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Abstract

Molecular dynamics (MD) simulation is an emerging in silico technique with potential applications in diverse areas of
pharmacology. Over the past three decades MD has evolved as an area of importance for understanding the atomic basis
of complex phenomena such as molecular recognition, protein folding, and the transport of ions and small molecules
across membranes. The application of MD simulations in isolation and in conjunction with experimental approaches have
provided an increased understanding of protein structure-function relationships and demonstrated promise in drug discovery.
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Purpose
This perspective highlights the importance of MD simula-
tions in the area of structure function relationships (using
the cytochromes P450 as an example) and drug discovery.
Main text
Perspective
Molecular Dynamics (MD) simulations are computational
approaches based on Newton’s equations of motion and
statistical mechanics principles that relate the motions
and distributions of atoms and molecules. The equations
of motions are solved numerically for a system of interact-
ing atoms to extract numerous chemical and biophysical
properties from the atomic data (van Gunsteren and
Berendsen 1990). The key feature of this in silico tech-
nique is the possibility to mimic in vitro and in vivo condi-
tions. For example, the protein may be simulated at
varying pH, in the presence of water molecules and ions,
with different salt or ionic concentrations, and even in the
presence of lipid bilayer and other cellular components.
In MD simulations the forces between atoms and the

potential energy of the system are defined by molecular
mechanics biomolecular force fields. These biomolecular
force fields are parameterized to fit quantum-mechan-
ical calculations and experimental spectroscopic data.
Parameterization involves definition of chemical bonding,
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atomic angles and dihedral angles, along with determin-
ation of partial atomic charges for calculation of the elec-
trostatic-interaction energies, identification of appropriate
van der Waals atomic radii, etc. A number of biomolecular
force fields are available for simulations, the most common
being AMBER (Cornell et al. 1995), CHARMM (MacKerell
et al. 1998), and GROMOS (Oostenbrink et al. 2004).
The potential energy function used in the GROMOS96
(Oostenbrink et al. 2004) force field is given in equation (1).
Although these biomolecular force fields differ in the way
they are parameterized, the results obtained from each are
generally similar. Some of the commonly used softwares
for MD simulations include GROMACS (Van Der
Spoel et al. 2005), NAMD (Phillips et al. 2005), AMBER
(Case et al. 2005), and CHARMM (Brooks et al. 2009).
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Eq. 1 In this function,V is the potential energy, r is the
position of the particle (coordinate) at a particular time,
b is the bond length, b0 is the bond length at equilib-
rium, and kb is the bond force constant; θ is the bond
angle, θ0 is the bond angle at equilibrium, and kθ is the
bond angle force constant; ξ is the improper dihedral
angle, ξ0 is the improper dihedral angle at equilibrium,
kξ is the force constant for improper dihedral; φ is the
dihedral, φ0 is the dihedral angle at equilibrium, kφ is the
force constant for torsional dihedral interactions; rij is
the distance between particles i and j, C12 and C6 are
Lennard-Jones parameters; ε0 is the dielectric permittiv-
ity of vacuum, ε1 is the relative permittivity of the
medium in which the particles are embedded, and qi and
qj are the charges of particles i and j, respectively.
The spatiotemporal resolution attained at a particular

timescale and the biomolecular processes that can be cap-
tured are important considerations in MD simulations.
Simulating a system over the time scale 10−12 s - 10−9 s
(picoseconds to nanoseconds) can identify motions such
as atomic fluctuations, conformational changes in amino
acid side chains and loop motions. However, to under-
stand more complex biomolecular events such as large
domain motions, protein folding, protein-ligand binding
and the transport of molecules across membranes, simula-
tion timescales of microseconds to milliseconds are re-
quired (Dror et al. 2012). The first molecular dynamics
simulation of a biomacromolecule of therapeutic interest
was published almost four decades ago. This simulation
was performed in a vacuum with simple molecular me-
chanics parameters for a short time (9.2 ps) (McCammon
et al. 1977). Since then, several advancements have taken
place both in terms of computational power and algo-
rithms. For instance, a recent two-millisecond time scale
MD simulation of the β2-adrenergic receptor using
Google’s Exacycle cloud-computing platform has led to
a detailed understanding of multiple activation path-
ways and differential interactions of agonists and inverse
agonists (Kohlhoff et al. 2014). This demonstrates the ap-
plication of MD simulations for investigating complex bio-
logical phenomenon.
The importance of simulation techniques arises from the

fact that biomacromolecules such as proteins exist in a dy-
namic state of motion. These dynamic motions are essential
for the specific functions of biomacromolecules such
as intermolecular protein-binding interactions or down-
stream signalling. Moreover, dynamic motions among
the molecules are key driving forces for biomolecular
events including molecular self-assembly, dimerization/
oligomerization, and adaptive conformational changes on
ligand binding or the transport of drugs and ions across
channels and cellular membranes. Even though multiple
experimental techniques aid the understanding of the
structural features of biomolecules, they fail to characterize
dynamic motions. MD simulations provide a means to
model the flexibility and conformational changes in mole-
cules at an atomic level and thus explore areas that are dif-
ficult to characterize experimentally.

Structure Function Relationships
X-ray crystallography is the most widely used experimen-
tal technique employed for elucidating the 3-dimensional
(3D) structures of biomolecules. The underlying principle
of this technique is that a periodic crystal with an ordered
arrangement of the atoms can diffract x-ray beams. A dif-
fraction pattern, which is characteristic to the particular
arrangement of atoms in a crystal, is then generated using
a series of mathematical calculations. Further calculations
leads to the generation of electron densities, which are
then used to build the 3D structure of the molecule based
on atomic coordinates. However, structures derived by
x-ray crystallography can only provide a snapshot of one
particular conformational state of a biomolecule. For in-
stance, in the case of human cytochromes P450 (CYP),
which comprise a superfamily of enzymes responsible
for the metabolism of drugs, non-drug xenobiotics and
endogenous compounds (Miners et al. 1988, Miners
and Birkett 1998), x-ray crystallographic techniques have
provided invaluable insights into the secondary and ter-
tiary structures of CYP enzymes (Yano et al. 2004). How-
ever, it is now evident from the approximately 150 human
cytochrome P450 crystal structures that have been eluci-
dated to date that CYP proteins are highly flexible and
show dramatic structural adaptability in the presence of a
ligand. For example, the experimental structure of
CYP3A4 shows an active site volume of 950 Å3 in the
ligand-free state, 1650 Å3 when bound to ketoconazole
and 2,000 Å3 when bound to erythromycin (Ekroos and
Sjögren 2006). To understand such dramatic changes in
the active site architecture associated with the dynamic
behavior of P450s, MD simulations provide a more prac-
tical alternative than the generation of x-ray crystal struc-
tures for every enzyme-ligand combination. In recent
years, several applications have shown the potential of
MD simulations for providing insights into structural as-
pects of human cytochromes P450, including demonstra-
tion of the plasticity of the substrate binding site (eg.
Hendrychova et al. 2012) and identification of solvent and
ligand (access and egress) channels (eg. Schleinkofer et al.
2005). Recent MD simulation studies have also demon-
strated ligand cooperativity and allosteric binding sites as-
sociated with certain CYP enzymes (Li et al. 2011, Bren
and Oostenbrink 2012). This demonstrates the potential
of MD simulation for understanding drug-drug interac-
tions arising from CYP enzyme inhibition or activation at
an atomic level. Moreover, MD simulations can be used to
investigate altered conformational states of CYP proteins
that result from genetic polymorphism.
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Drug Discovery
In the recent years, the ability to design drugs rationally
based on the structures of the protein targets has been a
successful strategy in drug discovery. The so-called struc-
ture based drug design (SBDD) approach involves the de-
sign of molecules that can specifically bind to the key
structural domains (binding pocket(s)) of the protein tar-
get (e.g. Varney et al. 1992, Dorsey et al. 1994). The aim is
to modulate the activity of the protein in order to alleviate
disease progression. For instance, designing molecules
that can maximize the complementary interaction at the
active site of the target receptor can be a useful strategy in
the structure guided inhibitor design (Varney et al. 1992,
Dorsey et al. 1994). However, recent studies have shown
the importance of MD simulation to investigate the bio-
molecular flexibility associated with ligand recognition
(Nair et al. 2011, Nair et al. 2012). Studying the flexibil-
ity of the target receptor would thus permit the im-
proved design of drugs over the simplistic lock and key
conceptualization of the static receptor. Also, simulations
allow the exploration of additional druggable sites (cryptic
or allosteric) on the target receptor that is not evident from
experimental (e.g. X-ray) structures (Frembgen-Kesner and
Elcock 2006). An example is the identification of a novel
binding trench in HIV-integrase through dynamic simula-
tion (Schames et al. 2004). This led to the discovery of ralte-
gravir, the first of a new class of anti-HIV (integrase
inhibitor) drugs (Summa et al. 2008). Similarly, a novel tran-
siently open binding pocket was identified recently using
MD simulation of the p53 protein, which has potential ap-
plication for the design of novel anticancer drugs (Wassman
et al. 2013). Recent MD simulations have also shown the
likelihood of identifying allosteric binding sites in the
human β1 and β2 adrenergic receptors (Ivetac and
McCammon 2010).
Conclusion
There has been a dramatic increase in our understand-
ing of disease states and therapeutic targets over the last
two decades. With the current bioinformatics applica-
tions and sequencing data it is likely that the number of
putative drug targets will continue to increase in the
coming years, as in the case of G-protein coupled recep-
tors. With increased computing power and continued
developments in the efficiency of simulation codes and
faster algorithms, the future of in silico approaches is
promising. Molecular dynamics simulations are likely to
play an increasingly important role for understanding
the structure function relationships of pharmacological
targets and in the development of novel therapeutics.
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