequencing
(WES), whole genome sequencing (WGS), or even tar-
geted resequencing, can be also used for this purpose,
thus providing a more comprehensive idea of an individ-
ual’s genomic composition [5-7].

To date, 15% of the approved drugs by the EMA
(European Medicines Agency) in the period 1995-2014
[8], and 7% of the drugs approved by the American Food
and Drug Administration (FDA), are accompanied by
pharmacogenomic recommendations [9]. Interestingly,
relevant PGx biomarkers can be either germline variants
in pharmacogenes, mostly single-nucleotide variations
(SNVs) or copy number variants (CNVs), or somatic var-
iants in cancer cells that affect tumor’s response to anti-
neoplastic drugs, as well as epigenetic modifications of
histones and DNA, which could potentially affect the
drug response [3]. The effects of these PGx variants
might range from altered drug exposure and hence
modified efficacy or side effects, to idiosyncratic reac-
tions [1-3].

The results of large-scale NGS analyses unravel several
challenges, thus complicating the interpretation of the
effects of PGx variants on protein function. For example,
a large volume of novel, rare (minor allele frequency:
MAF <0.5%), population-specific SNVs, which could
affect protein function has been detected within protein
coding genes. These genes appear to be enriched in po-
tentially damaging variants, owing to the combination of
rapid population growth and weak action of purifying

selection [10]. Similar observations were applied when
focusing on 202 genes, the products of which are mo-
lecular targets for drug action [11]. Regarding the genes
coding for phase I metabolic enzymes (CYPs) and drug
transporters (UGT, ABC genes), the majority of the
identified SNVs within these genes is ultra-rare (MAF <
0.1%) and non-synonymous, while variants that affect
splicing sites or lead to loss of the termination codons,
as well as nonsense changes are less common [12, 13].
Furthermore, the evaluation of organo anion transporter
(OATP) transporter sequences provided by the Genome
Aggregation Database (gnomAD) has underlined once
again the importance of including novel, rare mutations
(MAF < 1%) in the pharmacogenomic assays [14].

Taken together, NGS analyses have the potential to
identify a very large number of PGx variants, most of
which are novel, rare, and with no biochemical or clin-
ical evidence for their impact on protein function. Per-
forming functional expression assays for such large
numbers of variants is not always feasible; hence, why
the evaluation of predictions derived from in silico tools
is an alternative approach to this end. The majority of
computational methods used to assess the functional ef-
fect of variants in protein level are intended to distin-
guish neutral from deleterious variants, based on either
a hypothesis (SIFT [15], PROVEAN [16]) or the evalu-
ation of a set of properties, including secondary struc-
ture, functional sites, protein stability, and sequence
conservation (PolyPhen-2 [17], MutPred [18], GERP++
[19]). More recently, a number of algorithms using un-
supervised learning (Eigen, Eigen-PC [20]), as well as
gene-level scores (LoFtool [21]) and ensemble ap-
proaches that integrate the predictions and training fea-
tures of other tools have been also made available
(DANN [22], Revel [23], MetaLR/MetaSVM [24]).

However, pharmacogenes and the respective PGx vari-
ants tend to differ from genes and variants implicated in
disease. The suitability of features considered by the
available algorithms is questionable, since genes coding
for phase I and II metabolizing enzymes appear to be
less conserved evolutionary [25], possibly due to their
limited role in endogenous processes and the fact that
only a mild modification of the pharmacokinetics and
pharmacodynamics can lead to significant results [3].
Nevertheless, the development of an improved frame-
work for the evaluation of pharmacogenomic variants,
by combining different classifiers and appropriately



Pandi et al. Human Genomics (2021) 15:51

adjusting their prediction thresholds, has led to promis-
ing results [26].

Herein, we propose a comprehensive model for the as-
sessment of PGx variants by evaluating in silico protein
prediction scores with the use of machine learning (ML),
and thus highlighting the PGx variants that are most
likely to alter the protein function and consequently
have a PGx impact.

Results

The current study focuses on exploiting publicly avail-
able and human variation data with well-defined
protein-level functional consequences, to train a predict-
ive model for the targeted classification of coding SNVs
with regards to their protein function effects. The
assigned protein function effect scores were based on
the integration and assessment of in vitro biochemical
assays, in vivo evidence and clinical data. Four different
algorithms (AdaBoost, XgBoost, RF, multinomial logistic
regression) were trained with a training set consisting of
190 variants, which were located across 11 pharmaco-
genes and assessed with 5-fold cross validation. Finally,
and as an attempt to utilize the method for real-world
data, we assessed the applicability of the optimal model
in NGS data, either whole genome or targeted sequen-
cing data.

Performance metrics for the machine learning models
toward the functional assessment of PGx variants

The performance of the classifiers, which were con-
structed with variables recommended by the recursive
feature elimination (RFE) method, was advantageous
regardless of the limited sample size of the training
set (N = 190 variants in 11 genes). More precisely,
the metrics computed for the assessed machine learn-
ing models were as follows: random forest (RF) — ac-
curacy: 0.85 (95% CI: 0.79, 0.90), area under the
curve (AUC) = 0.92, area under the precision-recall
curve (prAUC) = 0.73; AdaBoost — accuracy: 0.82
(95% CI: 0.76, 0.87), AUC: 091, prAUC: 0.72;
XGBoost — accuracy: 0.80 (95% CI: 0.73, 0.85), AUC:
091, prAUC: 0.73; multinomial logistic regression —
accuracy: 0.78 (95% CI. 0.72, 0.84), AUC: 0.93,
prAUC: 0.74. Interestingly, multinomial logistic re-
gression led to higher AUC and prAUC values com-
pared to the tree-based approaches, while the
achieved accuracy was the lowest among the assessed
models.

RFs were selected as the final approach to be used
for the described classification task, since the respect-
ive model presented overall improved performance
(i.e., accuracy, sensitivity, specificity, and precision)
across all four functional classes. Regarding the “De-
creased function” variants, RFs were more sensitive

Page 3 of 13

and precise than the other assessed models, although
AdaBoost achieved equal specificity values (Fig. 1). All
models performed impressively well toward the “In-
creased function” category and led to very similar
outcomes, while RFs appeared superior for the detec-
tion of “No function” variants and AdaBoost and
multinomial logistic regression models were more
sensitive for the “Normal function” class.

The selected machine learning model proved to be
highly specific (= 92%) for all 4 functional variant classes,
with lower, but still favorable values of sensitivity (8-
98%), precision (80-98%) and balanced accuracy (86—
99%). With regards to identifying variants that could
lead to proteins with unchanged (normal), reduced, or
no function, we observed the lowest values of the
metrics.

The model was characterized by a better performance
for “Normal function” variants (sensitivity = 0.8, specifi-
city = 0.92, precision = 0.84, balanced accuracy = 0.86),
followed closely by “No” function variants (sensitivity =
0.81, specificity = 0.93, precision = 0.81, balanced accur-
acy = 0.87), and finally “Decreased function” variants
(sensitivity = 0.81, specificity = 0.95, precision = 0.80,
balanced accuracy = 0.88). Interestingly, the classifier
performs extremely well for the category of “Increased
Function” variants, in which case all computed metrics
were above 98% (Fig. 1). To better explain the perform-
ance of the RF classifier with respect to four variant clas-
ses, the distribution of the training variants for the scores
suggested by RFE and included in the classifier is provided
in Fig. 2. The improved performance toward “Increased
function” can be explained by the better definition of these
variants compared to the rest classes (“No,” “Decreased,”
and “Normal function”), which are characterized by a sub-
stantial extend of overlapping values, that could compli-
cate their accurate classification.

We also attempted to assess the variables that could
significantly affect the presented machine learning
model. More specifically, when it comes to the vari-
able importance, the highest-ranking positions were
occupied by these features that RFE suggested as the
most informative ones for the classification task. In
the present instance, LoFtool emerged as the promin-
ent for the categorization of a variant according to its
effect on protein function (Figure S1, Supplementary
Data).

Comparing the RF model against other broadly used in
silico tools

As a further step, we assessed how different, commonly
used functionality prediction algorithms would classify
the 190 variants that were included in the final training
set. Toward this end, ClinPred [27], Condel [28],
FATHMM [29], Fathmm-XF [30], LRT [31], MetaLR
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Fig. 1 Metrics showing the performance of the different classifiers, namely AdaBoost, multinomial logistic regression, random forest, XGBoost.
More specifically, the sensitivity, specificity, positive predictive value (pos.pred.value), precision, F1 metric (harmonic mean of precision and recall),
and balanced accuracy of the classifiers are provided for each protein function effect class

z
&

Normal

1s00gepY.

z
=
=
3
2
8
&
<
2
5
P
2
<}
3
8
=
)
S

152104 Wopuey

180099X

[24], PolyPhen-2 [32], PROVEAN [16], and SIFT [33]
were selected and the corresponding predictions, as pro-
vided by VEP, are presented in Fig. 3. Of these scores,
only FATHMM-XF can be also applied to non-coding
variants, while the rest are intended for use in coding,
non-synonymous SNVs. In addition, ClinPred, Fathmm,
and MetalLR classify variants as either “Tolerated” or
“Damaging”; Condel as “Neutral” or “Deleterious”;
FATHMM-XF and PROVEAN as “Neutral” or “Dam-
aging”; LRT as “Deleterious,” “Neutral,” or “Unknown’;
PolyPhen-2 as “Benign,” “Possibly Damaging,” or “Prob-
ably Damaging”; and, finally, SIFT as “Tolerated,” “Tol-
erated with low confidence,” “Deleterious with low
confidence,” and “Deleterious.” As a first observation,
none of these tools covers variants that could lead to
gain-of-function. Although this functionality is provided
by B-SIFT [34], it is not available through VEP, and thus,
it could not be included in the analysis. Regarding in-
creased function variants, all algorithms, except LRT
categorize these variants as either “Damaging” or “Dele-
terious.” In addition, there is apparent discordance
among the tools’ classification of “decreased” and “nor-
mal” function variants, while most algorithms can iden-
tify variants leading to non-functional proteins.

Application of the machine learning model in NGS data
First case study (WGS data)
To further demonstrate the prediction performance of
the final RF model, we tested its applicability in “unseen”
NGS data, namely those data that have not been previ-
ously used to train the machine learning algorithm. We
first tested its applicability in WGS data from a patient
diagnosed with coeliac disease. From this process, 1808
variants, including 3 novel, within the 10 pharmacogenes
of interest (DPYD, CYP2C19, CYP2C9, SLCOIBI,
NUDTI15, RYRI, CYP2B6, UGT1Al, CYP2D6, TPMT)
were identified. Of these, only six missense variants had
adequate information, ie., no missing values in the in-
corporated functional prediction scores, to be to be fur-
ther processed by the RF model. With regards to the
observed allele frequency, four were found to be com-
mon (rs1801159, rs2306283, rs4149056, rs35364374),
one had intermediate frequency (rs3745274), and one
was ultra-rare (rs762454967) with MAFs based on Gno-
mAD genomes. Of these 1808 analyzed variants, we did
not identify any variants categorized as loss-of-function
variants (LoF).

Table 1 presents these variants, alongside with their
predicted functional impact, as defined by the majority
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vote of the individual decision trees. For example, a ran-
dom forest containing 1000 distinct decision trees was
built. If most of those votes recommend that the variant
belongs to “No function” variants, then this is the class
that is attributed to the variant. In addition, the prob-
ability of being classified in each class, as based on the
votes of all trees of the random forest built, is also pro-
vided (Table 1).

This computational process led to the confirmation of 2
missense variants (located within the SLCOIBI and
CYP2B6 genes, respectively) that could potentially lead to
proteins with decreased functionality and 1 missense vari-
ant classified as “increased function” (located in RYRI). The
remaining two variants were predicted to lead to no
changes in the protein function (i.e, normal). The rest of
the PGx variants had a high rate (over 85%) of missing
values in the features of interest and were mostly (N = 1765
out of 1803; 97.89%) located within intronic regions (Figure
S2, Supplementary Data). The latter were followed by vari-
ants in 3" prime UTRs (N = 20; 1.11%), missense (N = 6;
0.33%), and synonymous (N = 11; 0.61%) variants. Interest-
ingly, DPYD which encodes for a drug-metabolizing en-
zyme accumulated more than 1000 intronic variants.

Regarding the potential clinical actionability of these
6  variants  (rs1801159, rs2306283, rs4149056,
rs35364374, rs3745274, and rs762454967), we re-
trieved additional information from the PharmGKB
database. rs1801159 and rs2306823 were not associ-
ated with any predicted changes in the protein func-
tion or changes in the dosing guidelines (i.e., normal,
or low-level changes respectively). However, changes
in treatment were recommended for individuals with
the rs4149056 variant genotype, while also stating that
any additional risk factors should be considered for
statin-induced myopathy. Moreover, rs3745274 carried
multiple levels of CPIC evidence, for a variety of
drugs such as efavirenz, nevirapine, propofol, imatinib,
cyclophosphamide, doxorubicin, mitotane, methadone,
and 3,4-methylenedioxymethamphetamine. No PGx
clinical information could be retrieved for rs35364374
and rs762454967 within RYRI1, which were both pre-
dicted as “increased function” variants.

Second case study (targeted PGx sequencing data)
The second case study consisted of targeted PGx se-
quencing data from 304 individuals of Greek origin and
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diagnosed with psychiatric disorders. Interestingly, 343
variants were identified, covering 10 pharmacogenes
(DPYD, CYP2Cl19, CYP2C9, CYP2C8, SLCOIBI,
NUDTI1S, CYP2B6, UGT1Al, CYP2D6, TPMT), 18 of
which were attributed a SO consequence indicative of
LoF variants. More specifically, we found 11 “frameshift,”
6 “stop gained,” and 1 “start lost” variants. None of these
variants was assessed by the RF model, owing to the high
levels of missing values (mean, 77% missing values in the
scores of interest). The remaining variants were mostly
missense (N = 205) or synonymous (N = 107) (Figure
S3). According to GnomAD genome frequencies in the
general population (AF), which were available for 88 of
these variants, the dataset was enriched for “ultra-rare”
variants (MAF < 0.1%) (N = 42), followed by “rare” (0.1%
< MAF < 1%) (N = 18), “low frequency” (1% < MAF <
5%) (N = 14), “common” (MAF > 10%) (N = 8), and
“intermediate” (5% < MAF < 10%) (N = 6) variants.

The dataset of 343 variants included 195 known and
148 novel variants, of which 86 novel and 70 known
PGx variants (156 in total) were evaluated by the final
RF model (data available upon request). The evaluated
variants were mostly missense (i.e., 149 “missense,” 7

“missense/splice region”). Of these, 71 variants led to
“Decreased” function proteins, 41 variants to “No” func-
tion proteins, 1 variant in “Increased” function protein,
and 43 variants have no effect on protein functionality
(i-e., “normal” function) (Fig. 4).

To further estimate the potential clinical actionability
of the 156 PGx variants, as evaluated by the RF model,
additional clinical and variant information was retrieved
from PharmGKB. rs1801159, rs1801158, rs2297595,
and rs1801160 were not associated with any predicted
changes in the protein function, according to the vari-
ant annotation by PharmGKB, which constitutes an ob-
servation in concordance with the assigned prediction
classes by the RF model (i.e., “normal” function class).
Moreover, rs67376798 was associated with decreased
catalytic activity based on evidence from PharmGKB,
thus further confirming the prediction class of the RF
model (i.e., “decreased” function class). Similar observa-
tions were applied for the variants, namely rs4149056,
rs116855232, and rs3745274, for which the following
prediction classes were assigned by the RF model: “de-
creased,” “no,” “decreased,” respectively. PharmGKB
provides multiple levels of clinical evidence for these
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Table 1 Classification outcomes (prediction and probabilities) for WGS data using the final RF model. The predicted class is
determined based on a majority vote from the individual decision trees of the random forest classifier, while the presented

probabilities depict the corresponding percentage of decision trees voting toward a functional class

Location Allele Existing variation SYMBOL HGVSc GnomAD Predicted Probability of
(GRCh38) AF (%) class attributed class
1:97515839- C rs1801159, CM033371, DPYD ENST00000370192.8: 18.49% Normal 0.96

97515839 COSV64593269 c1627A>G

12:21176804- G 152306283, CM043776, SLCOIBT  ENST00000256958.3: 53.33% Normal 0.66

21176804 COSV57012766 C388A>G

12:21178615- C rs4149056, CM043777, SLCOTBT  ENST00000256958.3:  11.95% Decreased  0.88

21178615 COSV57010105 c521T>C

19:38492540- T rs35364374 RYR1 ENST00000359596.8:  4.95% Increased  0.38

38492540 c6178G>T

19:38499641- A 15762454967, CM140865 RYRI1 ENST00000359596.8:  0.00% Increased  0.80

38499641 ¢.7034G>A

19:41006936- T 153745274, CM130453, CS080663, CYP2B6  ENST00000324071.10:  2844% Decreased  0.72

41006936 COSV57843253 c516G>T

variants, the majority of which were associated with de-
creased protein activity, therefore confirming the pre-
sented model results.

Discussion

Conventional genetic testing and clinical guidelines
focus solely on a small number of well-studied variants
or star alleles in pharmacogenes, while the application of
NGS techniques provides the possibility to detect a
much wider range of (PGx) variants. Recent studies have
demonstrated that coding variants are rare, population-
specific and a significant proportion of them could po-
tentially affect the protein product (based on in silico as-
says and metrics) [10-14]. At the same time, the role of
copy number variants (CNVs) within pharmacogenes
[35], as well as variants in non-coding regions, is gaining
more attention, with more than 90% of the polymor-
phisms detected in GWAS pharmacogenomic studies
being non-coding [36]. Owing to the limited number of
thoroughly documented PGx variants and the incredibly
large number of identified genetic mutations that should
be experimentally validated, the initial evaluation of
these variants found must be performed via the use of in
silico tools.

The study’s main aim was the assessment of the utility
of in silico-derived scores, commonly used for variant
annotation, toward the characterization of the potential
protein function effects of SNVs identified within phar-
macogenes. Among the assessed algorithms (AdaBoost,
XGBoost, RF, multinomial logistic regression), RF pre-
sented superior performance and was selected as the
final classifier. RFs have been also proven to be robust in
the presence of outliers or noise, effective, even without
configuration, and useful in cases where the number of
available “-omics” data is limited, when compared to the
number of available variables [37, 38].

The final classifier required minimum hyperparameter
tuning and integrated 7 scores, stand-alone or ensemble
ones, and 2 custom created variables. The overall accur-
acy was equal to 0.85 (95% CI: 0.79, 0.90), with an area
under the curve of 0.92 and an area under the precision-
recall curve (PR AUC) of 0.73. The by-class performance
for variants of Normal, Decreased, and No Function
classes is efficient enough, although there is still room
for improvement, especially in terms of sensitivity (0.80,
0.81, and 0.81 respectively). Interestingly, the model ap-
pears to be efficient, given the fact that most of the in-
corporated features are used to distinguish between
damaging and benign variants, specifically when it comes
to identifying increased function SNVs. Furthermore,
LoFtool, an approach that evaluates the tolerance of a
gene to loss-of-function mutations, emerged as the most
significant determinant of the classification task. The su-
perior performance of the model in identifying “In-
creased” Function PGx variants, combined with the
observation that this specific class in the training dataset
represents only two pharmacogenes, might partially jus-
tify the importance of the variable.

Although there is limited published work in this spe-
cific area, the possibility of using PGx variants so as to
develop classification tools has been previously explored,
without however progressing any further due to the limi-
tations and difficulties that accompany this field [39].
Firstly, the most frequently examined properties in
such classifications tools are the degree of evolution-
ary conservation, which is observed in lower levels in
pharmacogenes [3] and therefore its usefulness is de-
bated by a series of studies [26, 39, 40], as well as pa-
rameters regarding the structure of the respective
proteins, which have been observed to lead to small
increases in the efficiency of the classifiers produced
[39]. Overall, such factors could influence the quality
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of the output results in classification models, as the
one presented herein.

In addition, the training sets used to train computa-
tional models are usually comprised of common poly-
morphisms against variants (mostly SNVs) related to
disease-causality, while in terms of drug response, the
modifying effect of common genomic variants cannot be
ruled out. Moreover, the resulting scores evaluate the
pathogenic potential of the examined variants and clas-
sify them into two usually categories according to cer-
tain applied thresholds. In contrast, PGx researchers
usually focus on the induced change in protein function,
which can be distinguished at several levels (e.g., in-
crease, decrease, no change, complete loss of activity),
while the differential drug response is not a disease, but
a phenotype that occurs under specific conditions (i.e.,
administration of a specific drug).

For example, in a recent study, the adaptation of the
proposed classification thresholds and the subsequent
integration of selected algorithms, which could provide
optimal results for the creation of a comprehensive
score, led to a tool with exceptional sensitivity and speci-
ficity [26]. However, this work focused exclusively on
the distinction between loss-of-function and neutral

variants, hence ignoring PGx variants that would result
in a protein product of increased activity, and which are
of interest in PGx field.

The novelty of our recommended approach lies in the
computational “design” of the classifier Specifically,
starting from a VEP annotated .vcf file as the input, the
classifier quickly leads to a list of PGx variants that
could harbor a protein function effect and hence a po-
tential clinical PGx impact. Unlike disease-related vari-
ants, there is no state-of-the-art procedure so far—to the
best of our knowledge—which can be used to interpret
variants implicated in drug response [41]. Taken to-
gether, the originality of the presented model lies both
in the variant analysis process automatization and the
incorporation of available in silico scores for the
evidence-based assessment of pharmacovariants.

Given the challenges and implications for the predic-
tion of functional impact of PGx variants, as well as the
complexity of the involved biological processes [42], the
findings of this study should be interpreted with caution.
For example, discrepancies have been observed not only
among different algorithms, or between in silico predic-
tions and in vitro activity [43], but also when comparing
in vitro and in vivo observations. A characteristic
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example is that of CYP2D6*35, which has not been asso-
ciated with reduced activity, despite the experimental
evidence of reduced hydroxylation capacity of tamoxifen
[44, 45]. Moreover, researchers should keep in mind that
the same variant may affect the response to different
drugs in different ways. For example, although the
CYP2C8*10 and CYP2C8%*13 alleles have been found to
affect the N-deethylation of amodiacin, the hydroxyl-
ation of paclitaxel—which is also metabolized by
CYP2C8—remains unaffected [46].

As mentioned earlier, the presented model has demon-
strated promising results, despite the limitations of this
computational research field. However, there is still
space for further improvements toward a more efficient
and robust version of the presented model. More specif-
ically, it would be useful to examine and compare the
performance of other machine learning (ML) ap-
proaches, supervised or not. Furthermore, significant ad-
vantages are expected to emerge from the collection and
curation of larger training sets, consisting of larger num-
bers of variants and covering an additional number of
pharmacogenes. Furthermore, the computed metrics
demonstrate a difficulty in distinguishing between nor-
mal and decreased/no function variants, thus making de-
batable the suitability of the used features for the
characterization of these PGx variants.

Moreover, the integration of CNVs and non-coding
variants, although promising, is often difficult to achieve
owing to the limited number of available tools and ap-
proaches for CNV calling and for the functional assess-
ment of non-coding variants. Emphasis should be also
placed on the creation of well-characterized sets of PGx
variants at the level of protein effects, both laboratory
and clinical, as well as on the improvement of the exist-
ing databases to facilitate the export of the requested in-
formation. In addition, researchers should consider that
an individual does not carry just one variant in one
pharmacogene; therefore, the combination of PGx vari-
ants is often what results in the overall difference in
drug response [25]. To this end, since the contribution
of various factors to the response to a given drug is non-
debatable, a more comprehensive approach through sys-
temic genomics would be particularly useful, thus in-
corporating a variety of different -omics data [47].

Conclusions

The novelty of the computational model presented
herein lies in the fact that a ML approach was used to
classify PGx variants, particularly novel and rare variants,
by consequently assigning a protein activity prediction.
Overall, the presented model prioritizes annotated PGx
variants in different variant effect classes and then as-
signs a protein function classification after stringent
computational assessment and ML processes. Its utility
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was further showcased by using two real-life datasets to
further support the applicability of this model as a clin-
ical support decision tool. Indeed, a validated, method-
ical prioritization of the multitude of genomic variants
stemming from NGS analyses, as the one presented
herein, has the potential to positively contribute toward
the large-scale clinical application of pharmacogenomics
and facilitate the translation of a patient’s genomic pro-
file into actionable clinical information.

Methods

Collecting the training data

An appropriate training set of variants was manually cu-
rated using the PGx gene-specific information tables,
created under the collaboration between PharmGKB and
CPIC and was subsequently supplemented by additional
variants from PharmVar [48]. This training set consists
of 262 variants located across 12 pharmacogenes, with
well-defined protein-level functional consequences, as
based on the integration and assessment of in vitro bio-
chemical assays, in vivo evidence and clinical observa-
tions. After careful data examination and owing to
the high percentages of missing values, 190 variants
within 11 pharmacogenes (Table S1, Supplementary
Data) remained and were used as our training set. The
observed functionality is classified into 5 levels (exclud-
ing Unknown/Uncertain function): “Increased”, “Nor-
mal”, “Possibly Decreased”, “Decreased” and “No
function”. However, owing to the limited number of ob-
servations harboring the levels of “Possibly Decreased”
and “Decreased” functions and after careful examination
of the available information for those categories, these
two levels were combined in one class (Decreased func-
tion) (Table 2).

Variant annotation

The curated set of pharmacogenomic variants was anno-
tated using the web interface of Ensembl’s variant effect
predictor (VEP) tool, for the GRCh38 human assembly,
as well as the 4.1.a version of the dbSNFP database [49],
which is also provided through VEP. The majority of the
retrieved information is available for variants located
within protein coding regions and includes: a detailed
characterization at a protein level (i.e., database identi-
fiers, codons, amino acids, coordinates, protein domains,
computational scores, etc.), overlapping known variants,
observed frequencies in different populations (i.e., via
the 1000 Genomes Project, the genome Aggregation
Database, the Exome Aggregation Consortium data and
the Exome Sequencing Project), any related phenotypes
(e.g., OMIM, Orphanet, GWAS catalog) or clinical sig-
nificance (ClinVar), as well as literature references [50].
Furthermore, the attributed consequence, described by
using terms as developed in collaboration with Sequence
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Table 2 Description of the protein function effect classes of PGx variants, which are used as the training data for the final RF model.

The functionality class is split in the following classes (“decreased,

ncreased,” “no,

" ou "nou

normal”), the number of the respective PGx

variants per class is also provided, as well as which pharmacogenes are incorporated per each class

Functionality class Number of variants

Representation of genes

Decreased 36
Increased 46
No 48
Normal 60

DPYD, CYP2C19, CYP2C9, SLCO1BI, RYRI1, CYP2B6, UGT1A1, CYP2D6
RYRI1, CYP2B6

CYP2C19, CYP2CS8, DPYD, CYP2C9, NUDT15, CYP2B6, CYP2D6, TPMT
DPYD, CYP2C9, SLCOI1B1, CYP2B6, CYP2D6

Ontology (SO) [51], and the corresponding impact of a
variation are also provided.

Regarding the retrieved frequency data, variants were
classified as “common” if the minor allele frequency
(MAF) was equal or above 10% (MAF > 10%) and as
“intermediate” if the MAF ranged between 5 and 10%
(5% < MAF < 10%). Variants were classified as “low fre-
quency” if the MAF ranged between 1 and 5% (1% <
MAF < 5%), while “rare” variants included these variants
of which the MAF was between 0.1 and 1% (0.1% <
MAF < 1%). Finally, variants were classified as ultra-rare
if the MAF was equal or below 0.1% (MAF < 0.1%).

Features and variants with a high percentage of miss-
ing values (>40%) were excluded, while the remaining
values were imputed by using k-nearest neighbors algo-
rithm (kNN) [52] with default values for k-neighbors
(equal to 5) and inverse weighted mean Gower distances
[53]. In addition, a step of backwards variable selection
through RFE using Bagged Trees was performed, which
recommended the use of 7 out of the 45 variables (LoFtool
[21], DEOGEN2_score [54], MPC_score [55], BayesDel
addAF score  [56], integrated_fitCons_score  [57],
FATHMM_score [29], LIST.S2_score [58]). Furthermore,
two binary variables were constructed and included in the
analysis: one indicating whether the variant was located
within a protein functional domain (according to InterPro
[59] annotation) and one representing high impact SO
consequences (splice acceptor or donor variants, stop
gained, frameshift variants, stop or start lost), enriched for
loss-of-function (LoF) changes, as defined by MacArthur
and coworkers (2012) [60].

Training of the machine learning model

All preprocessing and ML-related analyses described in
this work were performed using the R language for stat-
istical programming (version 4.0.2) [61]. To exploit the
abilities of the abovementioned features toward explain-
ing potential protein function effects of variants derived
from NGS analyses, a variety of tree-based methodolo-
gies was assessed, alongside with a special case of a
neural network acting in a multinomial logistic regres-
sion manner. More specifically, random forests [62, 63],
multi-class AdaBoost [64, 65], XGBoost [66], and a
neural network striped from its hidden layers and

activation functions (multinomial logistic regression)
[67, 68] were used via the caret package [69]. For the se-
lected tree-based models, hyperparameters were tuned
based on the optimization of the accuracy metric, while
in multinomial logistic regression, the default parameters
were used (Table S2, Supplementary Data).

Evaluation of the machine learning models

The predictive performance of the created models was
assessed via the 5-fold cross validation (CV) method.
During n-fold CV, the data are divided to create n
equal-sized subsets; n-1 of these are used to train a
model and the remaining 1 is used to test its perform-
ance. This process is repeated n times, until all subsets
have been used to test the model, while the computed
metrics in each iteration are averaged. More specifically,
the metrics of interest include the accuracy, precision,
sensitivity (true Positive rate), specificity (True Negative
rate), balanced accuracy (average of precision and recall),
and the F-measure (harmonic mean of precision and re-
call). Since this was a multi-class task, all metrics were
computed for each class separately (according to the
one-vs-all method), and the performance of the model
was calculated using the corresponding weighted average
values for each metric. Furthermore, a random forest
classifier was trained with the total of 47 features and
used to evaluate their predictive importance.

Testing the applicability of the final machine learning
model

To further demonstrate the applicability of the machine
learning model, we applied the classifier in data derived
from NGS analyses. To this end, variant call format
(-vcf) files comprised of the results from (i) a WGS ana-
lysis of a single individual of Greek origin diagnosed
with coeliac disease, and (ii) a targeted pharmacogene
sequencing analysis of 304 individuals of Greek origin
diagnosed with psychiatric diseases [70]. Firstly, the pro-
vided variants were annotated, using the web interface of
ensemble VEP tool, while the resulting data were pre-
processed to select only these identified in the tran-
scripts of interest. Then, these annotation data were
used as an input to our final RF model and the
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corresponding prediction functionality classes and pre-
diction probabilities were provided.

Last, clinical and variant annotations found in
PharmGKB (https://www.pharmgkb.org) were also cu-
rated to extract clinically relevant information for the
PGx variants either assessed or missed by the presented
RF model.
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