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Abstract

Background Several investigations on the microbial diversity and functional properties of the International Space
Station (ISS) environment were carried out to understand the influence of spaceflight conditions on the microbial
population. However, metagenome-assembled genomes (MAGs) of ISS samples are yet to be generated and sub-
jected to various genomic analyses, including phylogenetic affiliation, predicted functional pathways, antimicrobial
resistance, and virulence characteristics.

Results In total, 46 MAGs were assembled from 21 ISS environmental metagenomes, in which metaSPAdes yielded
20 MAGs and metaWRAP generated 26 MAGs. Among 46 MAGs retrieved, 18 bacterial species were identified, includ-
ing one novel genus/species combination (Kalamiella piersonii) and one novel bacterial species (Methylobacterium
ajmalii). In addition, four bins exhibited fungal genomes; this is the first-time fungal genomes were assembled from
ISS metagenomes. Phylogenetic analyses of five bacterial species showed ISS-specific evolution. The genes pertain-
ing to cell membranes, such as transmembrane transport, cell wall organization, and regulation of cell shape, were
enriched. Variations in the antimicrobial-resistant (AMR) and virulence genes of the selected 20 MAGs were character-
ized to predict the ecology and evolution of biosafety level (BSL) 2 microorganisms in space. Since microbial virulence
increases in microgravity, AMR gene sequences of MAGs were compared with genomes of respective ISS isolates and
corresponding type strains. Among these 20 MAGs characterized, AMR genes were more prevalent in the Enterobacter
bugandensis MAG, which has been predominantly isolated from clinical samples. MAGs were further used to analyze if
genes involved in AMR and biofilm formation of viable microbes in ISS have variation due to generational evolution in
microgravity and radiation pressure.

Conclusions Comparative analyses of MAGs and whole-genome sequences of related ISS isolates and their type
strains were characterized to understand the variation related to the microbial evolution under microgravity. The
Pantoea/Kalamiella strains have the maximum single-nucleotide polymorphisms found within the ISS strains exam-
ined. This may suggest that Pantoea/Kalamiella strains are much more subjective to microgravity changes. The
reconstructed genomes will enable researchers to study the evolution of genomes under microgravity and low-dose
irradiation compared to the evolution of microbes here on Earth.

Keywords Metagenome-assembled genomes, Genome-inferred phenotype, Microgravity, ISS

*Correspondence:

Kasthuri Venkateswaran

kjvenkat@jpl.nasa.gov

Full list of author information is available at the end of the article

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. Open
Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativeco
mmons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-023-01545-7&domain=pdf
http://orcid.org/0000-0002-0847-4695
http://orcid.org/0000-0002-8724-8177

Singh et al. Microbiome (2023) 11:125

Introduction

Since the publication of the first metagenome-assem-
bled genome (MAG) in 2004 [1], MAGs have been used
to confirm genomic data for taxonomic identification
of uncultivated microorganisms, metabolic profiling,
microbiome dynamics, and host-microbe relationships
[2]. When a MAG is assembled, annotation and inter-
pretation of genes are possible, allowing research-
ers to better understand the metabolic potential of the
microbe, including its potential resistance to antibiot-
ics, interactions with other microbes in the microbial
community, and association with a host [3]. MAGs have
been successfully used to discover uncultivated species
[4], candidatus organisms like Candidatus Amarolinea
aalborgensis gen. nov., sp. nov. [5], and novel genera like
Spiribacter [6] and Kalamiella [7]. MAGs have also been
used to recover genomic clusters of secondary metabo-
lites [8], genetic mobility [4], metabolic pathways [9],
and in situ replication [10]. Projects retrieving thousands
of MAGs have also been documented to understand yet-
to-be cultured microbiomes of cow rumens and other
environmental samples [11]. In addition, MAGs have
revealed new microbial phyla, which have expanded the
tree of life [12].

Lowering sequencing cost, curated data availability
in public database, and advances in computational biol-
ogy have made assembling MAGs from complex and
extreme environments easy. A higher number of refer-
ence genomes makes the binning easier and more reli-
able. Multiple best practices are available to construct
accurate and complete genomes from metagenomes, but
high-quality MAGs are still relatively rare. Most MAGs
reported in many MAG-related papers have complete-
ness levels between 50 and 60% [13].

Recently, MAGs generated from International Space
Station (ISS) environmental metagenomes paved a
way to describe a novel genus and species, Kalamiella
piersonii [7]. We have retrieved four K. piersonii MAGs
(100% genome sequence identity) from ISS environmen-
tal metagenomes that allowed us to identify a cultivated
isolate archived from the same samples using gene-
specific assays [7]. This “genome to phenome” approach
enabled the differentiation of closely related genera
Pantoea from Kalamiella and facilitated the isolation of
several ISS strains (n = 7) that were archived and pre-
viously unidentified [7]. Furthermore, the use of MAGs
and whole-genome sequences (WGS) of biosafety level
2 (BSL-2) species, Klebsiella pneumoniae, isolated from
three consecutive samplings of the ISS at eight defined
locations made it possible to track the source of the
original BSL-2 strain and understand the succession,
persistence, and spread of this opportunistic pathogen
detected in the ISS [14].
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The objectives of this study were to retrieve near full-
length genomes from metagenomes generated from ISS
environmental samples and perform in-depth functional
and phylogenetic analyses. Among 46 MAGs generated
during this study, functional analyses such as antimi-
crobial resistance (AMR), virulence characteristic, and
metabolic traits/stress responses were carried out for 20
prokaryotic MAGs. In addition to the prokaryotic MAGs
(~85% completeness), this is the first-time eukaryotic
MAGs (~50% completeness) were also generated from
ISS metagenomes using the co-assembly strategy.

Material and methods

Data source and sample description

Data used for this study were acquired from the National
Center for Biotechnology Information (NCBI) Short Read
Archive under the bio-project number PRJNA438545. A
detailed description of shotgun metagenome sequencing
and ISS locations sampled were published elsewhere [14].
In this research communication, we utilized shotgun
metagenome reads generated from the propidium mon-
oazide (PMA)-treated samples only [15] to understand
whether these MAGs were stemming from the viable and
intact cells. However, for eukaryotic analysis, we used
shotgun metagenome reads from both PMA and non-
PMA-treated samples.

Metagenome-assembled bacterial genomes

Paired-end 100-bp metagenomic reads were processed
with Trimmomatic [16] to remove adapter sequences
and low-quality ends, with a minimum Phred score of
20 across the entire length of the read used as a qual-
ity cutoff. Reads shorter than 80 bp were removed after
trimming. The remaining high-quality reads were sub-
sequently assembled using metaSPAdes [17]. Contigs
were binned using Metabat2 [v. 2.11.3] [18]. Recovered
genomes were evaluated with CheckM [19], and a recov-
ered genome was considered good with ~85% complete-
ness and at most 10% contamination. Each genome was
subsequently annotated with the help of Rapid Annota-
tions using Subsystems Technology (RAST), and taxo-
nomic identifications and phylogenetic affiliations were
predicted [20]. In addition to running the procedure
above, we also ran the metaWRAP pipeline on the same
datasets, using default parameters [21].

In order to test for assemblies suspected to be the
same among the 20 metaSPAdes genomes and the set of
genomes obtained using metaWRAP for the same set of
reads (“meta-set”), we compared both assembly sets using
Mash [22] distances. Then, we kept only the best MAG
under a Mash distance < = 0.05 (corresponds to average
nucleotide identity, ANI > = 95%). After gathering the
relevant reference genomes and MAGs, Amphora2 [23]
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was employed to retrieve a protein set composed of 31
universal bacterial markers, which were then aligned by
Muscle [24]. Finally, a phylogeny was inferred by maxi-
mum likelihood using the concatenated dataset under
IQTREE [25] with a concomitant search for the best evo-
lutionary protein model.

For each sample, our final list of bacterial MAGs con-
tains only those MAGs that were considered distinct from
one another. When two MAGs were considered “the same”
for a given sample, we chose the metaSPAdes version.

Phylogenetic comparison of the ISS bacterial MAGs
obtained by the two methods

MAGs assembled from the ISS dataset by two methods
(metaSPAdes metaWRAP) were tested for the phyloge-
netic clustering within the same species clade. All assem-
blies from both methods were positioned according to the
most exclusive clade in the Bacteria Tree of Life to which
individual Genome Taxonomy Database (GTDB) clas-
sifications matched (e.g., the most exclusive taxonomic
group containing Staphylococcus, Bacillus, and Paeniba-
cillus would be Bacillales). After defining such taxonomic
groups, a new phylogeny was estimated for each of them.
Besides the reconstructed genomes themselves, for each
supposed species, we also added three reference genomes
from NCBI of the same species (picked sparsely and ran-
domly from its automatically generated species dendro-
gram tree) while also including two/three other species
from the same genus (at least a close species and a not
too distant one), each of them being represented by three
sparse genomes in their respective species dendrograms.
Such an analysis is liberal enough to indicate whether dif-
ferent assemblies from the same reads would indeed clus-
ter together.

Metagenome-assembled fungal genomes

One of the main focus of this study was assembling
eukaryotic genomes from the ISS metagenome. When
tools to construct prokaryotic MAGs were used, eukary-
otic MAGs were low quality, and results were not satis-
factory to identify them as fungal genomes. Additionally,
the availability of reference data falls short for eukary-
otic genome assembly. To overcome this, we used a
completely independent co-assembly-based strategy in
the tool ANVIO [18] on the complete ISS dataset using
PMA-treated and untreated samples. All the steps were
followed as per the step-by-step metagenomic procedure
available on the ANVIO website (http://merenlab.org/
2016/06/22/anvio-tutorial-v2/). In short, quality filtering
was carried out using the script iu-filter-quality-minoche.
MEGAHIT [26]-based co-assembly was performed on
the quality-filtered reads from the 42 samples. Names
in the co-assembled fasta file were simplified using the
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script anvi-script-reformat-fasta. A contig database was
generated using “anvi-gen-contigs-database” The con-
tig database was run through hidden Markov models
(HMM) based HMMER [27]. NCBI — COG was used to
identify the genes in the co-assembly fasta files. Individ-
ual profiles were generated for each sample using anvi-
profile and anvi-merge to cluster all the profiles using
Euclidean distance and Ward’s linkage algorithm. Final
results of co-assembly bins in ANVIO tools were inter-
actively visualized using anvi-interactive. All ANVIO
results were exported in the summary format for further
downstream processing.

Each bin generated in ANVIO profiles was treated
as an individual genome, and quality was assessed
using CheckM. To establish the taxonomic identifica-
tion of each bin, they were further subjected to GTDB-
Tk (Genome Taxonomy Database Toolkit) [28]. All the
bins were compared with 24,706 genomes constituting
8792 validly published bacterial species (https://www.
bacterio.net/). GTDB-Tk can only identify prokaryotic
genomes; hence, all the bins not defined by the GTDB-Tk
were considered as eukaryotic taxa and further manually
curated for genomic identification.

Determining the closest fungal species to each MAG
was carried out in three steps. First, we used BLASTn to
search GenBank, aimed at circumscribing the innermost
taxonomic rank quickly (e.g., genus if multiple species
within that genus were found across different BLAST hits
or family if different genera within the family are found in
the BLAST hits). For this search, five different BLASTn
searches were performed per MAG. For each such
BLASTn search, a random genomic segment of 2000
bp was chosen while also certifying that this segment is
within a minimum of 1000 bp from its respective contig
end (to minimize possible assembly issues that are more
prevalent at contig edges).

Secondly, for those MAGs whose BLAST results were
not hitting a single species, phylogenomic analysis was
employed with all assemblies/genomes within that inner-
most rank (as described above) found in either GenBank
or Joint Genome Institute (JGI) MycoCosm (with at
most three genomes per species). A set of 758 conserved
proteins across fungi, available from the BUSCO pipe-
line [29] (database: fungi_odb10), were sought in every
assembly. Because there can be differences in the number
of BUSCO genes found per genome, due to variation in
assembly completeness, we built a subset of the dataset
where each protein is present in at least 1/3 of the MAGs,
reference genomes, and two previously chosen outgroups
(Ustilago maydis and Dacryopinax primogenitus) used
for proper rooting of the phylogeny. Multiple alignments
per gene were carried out using Mafft [30]. Two alterna-
tive species tree inference analyses were performed, one
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IQ, and another inference done by Astral [31], which is
based on an amalgamation of quartet trees sampled from
each individual gene tree (where each of the 758 gene
trees had been previously estimated in IQ-TREE).

Thirdly, Mash distances [22] were computed to con-
firm the species (either MAGs that went through phy-
logenomic analyses or MAGs assigned to a single species
in the first BLASTn step). According to Gostincar [32],
a Mash distance below 0.04 is sufficient to assign any
two fungal genomes to the same species for k-mer sizes
between 16 and 22 bp [32].

Comparative phylogenetic analysis

In order to include a background of Earth-origin
genomes to anchor ISS genomes, and therefore pinpoint
where in the phylogeny of ISS microorganisms evolved
from, we searched in GenBank for genomes of Staphylo-
coccus aureus, S. saprophyticus, Klebsiella quasipneumo-
niae, Kalamiella piersonii, and Pantoea brenneri. When
available, two genomes of each species per year were
retrieved and used in the analysis.

Get_Homologues [33] was used to cluster protein-cod-
ing genes into gene families. Unicopy genes (i.e., genes
with a single copy in every included genome of the spe-
cies) were then retrieved to build the phylogenetic trees
per species and to further assess amino acid changes.
Maftt [30] with default parameters was used to obtain
multiple alignments for each gene family. Alignments
were then concatenated into a supermatrix using FAS-
conCat [34]. IQ-TREE [25] was used to infer the phylog-
eny from this supermatrix, using a LG + I + G model and
1000 ultra-fast bootstraps to assess branch support.

In-house python scripts were used to annotate amino
acid substitutions and indels (i.e., events of either inser-
tion or deletion of amino acids). Pannzer 2 [35] was used
to gather GO information (minimum query and sub-
ject cover of 80%, minimum alignment length of 50 aa;
other parameters as default) for all genes having amino
acid point substitutions that changed hydrophobic-
ity (i.e., from hydrophobic to hydrophilic or vice versa).
Such substitutions are more susceptible of being under
natural selection, because they have a higher probability
of having an impact on the three-dimensional protein
structure.

Comparative functional analysis

Genome assemblies and associated RefSeq annotations
for each strain were downloaded from NCBIs RefSeq
database. Due to their exclusion from the RefSeq data-
base, the meta-genome-assembled genomes (MAGs)
assemblies and associated annotations were downloaded
from their original GenBank accessions. For each of
the species of interest in this study, representative type

Page 4 of 27

strains were selected for comparison. To compare nucle-
otide-level identities for each of the analyzed genomes
against their respective type strains, BLASTn (—evalue
le-05) alignments were conducted and visualized with
BLAST Ring Image Generator (BRIG), version 0.95 [36].
BLASTn identities were color coded according to the
origin of the genome assembly for ISS isolates (purple)
or MAGs (blue), with the intensity of their color corre-
sponding to custom percent identity cutoffs (high: 90%,
lower: 80%, minimum: 50%). To assess the complete-
ness of each assembly, the open reading frames (ORFs)
of 13 housekeeping genes were identified for each spe-
cies reference genome using keyword searches of the
feature_table.txt file included with each assembly: DNA
gyrase subunit A (gyrA), DNA gyrase subunit B (gyrB),
50S ribosomal protein L35 (rpml), 50S ribosomal protein
L20 (rplT), 30S ribosomal protein S12 (rpsL), 30S ribo-
somal protein S7 (rpsG), DNA-directed RNA polymerase
subunit beta (rpoB), DNA topoisomerase IV subunit A
(parC), DNA topoisomerase IV subunit B (parE), trans-
lation initiation factor IF-3 (infC), elongation factor Tu
(tuf), elongation factor G (fusA), and cation translocating
P-type ATPase (mgtA, zntA, actP, cadA, copB). Of note,
to render MAGs with multiple contigs, BRIG orders
each contig into a contiguous assembly to be displayed
as a single circular chromosome, causing contig-relative
start and end coordinates provided in the assembly fea-
ture_table.txt file to not necessarily match the absolute
coordinates generated by BRIG. Thus, a custom code was
written to transpose the housekeeping genes’ contig-rel-
ative start and end coordinates into the absolute coordi-
nates assigned by BRIG. These absolute ORF coordinates
were then used as annotations to display on the reference
genome on the outermost layer of each BRIG figure. The
associated code used to identify these features and con-
vert their coordinates can be found here: https://github.
com/jlombo96/MAG_2023_Code.

Gene-based AMR and biofilm study

Selected genes involved in AMR and biofilm formation
were studied. AMR genes were selected based on the
abundance in various MAGs, while E. bugandensis MAG
was chosen for biofilm formation based on the previously
reported studies [37].

All AMR gene sequences found in the 20 annotated
MAGs were tabulated for comparative analysis. Genes
include DNA gyrase and LSU and SSU ribosomal protein
units. All identified genes were put into NCBI Nucleotide
BLAST (RefSeq), and the top hits with > 98% identity
cutoff were compiled in a fasta text file for analysis using
MEGA 7 [38]. The genes were aligned using ClusterW,
and the Neighbor-Joining algorithm was used to make
phylogenetic trees. Nosocomial (hospital/Earth) strains
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were used for comparison to the MAGs since AMR has
been reported to increase under microgravity [14].

The NCBI database was used to derive WGS of E.
bugandensis. DSMZ and LPSN were used to determine
the type strains. Identified strains of E. bugandensis were
analyzed using the IMG JGI database and used to search
for biofilm-forming genes (pgaA, pgaB, pgaC, pgaD) and
quorum-sensing genes (LsrK, LsrA, AI-2 luxS, LsrF, LsrB,
LsrC, LsrD, LsrG, LsrR). All gene sequences were down-
loaded as a fasta file per strain for downstream alignment
analysis.

All downloaded fasta sequences for the biofilm and
quorum-sensing genes of all the E. bugandensis (n = 15
+ 1MAG) of interest were used for phylogenetic analy-
sis with the MEGA?7 software package. The downloaded
fasta sequence for each gene (n = 13) in the E. bugan-
densis strains was aligned, conserved sites within that
specific gene were observed across all strains versus the
ISS isolates, and the variable sites were also observed and
quantified for that particular gene.

All areas of interest in the aligned sequences were
highlighted and observed for nucleotide differences in
each of the 16 strains that are different from that of the
EB-247T, which is the type strain of the genus. The posi-
tion of the nucleotide change in the codon was observed
to see if it is in the first, second, or third position to
determine if it would lead to a synonymous mutation
or a new amino acid formation. MEGA?7 software using
the aligned gene sequence was used to create a neigh-
bor-joining (NJ) phylogenetic tree for each gene with the
bootstrap data set at 1000.

Results and discussion

Metagenome-assembled bacterial genomes

Out of the 42 ISS metagenomes submitted at NCBI,
only PMA-treated metagenomes (# = 21) represent-
ing the viable/intact cells were used for generating bac-
terial MAGs. Characteristics of MAGs (# = 46) such as
genome size (2.6 to 6.6 Mb), completeness, contamina-
tion percentage, the average mean coverage, number of
scaffolds, and N50 (5 to 670 Kb) were calculated using
CheckM, and assembly statistics are summarized in
Table 1. Sample collection date, location, relative humid-
ity, radiation exposure, etc. are given in Table 1, and vari-
ous other details such as materials of the location and
partial pressure have already been published [14, 15]. A
bacterial MAG was considered acceptable during this
study if CheckM completeness was more than 85% and
contamination was less than 10%. When metaSPAdes
was used, 20 MAGs were recovered, and housekeeping
genes were used to confirm the identity, contamination,
and completeness of MAGs. In addition, when metaW-
RAP was used, 26 MAGs were assembled from the same
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21 PMA-treated ISS environmental metagenomes. When
metaSPAdes and metaWRAP pipelines generated MAGs
were compared, a total of 16 one-to-one matches were
detected between them, suggesting these two differ-
ent assembly strategies identified the identical genomes.
Among the metaWRAP-assembled genomes, 11 MAGs
had smaller genome sizes, which may be due to the more
conservative nature of the metaWRAP procedure. The
correlation between metaSPAde (20 MAGs) and metaW-
RAP (26 MAGs) is shown in Supplementary Fig. S1 (R?
was 0.85).

Species assignment analysis of ISS bacterial MAGs
Phylogenetic analysis of 30 unique bacterial MAGs of 46
generated showed 18 species (Table 1). The bacterial spe-
cies identity was based on the average nucleotide index
(ANL > 95%) of MAGs compared with the correspond-
ing type strain. The majority of the MAGs (22 out of 46)
belonged to the members of the order Enterobacterales
and matched with six established enterobacterial spe-
cies. In addition, MAGs from spore-forming bacteria
(Bacillus 1 MAG; Paenibacillus 4 MAGs); human skin
microbes, e.g., Staphylococcus (8 MAGs); and actinobac-
terial (4 MAGs) members were retrieved. However, 11
MAGs were not identified to any of the genomes of well-
established bacterial species. Subsequently, the gyrB gene
[39] sequences were pulled from the MAGs and screened
with sequences of a large number of ISS isolates (» = 500
strains) archived in our culture collection. The ISS strains
that exhibited the highest gyrB sequence similarity (>
95%) were further sequenced for the whole genome and
compared with the above 11 MAGs. This “metagenome
to phenome” approach has enabled the description of
one novel genus/species combination (Kalamiella pierso-
nii; 8 MAGs; Singh et al,, [7]) and another novel bacterial
species, Methylobacterium ajmalii (n = 3 MAGs; Bijlani
et al,, 2021). Interestingly, Sphingomonadaceae MAGs
retrieved from F2-7P samples that matched with yet to
be identified Sphingomonas sp. K11 strain genome (Gen-
Bank no. CP013916.1) also matched with the WGS of
three ISS strains isolated from the same location (flight
no. 2, location no. 7). These were identified as Sphingo-
monas sanguinis, and functional characteristics were
established, and production of plant growth-promoting
substances was identified [40].

Metagenome-assembled fungal genomes

Conventional tools for MAG assembly are historically
not meant for eukaryotic MAG assembly (strategy 1).
Additionally, the sequencing depth requirement for
eukaryotic MAG assembly is much higher compared
to the prokaryotic genomes. We used a co-assembly-
based analysis (strategy 2), using the tool ANVIO [18]
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on the complete ISS dataset containing both the PMA-
treated and untreated samples to increase the available
data to accommodate eukaryotic MAG assembly. In an
effort to make strategy 2 completely independent from
strategy 1, the process was rerun using the ANVIO tool
from the very initial step of read trimming and filtering.
The minimum contig length considered to be included
in the data was 1000 bp. The merged profile database
that was generated with the minimum contig length of
1000 contained 40,455 contigs, which corresponded to
100% of all contigs, and 100% of all nucleotides found
in the contigs database generated during the process.
Out of the 84 bins, four bins were classified into the
eukaryotic domain. As per the minimum requirement
for MAG, completeness should be > 50%, and contami-
nation should be < 10% [41]. Two out of four genomes
did not have the required 50% completeness, while
the other two were subjected to genome refinement
to reduce the redundancy below 10%. After genome
evaluation with BUSCO, only four genome bins met
the minimal standard for draft MAG, i.e., bins 7, 12, 60,
and 73 (Fig. 1).

The four fungal MAGs (Bin7, Binl2, Bin60, and
Bin73) could be assigned to the species level by BLASTn
searches plus Mash distance comparisons. Binl12 had
four (among five) random genomic segments of 2000
bp matching Rhodotorula mucilaginosa (ATCC 58901)
> 99.9% hit identity, and the remaining segment cor-
responding Rhodotorula sp. (CCFEE 5036). Binl2
Mash distance against the most complete assembly of
this species (R. mucilaginosa IF1SW-B1, an ISS strain;
GCA_013036955.1) was 0.0049, well below the 0.04
Mash distance threshold for k-mer sizes between 16 and
22 bp [32], and therefore confirming it as R. mucilaginosa
(Table 2). Regarding Bin60, the five BLASTn searches
matched Penicillium chrysogenum (genome Wiscon-
sin 54-1255; GCA_000710275.1) with percent similarity
in the range 98.4-99.95% for the five segments. Mash
confirmed the species, with a distance value of 0.007
(Table 2). Regarding Bin73, the five BLASTn searches
matched Papiliotrema laurentii 5307AH v1.0 with a low
Mash distance which confirmed the species as P. lauren-
tii and also showed high relationship with the genome of
an ISS isolate IF7SW-B5 (GCA_012922625.1; Table 2).
Regarding Bin7, BLASTn searches resulted in close
matches to members of the Naganishia genus. Mash dis-
tance calculation against the six closest genomes of this
genus (four Naganishia tulchinskyi and two Naganishia
liquefaciens) showed that Bin7 can be assigned to spe-
cies N. tulchinskyi (Table 2); for this bin, a phylogenetic
analysis was also carried out confirming the N. tulchin-
skyi classification (Fig. 1). It is interesting to note that
the “metagenome to phenome” approach applied for the
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bacterial MAGs also enabled the description of a novel
yeast, N. tulchinskyi, from the ISS samples [42].

BLAST-based genome comparisons visualized using
BRIG for six species are shown in Fig. 2. They are as fol-
lows: Acinetobacter pittii, E. bugandensis, K. piersonii,
Klebsiella pneumoniae, M. ajmalii, and S. aureus. The
BRIG analysis revealed relatively high levels of identity
shared across genomes of the ISS isolates and MAGs,
when compared against their type strain genomes
(Fig. 2). Additionally, patterns of GC content for each
bacterial species tested were highly similar to that of their
respective type strain.

Comparative phylogenetic analysis reveals evolution

The possible evolution in the ISS microorganisms was
investigated with a careful species-by-species phyloge-
netic analysis. In this exercise, the following criteria were
used: (i) ISS isolates, (ii) ISS MAGs, and (iii) at least one
Earth-origin reference genome. The resulting candidate
species genome data are shown in Supplementary Table
S2, and they belong to K. piersonii, K. quasipneumoniae,
P, brenneri, S. aureus, and S. saprophyticus.

The phylogenetic analyses for those five species showed
that ISS genomes (isolates and MAGs) are always mono-
phyletic. This is already suggestive of ISS-specific evolu-
tion. For two of those trees (Kalamiella and Pantoea),
there were not enough Earth-origin genomes available
(Supplementary Fig. S2). With reference to the Staphy-
lococcus aureus and K. quasipneumoniae phylogenetic
analysis with core genes, the inferred tree contains two
ISS clades (Fig. 3 A and C, respectively), suggesting in
both cases at least two separate introductions from an
Earth source. However, for S Staphylococcus saprophyti-
cus, all ISS genomes were placed within a single clade
(Fig. 3B).

The single-copy genes specific to either the ISS
genomes or the Earth-origin genomes were checked and
found none. Furthermore, mutation (indels and substitu-
tions) analyses were carried out that were specific to the
ISS clades. The amino acid substitutions that changed a
hydrophobic amino acid into a hydrophilic one or vice
versa were checked and found many changes. The genes
affected by these changes were analyzed in terms of Gene
Ontology classifications (Biological Process only; Sup-
plementary Fig. S3). The two ISS-specific clades of the
S. aureus tree allowed us to compare the two clades in
terms of indels. There were 63 indels found to be shared
by both clades of S. aureus, as opposed to 14 indels spe-
cific to clade 1 and 57 specific to clade 2. The GO analysis
of the genes affected by the 63 shared indels resulted in
10 GO terms (Supplementary Fig. S4).

Many of the GO terms with high frequency that
resulted from these analyses are related to cell
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0GCA_012922685.1__Naganishia_tulchinskyi_IF7SW-B1
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Fig. 1 Local phylogeny showing placement of the Bin7 MAG, based on a larger phylogeny embracing 145 Tremellomycetes taxa (class where
members of the genus Naganishia in nested within). Position (in red) relative to its closest clade (in blue) is shown

Table 2 Fungal MAGs recovered from ISS metagenomic reads

MAGID K-mersize QueryID Mash distance p-value Matching hashes

Bin_12 22 GCA_013036955.1_Rhodotorula_mucilaginosa_IF1SW-B1.fna 0.00485591 0 816/1000

Bin_60 22 GCA_000710275.1_Penicillium_chrysogenum_ASM71027v1_genomicfna  0.00662984 0 761/1000

Bin_73 22 GCA_012922625.1_Papiliotrema_laurentii_IF7SW-B5.fna 0.00251085 0 898/1000

Bin_7 22 JAAZPV010000089.1_Naganishia_tulchinskyi_strain_IF6SW-B1_scaf- 0.00616116 0 775/1000
fold1018_cov224.fna

Bin_7 22 JAAZPY010000044.1_Naganishia_tulchinskyi_strain_lIF5SW-F1_scaf- 0.00616116 0 775/1000
fold102_cov184.fna

Bin_7 22 JAAZQAOD10000042.1_Naganishia_tulchinskyi_IF7SW-B1_scaffold100_ 0.00616116 0 775/1000
cov213fna

Bin_7 22 JAAZPZ010000100.1_Naganishia_tulchinskyi_strain_IF1SW-F1_scaf- 0.00626056 0 772/1000
fold1012_cov89.fna

Bin_7 22 JACWFY010000001.1_Naganishia_liquefaciens_strain_I2-R1_I2-R1_con-  0.00622737 0 773/1000
tig_1.fna

Bin_7 22 BLZA01000001.1_Naganishia_liquefaciens_N6_DNA.fna 0.0123325 0 616/1000

Bin_7 22 JABRPJO10000001.1_Naganishia_randhawae_strain_eABCC1_contig_1fna 0251066 1.2444e-07  2/1000

Bin_7 22 LLJT01000001.1_Naganishia_albida_strain_NT2002_contig1.fna 0.251066 1.27629e-07  2/1000

Bin_7 22 MU158391.1_Naganishia_vishniacii_ANT03-052_unplaced_genomic_ 0.282528 0.000492662 1/1000

scaffold_NagvilqcScaffold_1.fna

membranes, such as transmembrane transport, cell
wall organization, and regulation of cell shape. This is
consistent with previous reports regarding the effects
of microgravity on cellular morphology, proliferation,
and adhesion [43]. Taken together, the present results
exhibit strong evidence for ISS-specific bacterial
evolution.

Gene-based functional analysis

Variations in the AMR and virulence genes of the
selected 20 MAGs have been summarized in Supplemen-
tal Table S1. Since multiple studies show that the micro-
bial virulence increases in microgravity [44, 45], AMR
gene sequences of MAGs were compared with genomes
of type strains and ISS isolates [46, 47]. Among these 20
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Fig. 2 Comparisons of genome assemblies from isolates (purple) and MAGs (blue) against their respective type strains using BRIG. Innermost rings
correspond to the pseudo-coordinates of the concatenated reference assemblies and their respective sliding GC content. Ordering of the blast

comparisons of each of the assemblies is displayed for the isolates (purple, right) and MAGs (blue, left), ordered from innermost to outermost blast
comparison ring. The outermost plot in each figure highlights annotations of relevant markers. Nucleotide identities generated by blastn are color

coded for each assembly, with upper identity and lower identity cutoffs at 90% and 80%, respectively, and a minimum e-value of 1e-05.

MAGs characterized, AMR genes were more prevalent
in the E. bugandensis F1-2P MAG, whereas these were
not present in the other MAGs of BSL-2 microorganisms
studied during this study.

MAGs were further used to analyze if genes involved
in AMR and biofilm formation of viable microbes in
the ISS have variation due to generational evolution in
microgravity and radiation pressure. Comparative anal-
yses of MAG and WGS of related ISS isolates and their
type strains were characterized to understand the vari-
ation related to microbial evolution under micrograv-
ity. Among 20 MAGs processed, 13 AMR genes were
found to be the most prominent among the bacteria
(Table 3). These 13 genes were housekeeping genes and
have a unique, specialized role determined by their pro-
tein type and function. For example, the LSU ribosomal
unit is the primary site where protein synthesis occurs
in the translation process. Other genes include copper
translocating P-type ATPase, DNA gyrase subunits A
and B, LSU ribosomal unit 20p and 35p, SSU ribosomal
unit 7p, and 12p, DNA-directed RNA polymerase beta
subunit, topoisomerase IV subunits A and B, translation
initiation factor 3, translation elongation factor Tu (EF-
Tu), and translation elongation factor G (EF-G). Func-
tions of genes characterized during this study are given

in Supplemental Table S2. Single-nucleotide variation
(SNV) among these 13 housekeeping genes in MAGs of
six different bacterial species are summarized below.

Annotated genes identified for various subsystems
in 20 selected MAGs are presented in Table 4. The sub-
system features include genes responsible for various
metabolisms, in which genes responsible for carbohy-
drates and amino acids metabolism were high. Genes
related to motility and chemotaxis were absent in the
members of the genera Acinetobacter, Kocuria, Staphylo-
coccus, and Klebsiella. In contrast, genes associated with
stress response were present in high numbers (90 to 167
genes) within members of family Enterobacteriaceae,
whereas such genes were less abundant (19 to 75 genes)
with Staphylococcus and actinobacterial species. Simi-
larly, sporulation and dormancy genes were mainly pre-
sent in Paenibacillus polymyxa, since they are the only
spore-forming bacterium MAG found.

Copper translocating P-type ATPase

To observe positional sequence variation in the cop-
per translocating P-type ATPase, the E. bugandensis
F1-2P MAG was compared with the type strain EB-2477,
which is a nosocomial pathogen isolated from human
blood and found sequence variation. Likewise, MAGs
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Fig. 3 Maximum likelihood phylogenetic trees of A S. aureus, B S. saprophyticus, and C Klebsiella quasipneumoniae. Clades in red contain only ISS

genomes

of Pseudomonas brenneri (F1-5P and F2-5P) and Pan-
toea dispersa (F3-4P) had positional variation compared
to their type strains (LMG 24534 and DSM 300737,
respectively). In contrast, no sequence variation in the
copper translocating P-type ATPase was noticed when
analyzing the WGS of the S. aureus ATCC12600" type
strain, a nosocomial isolate, and S. aureus MAGs (F1-4P
and F2-8P). Similarly, K. pneumoniae MAG F3-3P had
no SN'Vs compared to its type strain ATCC 13883". Aci-
netobacter pittii F2-1P MAG had maximum similarity

of copper translocating P-type ATPase sequence with
not only its type strain DSM 25618" but also with Aci-
netobacter baumannii DSM 30007" which was isolated
from human urine. WGS of the novel species K. pierso-
nii, whose type strain IIIF1SW-P2T was also isolated
from location no. 1 of the ISS [7], was compared with the
MAGs (F3-1P, F3-5P, F3-7P, and F3-8P). This comparison
exhibited the same genetic composition, which confirms
that the MAGs might have originated from the living
cells. In addition, the comparative genomic analysis of
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the uropathogenic strain of K. piersonii strain YU22, iso-
lated from human urine [48], revealed no SN'Vs.

DNA gyrase subunit A

To observe positional sequence variation in the DNA
gyrase subunit A, S. aureus MAG F2-8P was compared
with the genomes of the type strain ATCC 126007, iso-
lated from pleural fluid, and most SNPs were found.
However, S. aureus MAG F1-4P was highly homologous
with the type strain ATCC 12600". In addition, S. aureus
MAG F2-8P and AR071, a nosocomial strain that is part
of the FDA/CDC AMR bank, also showed mutations.
Similarly, E. bugandensis F1-2P had SNPs found in its
counterpart type strain EB-247". A. pittii had alignment
differences in strain A. pittii XJ88, which was found in
human sputum which is a mixture of saliva and mucus. P
brenneri MAGs (F1-5P and F2-5P) as well as K. personii
MAGs (F3-5P, F3-8P, and F3-7P) have SNPs with its type
strain. The remainder of the Pantoea strains was found to
have scattered SNPs among Earth homologs. In contrast,
K. quasipneumoniae MAG F1-2P had no SNPs found
with its type strain 01A030%, a human blood isolate. K.
pneumoniae MAG F3-3P had nucleotide differences with
NCTC 11357 sequences.

DNA gyrase subunit B

S. aureus MAGs (F1-4P and F2-8P) had SNPs in S. aureus
ATCC12600". E. bugandensis MAG F1-2P has SNPs
found in E. quasihormaechei WCHes120003" which was
isolated from a human sputum [49] and its type strain as
well. A. pittii had many scattered SNPs among the Earth
homolog. K. pneumoniae MAG F3-3P did not have dis-
tinct point mutations.

DNA-directed RNA polymerase beta subunit

S. aureus MAGs (F1-4P and F2-8P) have SNPs found
in ATCC 12600, which has already been explained to
be a nosocomial strain. E. bugandensis F1-2P and Earth
homolog Enterobacter cloacae complex C45, isolated
from a hospital, have point mutations. K. pneumoniae
F3-3P had SNPs found in K. pneumoniae NCTC 9170.
P. dispersa F3-4P was the only strain that had scattered
SNPs in the Pantoea species. Acinetobacter alignment
had SNPs found in Acinetobacter sp. genomospecies 3
ATCC 19004 which was isolated from cerebrospinal fluid.

LSU ribosomal protein L20p

S. aureus F1-4P and F2-8P MAGs had no SNPs with the
type strain. Strain S. aureus GD1108 which is a hospital
strain is the same as that of ISS F1-4P and F2-8P MAGs.
S. aureus F2-8P ISS strain was very dissimilar to the rest
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of the S. aureus MAG sequences. Both E. buganden-
sis and Klebsiella MAGs have no SNPs. The Pantoea
MAGs have SNPs found in Plautia stali (insect) symbi-
ont, P vagans C9-1, and P. stewartii DC 283. One SNP
was found in strain XJ88 in the Acinetobacter (F2-1P)
alignment.

LSU ribosomal protein L35p

No SNPs were found in all S. aureus strains. SNPs were
not found in both Enterobacter and Klebsiella MAGs. P,
brenneri MAGs (F1A-5P and F2-5P) have no SNPs. Aci-
netobacter had no SNPs found. K. piersonii MAGs (F3-1P
and F3-7P) have SNPs in Pantoea sp. O10 that was iso-
lated from the soil. P dispersa F3-4P has SNPs in P. rwan-
densis ND04 (waterfall isolate).

SSUribosomal protein S12p

S. aureus MAGs (F1-4P and F2-8P) have SNPs in
GD1108. P. brenneri MAGs (F1-5P and F2-5P) and K.
personii MAGs (F3-1P, F3-5P, F3-7P, and F3-8P) have
SNPs in strain LMG 24199. P. dispersa F3-4P had one
SNP found when compared to Earth homolog. Entero-
bacter F1-1P and Klebsiella MAGs had no SNPs. The Aci-
netobacter alignment had no SNPs found.

SSUribosomal protein S7p

S. aureus MAGs (F1-4P and F2-8P) have SNPs found in
their Earth analogs. P. brenneri (F1-5P and F2-5P) as well
as K. piersonii (F3-1P) have SNPs found in LMG24199. P
dispersa F3-4P had three SNPs found in the ISS strain. K.
piersonii MAGs (F3-5P, F3-7D, and F3-8P) had differences
found in Pantoea vagans FBS135. This strain was from a
Masson’s pine isolation source. Enterobacter F1-1P and
Kilebsiella have no SNPs found. No SNPs were found in
A. pittii.

Topoisomerase IV subunit A

S. aureus MAGs (F1-4P and F2-8P) had SNPs found in
ATCC 12600. A. pittii MAG was extremely different from
the rest of the alignment. E. bugandensis F1-2P had scat-
tered SNPs. K. pneumoniae F3-3P had SNPs found in
strain ATCC 700603. P. brenneri F2-5P and K. piersonii
F3-1P had SNPs found in P agglomerans FDAARGOS
160 which was isolated from a human wound isolation
source. P. dispersa F3-4P and K. piersonii F3-7P have no
SNPs.

Topoisomerase IV subunit B

S. aureus F1-4P have no SNPs, but MAG F2-8P had
SNPs found in strain AR071 and GD1696. E. buganden-
sis F1-2P MAG was extremely different compared to the
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rest of the type strain EB-247. P. brenneri MAGs (F1-5P
and F2-5P) had SNPs found in LMG24199. Other Pan-
toea strains have SNPs primarily found with their respec-
tive type strains. K. piersonii MAGs (F3-7P and F3-8P)
have SNPs found in Pantoea agglomerans TH81. A. pittii
F2-1P had SNPs found in IEC338SC which was isolated
from a trachea excretion.

Translation initiation factor 3

S. aureus MAG F1-4P have had sequences that were
very different from its Earth homologs, but there were
no SNPs were found in S. aureus F2-8P MAG. K. pierso-
nii F3-8P had scattered SNPs, whereas MAG F3-7P and
P dispersa F3-4P have SNPs in Plautia stali symbiont
which was collected from the midgut of an insect. All
other Pantoea MAGs do not have SNPs. The A. pittii
alignment was found to have SNPs in the strain 201406
which was isolated from human. Both Enterobacter and
Klebsiella species had no nucleotide differences.

Translation elongation factor G

S. aureus MAGs (F1-4P and F2-8P) have SNPs found in S.
aureus AR 464. E. bugandensis F1-1P has SNPs in Enter-
obacter MBRL1077 which was isolated from a human
wound. SNPs were not particular to one Klebsiella strain.
K. piersonii MAGs (F3-1P, F3-5P, F3-7P, and F3-8P) and
P. dispersa F3-4P have SNPs with their respective type
strains. There were no SNPs found in K. pneumoniae
F3-3P, but SNPs were found in A. pittii F2-1P with strain
ST220 which was retrieved from sputum. P brenneri
F2-5P has no SNPs.

Translation elongation factor Tu
S. aureus F2-8P had SNPs found in strain AR071, and
the rest of the S. aureus F1-4P MAG has SNPs in ATCC
12600. E. bugandensis F1-2P had scattered SNPs, but
Klebsiella strains have no SNPs. P brenneri F2-5P and
K. piersonii MAGs (F3-1P and F3-7P) have SNPs when
compared to the type strain. K. piersonii F3-5P had
SNPs found in Pantoea stewartii strain DC283, whereas
K. piersonii MAG F3-8P did not have any SNPs. P dis-
persa MAG F3-4P has SNPs in Pantoea rwandensis strain
NDO4. A. pittii was extremely dissimilar to its type strain.
Many SNPs found in these 333 alignments have been
found in the Earth homologs. The Pantoea/Kalamiella
strains have the most SNPs found within the ISS strain.
This may suggest that Pantoea/Kalamiella strains are
much more subjective to microgravity changes. More
epigenetic and chemical analyses are needed to under-
stand why members of these species are particularly sensi-
tive to these conditions. The difference may also lie in the
low percent identity the Earth homologs had. In regards
to the Staphylococcus strains, ATCC12600 and GD1108
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are both nosocomial strains which seem to act differently
in each gene. For example, in some genes, ATCC12600
exhibits SNPs, while GD1108 is the only Earth homolog
that has the exact same sequence as the ISS strain. Strain
GD1108 was isolated from a school child from a preva-
lence survey in 2011 in Guangzhou, People’s Republic of
China [50]. Common SNPs were not found between the
ISS and homolog strains within alignments. SNPs in Earth
homologs symbolize differences in where the strain was
found from. For example, Earth homologs that are found
in soil exhibit very different sequences with the ISS strain,
therefore explaining the SNPs. In addition, most SNPs
have been found in human fluids as well as soil/plants with
a few animal excretions. This demonstrates that the ISS
strain has some nosocomial/soil background in relation to
the rest of the alignment. Strains that are similar/dissimilar
to the ISS strain show no common isolation source for the
most part. Therefore, more biochemical analyses on the
molecular level are needed. In MAG gene analysis (Sup-
plemental Table S1), it was observed that similar genes
were responsible for antibiotic resistance and virulence.
This common gene-based resistant phenomenon suggests
that changes are an adaptation strategy in microbes.

Genes related to biofilm characteristics

Biofilm forming and quorum-sensing (QS) genes ana-
lyzed in this study and their predicted functions are tabu-
lated in Supplemental Table S2. Sequences of all four E.
bungandensis 1SS strains and the MAG (F1-2P) exhibited
100% sequence similarities among them for the genes
responsible for biofilm (pgaABCD) and QS (LsrABCD,
LsrR, LsrK, and AI-LuxS) functions. The variable residues
(SNPs) of genes related to biofilm formation and QS-
related genes in E. bungandensis MAG when compared
to E. bugandensis strains (n = 11) isolated from clinical
samples are given in Table 5. The comparative sequence
analysis of E. bugandensis MAG shows that the biofilm
and QS genes are highly conserved (< 1% SNPs variation)
across most of the clinical strains of E. bugandensis (n
= 10). This pattern is also consistent with the neighbor-
joining tree of each one of these genes for all the strains
tested and one MAG (data not shown). These analyses
confirmed that E. bugandensis strains might have hitch-
hiked with the healthy crew and landed on ISS surfaces.
In contrast, the sequence variation of all biofilm and QS
genes of E. bugandensis strain MBRL 1077 was highly
variable (2.4 to 25%). The average nucleic acid index
(ANI) of MBRL 1077 and the E. bugandensis type strain
EB-247 were ~95%, whereas the ANI was > 99% for the
other 10 clinical strains, four ISS isolates, and one MAG.
The higher SNPs and lower ANI values of MBRL 1077
strain with all other 14 strains and one MAG suggested
that MBRL 1077 might not belong to E. bugandensis.
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These SNPs analysis results were also supportive of
the function of the genes, e.g., the AI-luxS gene had
nucleotide mutations; however, none of these nucleo-
tide mutations led to a change of amino acid. This
result is interesting because this gene codes for the
autoinducer proteins which are very important for car-
rying signals [51]. In that regard, environmental stress
would have no effect on that gene since a change in the
gene sequence would not serve to increase the rate of
biofilm production and increase the overall amount
of biofilm formed, but we can also see that there is a
decent amount of amino acid change in the LsrC gene
which is responsible for importing the autoinducer, and
this makes sense because while the autoinducer itself
does not need to be changed, the rate at which it is
imported to carry information needs to be increased or
reduced to accommodate for the change in the amount
of biofilm produced. On the other hand, changes in
the nucleotide sequence of the pgaA and pgaB genes,
along with the LsrK gene, lead to high amino acid
change. This could serve as a strong indication of these
organisms trying to adjust to the environmental stress
because the pgaA and pgaB are responsible for trans-
porting the PGA essential in the movement of adhesin
out of the periplasm to form the biofilm. Also, the LsrK
is responsible for repressing the LsrR repressor, and
increasing the function of all three genes will aid in
increased signal for biofilm to be formed faster, as well
as increase the rate of biofilm formation.

Conclusion

In summary, good quality bacterial and fungal MAGs
were generated from ISS environmental samples, and
functional properties were predicted. Furthermore, it
was possible to describe novel microbial (two bacterial
and one yeast) species via the “metagenome to phenome”
approach. The monophyletic phylogeny exhibited by the
ISS genomes (both isolates and MAGs) suggested that
they shared a single common ancestor. The molecules
pertaining to the cell membranes, such as transmem-
brane transport, cell wall organization, and regulation
of cell shape, were in high frequency in ISS genomes
demonstrating evidence for ISS-specific bacterial evo-
lution. The common gene-based resistance phenom-
enon noticed in this study suggests that SNP changes in
MAGs and ISS genomes might be an adaptation strat-
egy in AMR and biofilm formation in microbes. Simi-
larly, variations found in the AMR and virulence genes
enabled the prediction of the ecology and evolution of
microorganisms in space. The maximum SNPs charac-
terized for the ISS Pantoea/Kalamiella strains suggested
that enterobacterial species are much more subjective to
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microgravity changes. However, fixation of environmen-
tal samples in space for RNAseq approach and/or in situ
sequencing in space are warranted to confirm variation
related to microbial evolution under microgravity. More
studies are needed to unearth whether SNPs seen in ISS
MAGs are due to generational evolution in microgravity
and radiation pressure.
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